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Abstract: In this paper, a hybrid redundant robot IWR (Intersector Welding Robot) which possesses ten degrees of 
freedom (DOF) where 6-DOF in parallel and additional redundant 4-DOF in serial is proposed. To improve 
the accuracy of the robot, the kinematic errors caused by the manufacturing and assembly processes have to 
be compensated or limited to a minimum value. However, currently, there is no effective instrument which 
capable of measuring the symmetrical errors of the corresponding joints and link lengths after the structure 
has been assembled. Therefore, calibration and identification of these unknown parameters is utmost 
important and necessary to the systematic accuracy. This paper presents a calibration method for identifying 
the unknown parameters by using differential evolution (DE) algorithm, which has proven to be an efficient, 
effective and robust optimization method to solve the global optimization problems. The DE algorithm will 
guarantee the fast convergence and accurate solutions regardless of the initial conditions of the parameters. 
Based on the inverse kinematic error model of the robot, the simulation of the actual robot is achieved by 
introducing random geometric errors and measurement poses which representing their relative physical 
behavior. Moreover, through computer simulation, the validity and effectiveness of the DE algorithm for the 
parameter identification of the proposed application has also been examined. 

1 INTRODUCTION 

It is widely believed that parallel robot has high 
stiffness, low inertia, high speed and accuracy but 
small workspace compared to its counterpart serial 
robot. To take advantage of the benefits (bigger 
workspace and higher stiffness) of both types of 
robotic structures, a compromised hybrid redundant 
robot which can be used to perform the welding, 
machining and remote handling is developed in 
Lappeenranta University of Technology (Wu, 2005). 
In order to satisfy the required accuracy of the robot, 
the calibration and identification of the real structure 
parameters is essential and necessary. Generally, 
calibration can be classified into two types: static 
and dynamic. The static or kinematic calibration is 
an identification of those parameters which 
influence primarily the static positioning 
characteristics of a robot, such as the errors caused 
by length of the links and joints. Whereas the 
dynamic calibration is used to identify parameters 
influencing primarily motion characteristics, such as 
the deflection of mechanisms caused by temperature, 
and the compliances of joints and links. This paper 

will be concentrated on the static calibration to 
identify the geometric parameters of the proposed 
hybrid redundant robot. At present, there exist two 
kinds of static or kinematic calibration methods, one 
is self or autonomous calibration method based on 
inner information or restrictions of the kinematic 
parameters of joints (Ryu, 2001; Zhuang, 1996; 
Khalil, 1999; Zhuang, 2000; Ecorchard, 2005), and 
another is exterior or classical calibration method by 
using accurate instruments to measure the pose of 
the moving platform directly (Gao, 2003; Besnard, 
1999; Prenaud, 2003). For these calibration methods, 
most of them are focused on the kinematic 
calibration and parameter identification of the pure-
serial or pure-parallel mechanisms. Moreover, many 
calibration models are based on the identification 
Jacobian matrix which formulates a linear 
relationship between measurement residuals and 
kinematic parameter errors, then the parameter 
errors are evaluated by using least square algorithm. 
However, this kind of method is subject to break 
down in the vicinity of singular robot configurations 
due to the iterative inversion of the robot Jacobian 
(Zhong, 1996). Instead of the Jacobian matrix based 
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calibration approaches, the non-parametric 
calibration method was introduced by Shamma and 
Whitney (Shamma, 1987), in which the actual 
kinematic parameters which drive the robot to 
minimize the end-effector deviations can be found 
by using non-linear least-square optimization 
without explicit evaluation of the Jacobian. Based on 
the non-parametric calibration method, some 
evolutionary computing algorithms, such as genetic 
algorithm (GA) (Liu, 2007; Zhuang, 1996), artificial 
neural networks (NN) (Zhong,1996) and genetic 
programming (GP) (Dolinsky, 2007), have been 
successfully employed to calibrate serial or parallel 
robot. Differential evolution (DE) is a simple but 
effective evolutionary algorithm for solving non-
linear, global optimization problems. It has 
demonstrated superior performance in both widely 
used benchmark functions (Vesterstrom, 2004) and 
practical applications (Wu, 2000). In this work, 
based on the static and non-parametric calibration 
method, DE will be adopted to identify the real 
kinematic parameters of the proposed hybrid 
redundant robot. 

