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Abstract: Parametric modelling deals with determination of model parameters of a system. Parametric modelling of 
systems may benefit from advantages of real coded genetic algorithms (RCGAs), as they do not suffer from 
loss of precision during the processes of encoding and decoding compared with Binary Coded Genetic 
Algorithm.  In this paper, RCGA is used to identify the best model order and associated parameters 
characterising a thin plate system. The performance of the approach is assessed on basis mean-squared 
error, time and frequency domain response of the developed model in characterising the system. A 
comparative assessment of the approach with binary coded GA is also provided. Simulation results signify 
the advantages of RCGA over two further algorithms in modelling the plate system are also provided. 

1 INTRODUCTION 

Parametric modelling is defined as the process of 
estimating parameters of a model characterising a 
plant. The technique basically searches for 
numerical values of the parameters so that to give 
the best agreement between the predicted (model) 
output and the measured (plant) output. Parametric 
modelling can include both the parameter estimates 
and the model structure. Statistical validation 
procedures, based on correlation analysis, are 
utilised to validate parametric models.  

Several advantages motivating research intention 
in a flexible structure are due to light weight, lower 
energy consumption, smaller actuator requirement, 
low rigidity requirement and less bulky design. 
These advantages lead to extensive usage of flexible 
plates in various applications such as space vehicles, 
automotive industries, and the construction industry. 
Modelling is the first step in a model-based control 
development of a system. Accordingly, the accuracy 
of the model is crucial for the desired performance 
of the control system.  

Artificial intelligence approaches such as genetic 
algorithm (GA), particle swarm optimisation (PSO), 
fuzzy logic and neural networks have been utilised 
in system identification applications. Among these 
GAs have shown great potential in parametric 
modelling of dynamic systems.  

The utilisation of binary-coded GA (BCGA) and 
real-coded GA (RCGA) for parameter estimator of 

models of dynamic systems has been reported in 
various applications.  Zamanan et al. (2006) have 
reported the use of RGA as an optimization 
technique for tracking harmonics on power systems. 
Mitsukura et al. (2002) have reported using BCGA 
and RCGA to (i) determine a function type and (ii) 
the coefficient of the function and time delay, 
respectively. They have tested the technique 
successfully in determining the hammer stain model 
and music data model. BCGA also has been used to 
estimate the parameters of a plate structure (Intan, 
2002). However, precision in BCGA is affected due 
to the processes of encoding and decoding. 
Moreover, BCGA is susceptible to the Hamming 
Cliff effect, which can be problematic when 
searching a continuous search space.  Instead of 
working on the conventional bit by bit operation in 
BCGA, an RCGA approach is chosen in a wide 
range of applications where both the crossover and 
mutation operators are handled with real-valued 
numbers. A real coded GA leads to reduced 
computational complexity and faster convergence 
compared to a binary coded GA. 

In this work, RCGA is proposed for parametric 
modeling of a flexible plate structure in comparison 
to a binary-coded GA. The rest of the paper is 
structured as follows: Section 2 describes the 
flexible plate system and formulates the problem. 
Section 3 presents the parametric models with 
RCGA and parametric system identification 
respectively. Section 4 presents implementation of 
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the algorithms in modeling the system using various 
excitation signals such as finite duration step, 
random and pseudo random binary signal (PRBS). 
Results and discussions of the model validity 
through input/output mapping, mean square of 
output error and frequency domain response are also 
presented. Parametric modelling is also confirmed 
with convergence of fitness values and time run. 
Finally, the paper is concluded in Section 5. 

2 THE FLEXIBLE PLATE 
SYSTEM 

Dynamic simulation of a plate structure using the 
finite differences (FD) method is considered in this 
paper. The finite difference method is used to 
discretise the governing dynamic equation 
considered with no damping and the lateral 
deflection of plates is obtained using central finite 
difference method. It then transformed into state 
space equation as the following equation. 

