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Abstract: An algorithm for the recursive identification of single-input single-output linear discrete-time time-invariant
errors-in-variables system models in the case of white input and coloured output noise is presented. The
approach is based on a bilinear parametrisation technique which allows the model parameters to be estimated
together with the auto-correlation elements of the input/output noise sequences. In order to compensate for the
bias in the recursively obtained least squares estimates, the extended bias compensated least squares method
is used. An alternative for the online update of the associated pseudo-inverse of the extended observation
covariance matrix is investigated, namely an approach based on the matrix pseudo-inverse lemma and an
approach based on the recursive extended instrumental variables technique. A Monte-Carlo simulation study
demonstrates the appropriateness and the robustness against noise of the proposed scheme.

1 INTRODUCTION

The errors-in-variables (EIV) approach forms an ex-
tension of the standard output error system setup
in which it is postulated that only the output mea-
surements are uncertain. In the EIV framework all
measured signals, hence, including the system in-
put, are assumed to be contaminated with noise, see
(Söderström, 2007) for the recent survey on this sub-
ject. The EIV framework can offer advantages over
the classical approach, mainly when the description
of the internal laws governing a system is of prime in-
terest, e.g. application areas in chemistry, image pro-
cessing, fault detection etc., see (Söderström, 2007;
Markovsky and Van Huffel, 2007) for further details.

One of the EIV techniques that has been shown
to be robust and to yield relatively precise estimates
is the extended compensated least squares (ECLS)
method. The approach is based on the extended bias
compensated least squares (EBCLS) and utilises sep-
arable nonlinear least squares to solve the resulting
overall identification problem. The method was first
proposed in (Ekman, 2005a), which considered the
case of white input and output noise sequences and
subsequently extended to handle the case of coloured
output noise in (Ekman et al., 2006). Further anal-
ysis, considering a generalised framework, has been
carried out in (Mahata, 2007).

Alternatively, by exploiting the property that the
overall optimisation problem is bilinear in the un-
knowns, see (Ljung, 1999), which in this case corre-
sponds to the model parameters and the input/output
noise auto-correlation elements, the principle of bi-
linear parametrisation can be utilised. The resulting
scheme, termed here the extended bilinear parametri-
sation method (EBPM) involves solving iteratively
two ordinary least squares problems, see (Larkowski
et al., 2008) for details. Although the quality of the
parameters obtained by the EBPM is comparable to
the quality of the estimates yielded by the ECLS, an
important distinction is that the EBPM is significantly
less computationally demanding than the ECLS tech-
nique.

The bilinear parametrisation method was first
utilised to solve the EIV identification problem in
a recursive manner in (Ekman, 2005b) for the case
of white input and output noise. It has also been
exploited in (Ikenoue et al., 2008) for the case of
coloured input and output noise sequences and for the
purpose of offline as well as online estimation. How-
ever, in both cases the term ‘bilinear parametrisation’
has not been explicitly stated. In (Ekman, 2005b) the
constructed recursive algorithm is not computation-
ally attractive, since its complexity at each iteration is
actually greater than that of the corresponding batch
algorithm applied in an offline manner at each recur-
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sion. Whereas, in (Ikenoue et al., 2008) due to a spe-
cial choice of the instruments, the resulting algorithm
is not causal, in general, hence its recursive imple-
mentation yields delayed estimates.

In this paper a recursive realisation of the EBPM
is presented for a discrete-time linear time-invariant
(LTI) single-input single-output (SISO) system model
in the case of the white input and coloured output
noise and it is demonstrated that the above men-
tioned shortcomings may be avoided. The bias of
the recursively calculated least squares (LS) estima-
tor is removed at each recursion via the extended bias
compensated least squares (EBCLS) technique. The
online update of the pseudo-inverse of the overde-
termined observation matrix is realised by consider-
ing an alternative, namely an approach based on the
pseudo-inverse lemma, see (Feng et al., 2001) and an
approach based on the recursive extended instrumen-
tal variables technique, see (Friedlander, 1984). The
two resulting algorithms are analysed and compared
with their offline counterpart via a Monte-Carlo sim-
ulation study. It is shown that the instrumental vari-
ables approach is the more preferable due to its supe-
rior robustness and improved convergence properties,
in general.

