
INTEGRATING REUSABLE CONCEPTS INTO
 A REFERENCE ARCHITECTURE DESIGN

OF COMPLEX EMBEDDED SYSTEMS

Liliana Dobrica
University Politehnica of Bucharest, Faculty of Automation and Computers

Spl. Independentei 313, Bucharest, Romania

Keywords: Embedded systems, Software architecture, Reference architecture, Patterns, Quality.

Abstract: The content of this paper addresses the issues regarding integrating reusable concepts for a quality-based
design of reference architecture in the context of complexity that is specific to today’s embedded control
systems. The reference architecture consists of core services and is designed based on considering taxonomy
of requirements and constraints, reusable control patterns and a quality-based measurement instrument.

1 INTRODUCTION

Nowadays an embedded system (ES) application
represents one of the most challenging development
domains. Among the requirements and constraints
that have to be satisfied we can mention a higher
diversity and complexity of systems and
components, increased quality, standardization, fault
tolerance and robustness. In the design process an
ES requires introduction of the higher level
abstractions that are blurring the boundaries between
hardware and software design. Due to the escalating
complexity level of ESs a coherent and integrated
development strategy is required. It becomes a
priority the creation of reference architecture (RA)
and a suite of abstract components with which new
developments in various application domains can be
engineered with minimal effort. RA is based on a
common architectural style that provides the
composition of independently subsystems that meet
the requirements of the various application domains.
Thus different components can be created for
various specific domains, while retaining the
capability of component reuse across these domains.

ES complexity resides in a multitude of
interdependent elements which must be organized.
To handle complexity, an architectural approach
helps to consider separation of concerns realized
through different levels of abstraction, dynamism
and aggregation levels. In the field of control, the
knowledge acquired in software engineering is not

really exploited, although it helps to manage
complexity. Patterns and quality based approach
may be used to establish a direct link between the
concepts from the field of control and the software
architecture concepts. They guide the analysis and
synthesis of software components and they can be
used to develop complex control architecture. The
architecture is comprehensible as it shows the
elements necessary for doing a functionality and the
manner in which they interact, and it is flexible
because it can be adapted to other systems of the
same type in the application domain. In the context
of control systems the problem is modelling and
documenting software architectures reusable
knowledge dedicated to control.

In this paper we propose an approach to manage
complexity of complex ES based on defining
sources of knowledge for RA. Building the RA is
based on well known and reusable concepts from
software engineering. Our contribution is in the
synthesis of the most important issues that can be
applied.

2 BACKGROUND

At this moment there is no general consensus about
the definition of embedded terms. ESs are subject to
limited memory and processing power and many
ESs are also real-time systems that have strict
performance constraints. Even for non-real time

234 Dobrica L. (2009).
INTEGRATING REUSABLE CONCEPTS INTO A REFERENCE ARCHITECTURE DESIGN OF COMPLEX EMBEDDED SYSTEMS.
In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Signal Processing, Systems Modeling and
Control, pages 234-237
DOI: 10.5220/0002212802340237
Copyright c© SciTePress

ESs, developers have to take into account the
timeliness, robustness, and safety of the systems.
The fact that ESs are embedded, that is they cannot
easily be taken out of their environment to be
maintained or evolved, poses reliability
requirements. Nevertheless it includes subcategories
such as embedded domain, reactive domain,
control/command domain, intensive data flow
computation domain, best-effort services domain
(Marte, 2008). Traditionally an ES represents a
computer system which is integrated into another
system, the embedding system. The requirements
for an ES must be derived from the embedding
system. There are two different areas. One is when
the embedding system is a product and the other is
when it is a production system. The fist one includes
automotive electronics, avionics, and health care
systems and the second one includes manufacturing
control, chemical process control, and logistics.

User
Embedding system

Embedded
System

Environment

Figure 1: Traditional embedded system model.

ESs are doing control such as measuring physical
data (sensing), storing data, processing sensors
signals and data, influencing physical variables
(actuating), monitoring, supervising, enable manual
and automatic operation, etc..

In the embedded world a model driven approach
is used to express the requirements in a modeling
environment that automatically generates the
application code. The well-known example of such
an environment is the Matlab tool suite. The increase
in efficiency arises from the fact that the software
design and implementation phases are automated
and the control engineer has not care about the
implementation issues as in software engineering
processes.

Requirements Model

 H(s) Code

Figure2: Typical model-driven approach.

The problem for control engineering domain is that
these applications tend to be multi-domain. A
complete control application does not simply cover
implementation of control laws. In most cases, the
implementation of control laws, the specific domain
of Matlab, is only a small fraction of the total control
software. Most of the software normally is
concerned with various functionalities and Matlab-

like tools are inappropriate to cover these
functionalities. A new approach is required to deal
with the new requirements.