Wi,j,k+1= (A+2ijk)Wi,j,k + BWijk + CF (1) 

Where 2ijk represents the diagonal elements of (2/c), 
C=(Δt2/ρ), c=-DC, and Wi,j,k+1 is the deflection of 
grid points i = 1, 2,……, n+1 and j = 1, 2,.., m+1 at 
time step k+1. Wi,j,k and Wijk are the corresponding 
deflections at time steps k and k-1 respectively. A is 
constant (n+1)(m+1) x (n+1)(m+1) matrix  whose 
entries depend on physical dimensions and 
characteristics of the plate,  B is a diagonal matrix of 
-1 corresponding to Wi,j,k and C is a scalar related to 
the given input and F is an (n+1)(m+1) x 1 matrix 
known as the forcing matrix. The algorithm is 
implemented in Matlab/SIMULINK with applied 
external force or disturbance into all clamped edges 
plate. Twenty two equal divisions of plate elements 
with dimension 1.0mm× 1.0mm× 0.00032m is 
measured at the detection and observation points 
(Figure 1). Parameters of the plate considered 
comprise mass density per area, ρ = 2700 kg/m2, 
Young’s Modulus, E = 7.11 x 1010 N/m2, second 
moment of inertia, I = 5.1924 x 10-11 m2 and Poisson 
ratio, υ = 0.3 with sampling time 0.001. 
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Figure 1: The flexible plate system. 

3 REAL CODED GENETIC 
ALGORITHM 

In most of practical engineering problems, the real-
coded GA is more suitable than the binary-coded 
GA, as transformations from real number to binary 
digits may suffer from loss of precision. Genetic 
operations are very important to the success of 
specific GA applications. In this work, real-coded 
representation is used to determine the model order 
of the plant and subsequently identify parametric 
model of the system. The initial population is 
created randomly within [-1,1] range.  The main 
three genetic operators involved are described 
below. 

3.1 Selection 

Selection is the process of determining the number 
of times or trials a particular individual in the 
population is chosen for reproduction (Chipperfield, 
1994). The process includes two steps, namely 
selection probability and sampling algorithm. 
Selection probability is concerned with 
transformation of raw fitness values into real as 
expected of an individual to reproduce. Sampling 
algorithm reproduces individuals based on the 
selection probabilities computed before. This 
process is repeated as often as individuals must be 
chosen. There are many methods reported such as 
roulette wheel selection, stochastic universal 
sampling and tournament selection, etc. The 
stochastic universal sampling (SUS) method is used 
in this work that randomly copies chromosomes and 
simulates N equally distributed pointers. SUS is a 
simpler algorithm, and as individuals are selected 
entirely on their position in the population, SUS has 
zero bias. After selection has been carried out, the 
construction of the intermediate population is 
complete and the crossover and mutation operators 
are then applied. 

3.2 Crossover (Recombination) 

Crossover produces new individuals that have some 
parts of both parent’s genetic material (Chipperfield, 
1994). However, Mühlenbein et. al (1991) have 
distinguished between recombination and crossover. 
The mixing of the variables was called 
recombination and the mixing of the values of a 
variable was named crossover. Line recombination 
employed in this work performs an exchange of 
variable values between the individuals. By using a 
real-valued encoding of the chromosome structure, 
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line recombination is a method of producing new 
phenotypes around and between the values of the 
parents’ phenotypes (Mühlenbein and Schlierkamp, 
1993). For the line recombination, let 

),...,( 1 nxxx = and ),...,( 1 nyyy =  be the parent strings. 
Then, the offspring ),...,( 1 nzzz = is computed by 

)( iiii xyxz −+= α      ni ,...,1=  (2) 

where α  is chosen uniform randomly in [-0.25, 
1.25]. Each variable in the offspring is the result of 
combining the variables in the parents according to 
(2). Line recombination can generate any point on 
the line defined by the parents within the limit of the 
perturbation,α , for a recombination in two 
variables. This operator can overcome limitations in 
variables decision and help improve in exploration 
during recombination. 