2 NOTATION AND PROBLEM
STATEMENT

Consider a discrete-time LTI SISO system repre-
sented by the difference equation

A(q−1)y0k = B(q−1)u0k, (1)

where the polynomialsA(q−1) andB(q−1) are given
by

A(q−1) , 1+a1q
−1 + . . .+anaq

−na, (2a)

B(q−1) , b1q−1 + . . .+bnbq
−nb (2b)

with q−1 being the backward shift operator, defined
by q−1xk , xk−1. The unknown noise-free input and
noise-free output signals denotedu0k andy0k, respec-
tively, are related to the available noisy variables, de-
noteduk andyk, such that

uk = u0k + ũk, yk = y0k + ỹk, (3)

whereũk andỹk denote the input and output measure-
ment noise sequences, respectively. The following
standard assumptions, see e.g. (Ekman et al., 2006),
are introduced:

A1 The LTI system (1) is asymptotically stable, i.e.
A(q−1) has all zeros inside the unit circle.

A2 All system modes are observable and control-
lable, i.e. A(q−1) andB(q−1) share no common
factors.

A3 The system structure, i.e.na andnb, is knowna
priori andna ≥ nb.

A4 The true inputu0k is a zero mean, ergodic random
sequence persistently exciting and of sufficiently
high order, i.e. at least of orderna +nb.

A5a The additive input noise sequence ˜uk of un-
known varianceσũ is an ergodic zero mean white
process.

A5b The additive output noise sequence ˜yk is
an ergodic zero mean process characterised
by an unknown auto-covariance sequence
{rỹ(0), rỹ(1), . . .}.

A6 The input/output noise sequences are mutually
uncorrelated and uncorrelated with signalsu0k and
y0k.

By postulating that the output noise sequence exhibits
an arbitrary degree of correlation allows for measure-
ment sensor uncertainties to be taken into account, as
well as potential disturbances in the process.

The system parameter vector is denoted

θ ,
[

aT bT
]T

∈ R nθ , (4a)

a ,
[

a1 . . . ana

]T
∈ R na, (4b)

b ,
[

b1 . . . bnb

]T
∈ R nb, (4c)

wherenθ = na + nb. The extended regressor vectors
for thek-th measured data are defined as

ϕ̄k ,
[

−yk ϕT
k

]T
∈ R nθ+1

, (5a)

ϕ̄yk,
[

−yk ϕT
yk

]T
∈ R na+1

, (5b)

where

ϕk ,
[

ϕT
yk

ϕT
uk

]T
∈ R nθ , (5c)

ϕyk ,
[

−yk−1 . . .−yk−na

]T
∈ R na, (5d)

ϕuk ,
[

uk−1 . . .uk−nb

]T
∈ R nb. (5e)

The noise contributions in the corresponding regres-
sor vectors are denoted by a tilde, i.e.˜[·], whereas the
noise-free signals are denoted by a zero subscript, i.e.
[·]0. From (3) it follows that

ϕ̄k = ϕ̄0k + ˜̄ϕk. (6)

The notationΣgd is used as a general notion for the
covariance matrix of the vectorsgk anddk, whereas
ξg f is utilised for a covariance vector withfk being
a scalar. The corresponding estimates are denoted by
a hat. In addition, 0g×d denotes the null matrix of
arbitrary dimensiong× d and a single index is used

RECURSIVE EXTENDED COMPENSATED LEAST SQUARES BASED ALGORITHM FOR
ERRORS-IN-VARIABLES IDENTIFICATION

143



in the case of a column vector as well as in the case of
a square matrix, e.g. the identity matrixIg. The auto-
correlation elements, denotedrỹ(·) are defined as

rỹ(τ) , E [ỹkỹk−τ] , (7)

whereE[·] is the expected value operator. Introducing

ρ ,
[

ρT
y σũ

]T
∈ R na+2

, (8a)

ρy ,
[

rỹ(0) . . . rỹ(na)
]T

∈ R na+1
, (8b)

the dynamic identification problem in the EIV frame-
work considered here is formulated as:

Problem 1. (Dynamic EIV identification problem)
Given N samples of the measured signals, i.e.{uk}

N
k=1

and{yk}
N
k=1, determine the vector

Θ ,
[

θT ρT
]T

∈ R nθ+na+2
. (9)

3 REVIEW OF APPROACHES

This section briefly reviews the EBCLS technique and
the offline EBPM algorithm.