3 PROPOSED APROACH

The design of RA for complex ES is realized with
core services which are abstract architectural models
and depends on the quality attributes, styles and
patterns and others that are shown in Figure 3.

Reference Architecture

Styles and
Patterns

Core Services

Quality
Attributes

Service
Taxonomy

Taxonomy of Constraints
and Requirements

St d d

Standards

Figure 3: Reference architecture realization.

Quality attributes clarify their meaning and
importance for core services. The interest of the
quality attributes for the RA is how they interact and
constrain each other (i.e., trade-offs) and what the
user’s view of quality is. The styles and patterns are
the starting point for architecture development.
Architectural styles and patterns are utilized to
achieve qualities. The style is determined by a set of
component types, the topological layout of the
components, a set of semantic constraints and a set
of connectors. A style defines a class of architectures
and is an abstraction for a set of architectures that
meet it. Design patterns are on a detailed level. They
refine single components and their relationships in a
particular context.

RA creates the framework from which the
architecture of new ESs is developed. It provides
generic core services and imposes an architectural
style for constraining specific domain services in
such a way that the final product is understandable,
maintainable, extensible, and can be built cost-
effectively. Potential reusability is highest on RA
level. RA is build based on a service taxonomy. A
reusable knowledge base is integrated and adapted to
service engineering for ESs. The standards related to
each ES domain, applicable architectural styles and
patterns and existing concepts of services and
components are the driving forces of ESs
development. A service taxonomy defines the main
categories called domains. Typical features that have
been abstracted from requirements and constraints

INTEGRATING REUSABLE CONCEPTS INTO A REFERENCE ARCHITECTURE DESIGN OF COMPLEX
EMBEDDED SYSTEMS

235

characterize services. The service taxonomy guides
the developers on a certain domain and getting
assistance in identifying the required supporting
services and features of services.

4 DISCUSSIONS

A taxonomy of constraints and requirements that
delimit the design space for a RA for ES is presented
in figure 4. Composability refers to the way that
larger systems can be composed of smaller
subsystems. A system is composable with respect to
a certain property if this property is not invalidated
by integration. Integration of subsystems that are
realized in different technologies are subject
heterogeneity. Growth and scalability require if the
available resources permits the integration of more
subsystems, then the new ones must not disturb the
correct operation of the already integrated
subsystems. Integration of distributed services must
adhere to well established standards.

Embedded Systems
Taxonomy of Requirements and Constraints

Composability Networking
and Security

Robustness Diagnosis and
Maintenance

Integrated
Resource

Management

Evolvability Self
Organization

Figure 4: ESs requirements and constraints.

Networking refers to control loops to be supported at
network level. Communication service reliability
depends on the application parameters, and protocol
standards (Ethernet, USB, CAN, Bluetooth, etc).
Integrity mechanisms are required to prevent
undetected modification of hardware and software
by unauthorized persons or systems, meaning
defence against message injections, message replay
or message delay on the network. By robustness an
ES must handle the increasing failure rate. Fault
tolerant mechanisms are used to adapt to reliability
changes of subsystems during the ES’s life time.
Services should be provided for error containment,
membership, error detection and error masking. A
generic fault-tolerance layer, design for verifiability,
formal methods and specification support, software
management methods for time, space, and I/O
allocations should be considered, too. Diagnosis and
maintenance requires a system health monitoring
service and a diagnostic service to identify faulty
subsystems. The diagnostic service must not
interfere with the operation of the subsystems that

are to be diagnosed. Predictive maintenance at the
architecture level supports the identification of
components that are likely to fail in the near future.
Design for testability with respect to unit testing,
system integration testing, manufacturing testing and
assembly testing. Integrated resource management
needs dynamic reconfiguration to support changing
of the configurations of applications while they are
executed. Evolvability is based on uncertainty with
respect to application characteristics and
technological capabilities. Development of products
delivered in multiple variants should be considered.
Implementation independence, virtual machines,
legacy integration, auto-integration, and test reuse
for reusable design core are included. Verification
reuse defines verification patterns and environments
for the subsystems at different abstraction levels.
Self organizations support ubiquitous secure
connectivity, mobile ad-hoc networks, and ability to
adapt to user-specific behaviour.