3.3 Mutation 

The mutation operator arbitrarily alters one or more 
components, genes, of a selected chromosome so as 
to increase the structural variability of the 
population. The role of mutation in GAs is that of 
restoring lost or unexplored genetic material into the 
population to prevent the premature convergence of 
GA to suboptimal solutions; it insures that the 
probability of reaching any point in the search space 
is never zero. Each position of every chromosome in 
the population undergoes a random change 
according to a probability defined by a mutation 
rate, the mutation probability, pm (Herrera et.al, 
1998). The probability of mutating a variable is set 
to be inversely proportional to the number of 
variables (dimensions). The more dimensions one 
individual has the smaller the mutation probability 
of it will be. A mutation rate of 1/m, (where m is the 
number of variables) produced good results for a 
broad class of test function. However, the mutation 
rate was independent of the size of the population 
(Mühlenbein and Schlierkamp, 1993). The mutation 
operator for the real coded GA uses a non-linear 
term for the distribution of the range of mutation 
applied to gene values. Real value mutation is used 
in this work. 

3.4 The Fitness Function 

In this study, minimum mean square error is used as 
a fitness function of the algorithm, while number of 
generations is used as stopping criterion. The fitness 
function, X, is set to minimize (3), in such a way 
that it approaches zero; 
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where y(i) is the actual system output subjected to a 
disturbance signal, )(ˆ iy  is the response of the 
estimated system under the same disturbance, and 
i=1,2,…,n ; n is total number of input/output sample 
pairs. The algorithm of all executions predefined a 
maximum number of generations as stopping 
criteria. 

3.5 Values of Real-coded Genetic 
Parameters 

The real-coded GA parameters used are presented in 
Table 1. 

Table 1: Parameters of real-coded GA. 

RCGA Properties
Population Size 100 
Selection rate 0.9 
Pc,max, Pc,min 0.67 
Pm,max, Pm,min 1/n (n=no of variables)
Selection Method SUS 
Crossover Method Line Recombination
Mutation method Real-value mutation

4 PARAMETRIC SYSTEM 
IDENTIFICATION 

The transfer function of the model used corresponds 
to the ARMA model structure by neglecting the 
noise,η  term; 

4)-u(k3b1)-u(k0b

4)-y(k4a--1)-y(k1a(k)y

+…++

…−=ˆ
 (4) 

In matrix form, the above equation can be written as 
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 (5) 

The first four variables are assigned to b0,…,b3 
and the next four to a1,…,a4 as indicated in (5). Once 
the model is determined, the model needs to be 
verified to determine whether it is well enough to 
represent the system. Correlation tests including 
autocorrelation of the error, cross correlation of 
input-error, input*input-error are carried out to test 
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and validate the model. Each simulation was 
observed over 7000 samples of data for each set. 
The first five resonance frequencies of vibration of 
the plate found from spectral density of the predicted 
output of the RCGA model were 9.971 rad/s, 34.51 
rad/s, 56.76 rad/s, 78.23 rad/s and 99.71 rad/s. 

5 RESULTS 

In order to determine appropriate model order for 
system model using RCGA, different model orders 
were tested. The results of these tests with model 
orders of 4 to 12 are summarized in Table 2. The 
results include time run, standard deviation, mean 
value and mean square error. The accuracy of the 
model, for different model orders, is presented in 
terms of standard deviation, mean value and MSE 
normalized with 10-15, run time represented in 
minutes, and values averaged for each 5 runs. As 
noted in Table 2, a model order of 4 achieved 
minimum mean square error of 1.195 with the 
smallest standard deviation computational time, and 
this was thus chosen for obtaining a model of the 
flexible plate. 

Table 2: Accuracy of model order. 