3.1 Extended Bias Compensated Least
Squares

Denoting an estimate bŷ[·], a solution of the system
(1)-(3) in the LS sense is given by

θ̂LS = Σ̂†
xϕξ̂xy, (10)

where[·]† is the pseudo inverse operator defined by
A† , (ATA)−1AT , xk ∈ R

nx denotes an arbitrary in-
strumental vector withnx ≥ nθ. Due to the mea-
surement noise, unless the elements ofxk are uncor-
related withϕ̃k, the solution obtained is biased. In
order to achieve an unbiased estimate ofθ, a bias
compensation procedure is required to be carried out
(Söderström, 2007). This consideration yields the
EBCLS estimator defined as

θ̂EBCLS ,
(

Σ̂xϕ −Σx̃ϕ̃
)†

(

ξ̂xy− ξx̃ỹ

)

. (11)

Note thatΣx̃ϕ̃ andξx̃ỹ, in general, are functions ofρ,
which, in turn, will depend on the elements contained
in the instrument vectorxk.

3.2 Extended Bilinear Parametrisation
Method

The bilinear parametrisation method is applicable
for problems that are bilinear in the parameters, see
(Ljung, 1999) for details, and it is presented here

in accordance with the development proposed in
(Larkowski et al., 2008).

Based on the EBCLS rule given by (11) a bilinear
(in the parameters) cost function can be formulated,
i.e.

Θ̂ = argmin
Θ

V(Θ), (12)

where

V(Θ) ,

∥

∥

∥
ξ̂xy− ξx̃ỹ−

(

Σ̂xϕ −Σx̃ϕ̃
)

θ
∥

∥

∥

2

2
. (13)

Note that the instrumentsxk must be chosen such that
the resulting problem is soluble, i.e. the total number
of unknowns is less than or equal to the total num-
ber of equations, see (Larkowski et al., 2008) for a
detailed treatment. Alternatively, utilising the bilin-
earity property, (13) can be re-expressed as

V(Θ) =
∥

∥

∥
ξ̂xy− Σ̂xϕθ−Wρ

∥

∥

∥

2

2
, (14)

whereW , S1−S2(θ) ∈ R nx×(na+2) such thatS1ρ ,

ξx̃ỹ andS2(θ)ρ , Σx̃ϕ̃θ.
It is observed that for fixedρ (i.e. the expres-

sionsΣx̃ϕ̃ andξx̃ỹ) the cost function (13) is linear in
θ. Analogously, for fixedθ (i.e. the matrixW) the
cost function (14) is linear inρ. Consequently, a nat-
ural approach is to treat (13) and (14) as separate LS
problems, cf. (Ljung, 1999). This leads to a two-step
algorithm where the LS solutions of the sub-problems
defined by (13) and (14) are obtained at each iteration.
Furthermore, local convergence of such algorithm is
guaranteed, see (Ljung, 1999).

4 RECURSIVE EXTENDED
BILINEAR
PARAMETRISATION METHOD

This section presents the proposed recursive realisa-
tion of the EBPM technique, denoted REBPM. First
the problem of an online update of the parameter vec-
tor is addressed. Subsequently, two approaches for
updating the pseudo-inverse of the extended obser-
vation matrix are considered. Finally, the problem
of calculating the input noise variance and the auto-
correlation elements of the output noise is discussed.