Design and architectural patterns are important
concepts in the field of software architectures to
design applications by reusing generic design
schemas established from successful and effective
solutions. A great number of software applications
are based on the same principles and their
knowledge allow design efforts to be reduced
considerably. Today, the main patterns are described
in catalogues (Gamma et. al., 1994), (Buschmann et
al., 1996). These catalogues describe the styles of
organization and interaction at a higher level of
abstraction, by presenting layered architectures, for
example. A basic pattern for control is Strategy
pattern. This separates the control from function to
protect a client from various strategy services that it
requires. Composite pattern is used in situations
where it is necessary to treat components uniformly,
regardless of whether they are primitive or
composite. From behaviour perspective we can
mention Chain of Responsibility pattern. Recursive
control pattern (Selic, 1998) explains how to specify,
then create hierarchic control architectures that are
more flexible and more robust. This separates
control aspects and the service providing aspects of
a real time system allowing each to be defined and
modified separately. The applicability of this pattern
is across a wide range of levels and scopes starting
from the highest system architectural level to
individual components. This is useful in situations,
typical in event driven real time applications where a
complex software based server needs to be
controlled dynamically in a non-trivial manner,
where control policies may change over time. The
Recursive Control is structurally related to the

ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

236

Composite. It simplifies the implementation of
complex systems by applying hierarchically a single
structural pattern. Also it simplifies the development
(and understanding) of both functional and control
aspects by decoupling them from each other. It
allows control or diagnosis services policies to be
changed without affecting the basic functionality.

A quality based design requires a measurement
instrument that must be defined by a taxonomy for
quality attributes, which is organized with respect to
three main elements: (1) The priority in a quality
attributes list. The presence of this element in the
taxonomy is necessary, due to the costs required by
an analysis method at the architectural level. (2)
Architecture views which are relevant for that
quality attribute; (3) Appropriate methods to be
applied for quality attribute analysis.

Quality attributes may be classified in essential,
very desirable, desirable, don’t care and forbidden.
The priorities are established based on the experts'
knowledge and the stakeholders’ objectives. Quality
function deployment (Reed, 1993) is a suitable
technique for showing the relational strengths from
objectives of stakeholders and architectural to
quality attributes. These priorities are important for
the evaluation process, which considers an analysis
method for each quality attribute. At this moment
various architecture analysis methods, such as
scenario-based architecture analysis (SAAM)
(Kazman et al. 1994), architecture tradeoff analysis
(ATAM) (Kazman et al, 1998), architecture level
prediction of software maintenance (ALPSM)
(Bengston, 2004), or reliability analysis using failure
scenario (SARAH) exist. Methods are distinguished
by the evaluation techniques, the number of quality
attributes and their interaction for tradeoff decisions,
the stakeholders’ involvement, and how detailed the
architecture design is at the moment the analysis
(Dobrica and Niemela, 2002).

The measurement instrument is applied to the
RA during analysis. The quality attribute with the
first priority in a list is first analyzed with respect to
the appropriate architecture view and the appropriate
method. Then the next quality attribute from the list
is analyzed in isolation and then considering the
interaction with the first one for finding sensitivity
points and tradeoffs on the services included in the
RA. The process is repeated for all the attributes in
the list. In order to decide on RA core services, this
procedure could also be improved and refined. In
this case special attention should be paid to the
collections of services in the architecture which are
critical for achieving a particular quality attribute, or
architectural elements to which multiple quality

attributes are sensitive. A deeper level of analysis
could influence the decision on the addition of new
services to the RA.

5 CONCLUSIONS

This paper has proposed an approach for a RA
development for complex ES application domains
based on a knowledge of reusable concepts from
software engineering at architectural level. The
approach has an immense potential to improve
embedded control systems development as well as
reduce time and costs in stages such as architecture
design and analysis. However, for this approach’s
success it is necessary to create a cooperation culture
among embedded control system developers. Future
research work is needed to develop systematic ways
of bridging these reusable concepts to a RA,
reducing in this way the cognitive complexity.

ACKNOWLEDGEMENTS

This work is supported by the Romanian research
grant CNCSIS IDEI no. 1238/2008.

REFERENCES

MARTE, 2008, Modeling and Analysis of Real Time and
Embedded, www.omg.org.

Buschmann F., R. Meunier, and H. Rohnert, 1996,
Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley and Sons.

Gamma E., R. Helm, R. Johnson, and J. Vlissides, 1994,
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley.

Selic B., 1998, Recursive control, in: R. Martin, et al.
(Eds.), Patterns Languages of Program Design,
Addison-Wesley, pp. 147–162.

Kazman R., L. Bass, G. Abowd, M. Webb,1994, SAAM:
A method for analyzing the properties of Software
Architectures, Procs of the ICSE, 81-90.

Kazman R., M. Klein, M. Barbacci, H. Lipson, T.
Longstaff, S. J. Carrière, 1998, The Architecture
Tradeoff Analysis Method, Procs. of the ICECCS.

Reed B.M., D.A. Jacobs, 1993, Quality Function
Deployment For Large Space Systems, National
Aeronautics and Space Administration.

Bengston PO, 2004, Architecture Level Prediction of
Software Maintenence, Procs of the ICSR5.

Dobrica L. and Niemelä E., 2002, A survey on software
architecture analysis methods, IEEE Transactions on
Software Engineering, 28(7), 638-653.

INTEGRATING REUSABLE CONCEPTS INTO A REFERENCE ARCHITECTURE DESIGN OF COMPLEX
EMBEDDED SYSTEMS

237