Model 
Order 

4 6 8 10 12 

Std. 
Deviation 

5.825 6.492 10.10 7.332 10.86 

Mean 
Value   

2.208 2.383 2.996 3.097 3.939 

Normal 
MSE 

1.195 1.203 1.196 1.281 1.562 

Time Run 
(min) 

34.84 34.93 42.55 42.13 43.02 

In subsequent attempts, model order of four 
(4) has been used to obtain unknown parameters of 
RCGA model system in comparison to binary coded 
genetic algorithm (BCGA). In BCGA, the design 
parameters are similar to those in RCGA with single 
point crossover and mutation rate of 0.0001. For 
RCGA, the time-domain and frequeny-domain 
results with random disturbance are shown in Figure 
2 and Figure 3 respectively. Both figures show 
agreement between the actual and predicted output 
in modelling the plate. The normalized error 
between the two outputs as depicted in Figure 4 is  
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Figure 2: The error between actual- predicted outputs. 
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Figure 3: PSD of the actual-predicted outputs. 
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Figure 4: Error between the actual-predicted outputs. 

reasonably small. The corresponding correlation test 
results are shown in Figure 5 using random signals 
for RCGA, and these are in general within the 95% 
confidence level. Thus, this confirms the accuracy of 
the model in representing the dynamic behaviour of 
the plant system. 

Small or less significant parameter variations 
with BCGA indicate convergence to local minima 
and/or pre-mature convergence. The MSE values 
achieved after 500/1000 generations (Figure 6 – 
Figure 8) with BCGA and RCGA are shown in 
Table 3. RCGA achieved faster convergence 
compared to BCGA. The RCGA achieved better 
convergence than BCGA over 500 generations or less  

Table 3: Mean squared output error with the Gas. 

Algorithm 
(Generation)/ 
Disturbance 

Mean Squared Error 
Random  
(x10-4) 

PRBS 
(x10-4) 

Step  
(x10-6) 

RCGA (500 ) 9.51350 1.83940 1.022 
RCGA (1000) 9.51070 1.84130 1.199 
BCGA (500) 12.02200 4.41720 7.6564 
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Figure 5: Correlation validation tests (a) – (e). 

(recommended about 350) with all the test signals. It 
was noted that a larger number of generations did 
not improved the convergence rate, but took more 
time to compute. Figures 9 and 10 show the 
convergence of parameter estimates with RCGA as 
compared to BCGA. 

The estimated system model parameters [a1, a2, 
a3, a4, b0, b1, b2, b3] with the tested disturbance 
signals at the end of 500 generations with RCGA 
and BCGA are shown below. 

i) Random disturbance  

RCGA: [0.07336, 0.1579, 0.1716, 0.07099, 1, 
0.5824, –1, 0.392], 
BCGA: [–0.375, 0.6445, –0.107, 0.1354, 0.9176, 
0.5837, –0.7937, 0.2734] 

ii) PRBS  
RCGA: [0.1355, –0.2193, 0.3892, –0.2897, 
1,0.6084, –1, 0.3739] 
BCGA: [–0.5263, 0.3177, 0.0453, 0.3203, 1, 
0.3285, –0.9275, 0.5801] 

iii) Finite duration step 
RCGA: [0.1850, –0.0002, –0.5244, 0.3418, 1, 
0.4964, –0.0352, –0.4639],  
BCGA: [–0.0576, 0.7715, –0.9993, 0.3186, 
0.4695, 0.3206, 0.4653, –0.4607] 

Figure 11 shows the MSE (in 10-4) and 
associated computer run time (in hours) for 
convergence with RCGA and BCGA. It is noted that 
in general the RCGA required less computing time 
as well as achieved lower MSE values as compared 
to BCGA. 
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Figure 6: Convergence with random signal. 
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Figure 7: Convergence with PRBS Signal. 
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Figure 8: Convergence with step signal. 
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Figure 9: Estimated parameters with BCGA. 
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Figure 10: Estimated parameters with RCGA. 
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Figure 11: MSE and time run for GAs. 

6 CONCLUSIONS 

Parametric modelling of a flexible plate system has 
been carried out. Real-coded GA has been used for 
estimation of order and parameters of the model 
characterising the dynamic behaviour of the plate 
system. The approach has been evaluated in 
comparison to equivalent binary-coded GAs with 
three different test signals. It is noted that the models 
obtained with RCGA have performed better in 
characterising the system in comparison to those 
obtained with BCGA. 
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