4.1 Recursive Update of Parameter
Vector

Considering (11) and by making use of (10) it follows
that

θ = θ̂LS+ Σ̂†
xϕ

(

Σx̃ϕ̃θ− ξx̃ỹ
)

. (15)
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It is remarked that the expression̂Σ†
xϕ

(

Σx̃ϕ̃θ− ξx̃ỹ
)

represents the bias of the LS estimator. Since the true
value ofθ on the right hand side of (15) is unknown, a
natural approach is to utilise the most recent estimate,
i.e. the previous value. This leads to the following
recursive EBCLS scheme

θ̂k
EBCLS = θ̂k

LS +
(

Σ̂k
xϕ

)†(

Σk
x̃ϕ̃θ̂k−1

EBCLS− ξk
x̃ỹ

)

. (16)

Despite that an inevitable error is introduced by as-
suming θ̂k

EBCLS ≈ θ̂k−1
EBCLS, the above approach also

known as the stationary iterative LS principle (Björck,
1996), has been successfully employed in several re-
cursive as well as iterative algorithms.

4.2 Recursive Update of Pseudo-inverse

Considering equation (16), it is observed that a
recursive update of the pseudo-inverse ofΣ̂k

xϕ as well

as of the LS estimate, i.e.̂θk
LS, is required. This

problem can be tackled by two approaches described
below.

Approach based on the Matrix Pseudo-inverse
Lemma - REBPM1. The first, i.e. direct approach
is to utilise an extension of the matrix inverse lemma,
namely the matrix pseudo-inverse lemma, see (Feng
et al., 2001). This allows the recursive computation of
the expression̂Σ†

xϕ as well as the correspondingθ̂LS.
The algorithm can be summarised as follows:

θ̂k
LS = θ̂k−1

LS +Lk

(

yk−ϕT
k θ̂k−1

LS

)

, (17a)

Lk =

(

Σ̂k−1
xϕ

)†
xk

k−1+ ϕT
k

(

Σ̂k−1
xϕ

)†
xk

, (17b)

(

Σ̂k
xϕ

)†
=

k
k−1

[

(

Σ̂k−1
xϕ

)†
−LkϕT

k

(

Σ̂k−1
xϕ

)†
]

, (17c)

Σ̂k
xϕ = Σ̂k−1

xϕ +
1
k

(

xkϕT
k − Σ̂k−1

xϕ

)

, (17d)

ξ̂k
xy = ξ̂k−1

xy +
1
k

(

xkyk− ξ̂k−1
xy

)

. (17e)

The main shortcoming of the pseudo-inverse ap-
proach when dealing with practical applications re-
sults from its relatively high sensitivity with respect
to the initialisation of the pseudo-inverse of the ma-
trix Σ̂k

xϕ. This issue is not trivial and can lead to a
divergence of the overall algorithm. In order to appro-

priately initialise the expression
(

Σ̂k
xϕ

)†
, it is required

that the pseudo-inverse is computed offline after an ar-
bitrary number, denotedα, of measurements is taken
and before the recursive algorithm commences oper-
ation.

Remark 1. It is noted that the uniqueness of
(

Σ̂xϕ
)†

in the case of recursive approaches is not always
guaranteed when utilising equations(17), see (Lin-
den, 2008) for further details. As a consequence, the
corresponding estimate ofθk

LS may not represent the
optimal, in terms of the minimum variance, solution
to the overdetermined set of equations given by(10).

Approach based on Extended Instrumental Vari-
ables - REBPM2. An alternative to employing the
matrix pseudo-inverse lemma, an approach based on
the recursive extended instrumental variables tech-
nique, see (Friedlander, 1984), can be utilised in or-
der to obtain, albeit indirectly, a recursive update of
(

Σ̂k
xϕ

)†
. Define

Pk =

[

(

Σ̂k
xϕ

)T
Σ̂k

xϕ

]−1

. (18)

In this approach the expressionPk is updated recur-

sively, rather than the total pseudo-inverse
(

Σ̂k
xϕ

)†
.

The algorithm can be summarised as:

θ̂k
LS = θ̂k−1

LS +Kk

(

vk−φT
k θ̂k−1

LS

)

, (19a)

Kk = Pk−1φk
[

Λk + φT
k Pk−1φk

]−1
, (19b)

Λk =

[

−xT
k xk 1
1 0

]

, (19c)

φk =
[

wk
1
kϕk

]

, (19d)

wk =
k−1

k

(

Σ̂k−1
xϕ

)T
xk, (19e)

vk =
1
k

[

(k−1)xT
k ξ̂k−1

xy
yk

]

, (19f)

Pk = Pk−1−KkφT
k Pk−1 (19g)

with Σ̂k
xϕ and ξ̂k

xy updated as in equations (17d) and
(17e), respectively. Since it is the expressionPk which
is obtained recursively, hence, in order to calculate
(

Σ̂k
xϕ

)†
, for the recursive bias compensation equation

(16), an additional matrix product has to be computed,
i.e.

(

Σ̂k
xϕ

)†
= Pk

(

Σ̂k
xϕ

)T
. (20)

Consequently, the pseudo-inverse ofΣ̂k
xϕ is obtained

in an indirect manner. Moreover, note that the recur-
sive algorithm (19a) requires an inverse of the matrix
of dimension 2×2 at each recursion. This, however,
does not significantly increase the associated compu-
tational burden. On the other hand, the important ad-
vantages of this algorithm are that, firstly, it can be
easily initialised and, secondly, it is relatively insensi-
tive to the quality of the initial values. With reference
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to (Friedlander, 1984), in the case of noa priori in-
formation the initialisation can be performed as

Σ0
zφ =µ

[

Inθ
0(nx−nθ)×nθ

]

, P0
k =

1
µ2 Inθ, θ0

LS=0nθ×1. (21)

The scalar parameterµ allows the speed of conver-
gence to be adjusted, hence affects the ‘smoothness’
of Θ̂ (i.e. large value ofµ corresponds to the slow
convergence and smooth parameters). Further algo-
rithmic details ensuring that the update of the matrix
Pk, given by (19g), is (semi-) positive definite are ad-
dressed in (Friedlander, 1984).

4.3 Determination of Noise
Auto-correlation Elements

Since the matrixWk is sparse, in general, the compu-
tational effort involved in its pseudo-inverse is negli-
gible when compared to that ofΣ̂k

xϕ. Therefore, it is

the pseudo-inverse of̂Σk
xϕ which forms a crucial bot-

tleneck of the overall algorithm. Consequently, a re-
cursive computation of̂ρk is not considered here and
its estimate is determined offline at each recursion by
solving (14) in the LS sense, i.e.

ρ̂k =
(

Wk
)†(

ξ̂k
xy− Σ̂k

xϕθ̂k
EBCLS

)

. (22)

5 SIMULATION STUDIES

This section addresses a numerical analysis of the
two proposed recursive realisations of the EBPM ap-
proach, namely REBPM1 and REBPM2, when ap-
plied for the purpose of identifying a SISO discrete-
time LTI second order system within the EIV frame-
work. The system to be identified is described by

θ =
[

−1.5 0.7 1.0 0.5
]T

(23)

with the input generated by

u0k = 0.5u0k−1 + βk, (24)

whereβk is a white, zero mean sequence of unity vari-
ance. The input noise sequence is zero mean, white of
varianceσũ and the coloured output noise sequence is
generated by

ỹk = 0.7ỹk−1+ γk, (25)

whereγk is zero mean, white and of varianceσγ. In
the case of both algorithms the instrumental vector is
based on the instruments proposed in (Ekman et al.,
2006), i.e. built from delayed inputs and delayed out-
puts, and utilised withnx = 10.

Table 1: Results of the estimation of model parameters and
auto-correlation elements of the noise sequences.

true EBPM REBPM1 REBPM2

SNR≈ 11dB

a1 −1.500 −1.501±0.041 −1.504±0.051 −1.494±0.023

a2 0.700 0.701±0.045 0.705±0.056 0.694±0.024

b1 1.000 0.998±0.039 0.996±0.045 1.001±0.038

b2 0.500 0.500±0.072 0.495±0.083 0.508±0.051

σũ 0.100 0.100±0.054 0.095±0.065 0.124±0.052

r ỹ(0) 3.922 3.273±2.349 2.647±3.902 3.834±1.376

r ỹ(1) 2.745 2.168±1.938 1.631±3.275 2.618±1.174

r ỹ(2) 1.922 1.540±0.949 1.250±1.612 1.721±0.715

e1 − 0.001±0.001 0.004±0.005 0.001±0.001

e2 − 0.097±0.120 1.187±3.464 0.143±0.197

Λ − 0 2 0

T − − 1.381±0.102 1.663±0.134

The robustness of the two algorithms is examined
via a Monte-Carlo simulation study comprising of
100 runs. The mean values of the estimates obtained
at the last recursion, i.e. fork = N are recorded and
compared with the corresponding results produced by
the offline EBPM. The the overall quality of the esti-
mators is assessed via the following two performance
criteria:

e1 ,
∥

∥θ̂N
λ −θ

∥

∥

2
2, e2 ,

∥

∥ρ̂N
λ −ρ

∥

∥

2
2, (26)

whereλ denotes theλ-th Monte-Carlo run. Prior to
the calculation of the performance indecese1 ande2
the possible outliers are removed from the data. An
estimate is classified as an outlier if

∥

∥θ̂N
λ
∥

∥

2 > 10. The
number of outliers is denoted byΛ. Additionally, a
computation time in seconds, denotedT, is recorded.

The initial values of the parameters are set as fol-
lows: α = 50 for the REBPM1 andµ = 100 for the
REBPM2. In order to provide a fair comparison, in
the case of the REBPM2, the bias compensation phase
is enabled from sample 50 onwards, although the ex-

pressionŝθk
LS and

(

Σ̂k
xϕ

)†
are recursively calculated

from the commencement of the algorithm. The values
of the noise parameters are chosen asσũ = 0.1 and
σγ = 2.0. Consequently, the noise auto-correlation
vector is given by

ρ =
[

3.922 2.745 1.922 0.100
]T

, (27)

which yields an approximately equal signal-to-noise
ratio (SNR) of around 11dB on both the input and
the output signals. The results expressed obtained
in terms of mean value± standard deviation are pre-
sented in Table 1. It is observed that the mean values
of the model parameters, obtained by the algorithms,
seee1, are relatively accurate and close to the true val-
ues and are also characterised by acceptable standard
deviations. In the case ofe2 the estimateŝρ are rel-
atively less precise, especially those produced by the
REBPM1.
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In general, comparison of the two recursive real-
isations of the EBPM reveals that it is the REBPM2
which produces the more accurate results overall.
Moreover, it is noted that in the case of the REBPM1
the algorithm diverged twice, producing two outliers.
In terms of the computational burden, the time re-
quired by the REBPM2 is slightly greater when com-
pared to that of REBPM1, i.e. the former technique is
faster by approximately 17% with respect to the latter
method.

In general, the experiments carried out seem to
suggest that the REBPM2 is more advantageous than
the REBPM1 due to a simpler initialisation, greater
robustness and an absence of convergence problems,
at least under the conditions considered here.

6 CONCLUSIONS

A recursive realisation of the extended bilinear
parametrisation method for the identification of dy-
namical linear discrete-time time-invariant single-
input single-output errors-in-variables models has
been proposed. Two alternative approaches for the
online update of the pseudo-inverse of the extended
observation covariance matrix have been considered.
The first approach is based on the pseudo-inverse ma-
trix lemma, whereas the second is constructed within
the framework of the extended instrumental variables
technique. For the cases considered, the two resulting
algorithms appear to be relatively robust and they are
also found to yield precise estimates of the model pa-
rameters. Results suggest that the instrumental vari-
ables based approach would appear to be the superior
of the two developed algorithms.
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Björck, Å. (1996). Numerical Methods for Least Squares
Problems. SIAM, Philadelphia.

Ekman, M. (2005a). Identification of linear systems with
errors in variables using separable nonlinear least
squares. InProc. of 16th IFAC World Congress,
Prague, Czech Republic.

Ekman, M. (2005b).Modeling and Control of Bilinear Sys-
tems: Applications to the Activated Sludge Process.
PhD thesis, Uppsala University, Sweden.
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