The paper is organized into five main sections. 
The first section serves as an introduction. The 
second section reviews the kinematic model of the 
proposed robot, which includes the inverse 
kinematic equations and the error models of the 
robot. Section 3 presents the calibration equations 
and the implement of DE optimization method. 
Simulation results are presented in section 4, and 
conclusions are drawn in section 5. 

2 IDENTIFICATION MODELS 

The kinematics of the proposed hybrid robot as 
shown in Fig.1 is a combination of a multi-link 
serial mechanism (here named as Carriage) and a 
standard Stewart parallel manipulator (here named 
as Hexa-WH). To simplify its analysis, the two parts 
will be first carried out separately, and then 
combined them together to obtain the final solutions. 
According to Shamma and Whitney (Shamma, 
1987), the calibration also can be classified into 
forward calibration and inverse calibration. Forward 
calibration involves finding the actual location in the 
world space for a given joint configuration, while 
inverse calibration involves finding exact joint 
values for given locations in the world space. As we 
all know that the inverse kinematics of the parallel 
robot is simple than forward kinematics and vice 
versa for the serial robot, so we decide to identify 
the kinematic parameters of the parallel part based 

on inverse calibration method and the serial part 
based on forward solutions 
 

 
Figure 1: 3D model of IWR. 

2.1 Forward Kinematics 

To study the kinematics of the serial multi-link 
mechanisms, the convention of Denavit-Hartenberg 
(Craig, 1986) is commonly adopted. Based on this 
convention, the principle of the 4-DOF Carriage 
mechanism can be established as shown in Fig.2, 
which provides four degrees of freedom to the 
transient end-effector (O4), including two 
translational movements and two rotational 
movements. 
 

 
Figure 2: Coordinate system of Carriage. 

Using the coordinate systems established in Fig. 
2, the corresponding link parameters are given in 
Table1. Substituting the D-H link parameters into 
(1), we can obtain the D-H homogeneous 
transformation matrices . 
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Table 1: Nominal DH parameters of Carriage. 
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where c iθ  denotes 
iθcos , and 

isθ  denotes 
iθsin . 

The resulting homogeneous transformation 
matrix, i.e. the forward kinematics of the Carriage, 
can be obtained by multiplying the matrices 
of and  
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From (2) we can get the rotation matrix and 
position vector of the frame {4} with respect to 
frame {0} as follows: 
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In reality, the above D-H parameters will deviate 
from their nominal values because of the 
manufacturing and assembly errors. Since each joint 
provides four parameters, therefore, the four links 
will produce 16 identified parameters for the robot. 

2.2 Inverse Kinematics of Hexa-WH 

Fig. 3 shows a schematic diagram of  hexapod 
parallel mechanism, for the purpose of analysis, two 
Cartesian coordinate systems, frames O4(X4, Y4, Z4) 
and O5(X5, Y5, Z5) are attached to the base plate and 
the end-effector, respectively. Six variable limbs are 
connected with the base plate by Universal joints 
and the task platform by Spherical joints. 

 
Figure 3: Norminal model of the Hexapod parallel 
mechanism. 

For the designed kinematics parameters, let  be 

the unit vector in the direction of , and  denote 
the magnitude of the leg vector , then the 
following vector-loop equation will represent the 
inverse kinematics of the ith  limb of the 
manipulator. 
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where  denotes the position vector of the task 
frame  {5} with respect to the base frame {4}, and 

 is the Z-Y-X Euler transformation matrix 
expressing the orientation of the frame {5} relative 
to the frame {4}, 
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and the  ,  represent the position vectors of 

U-joints and S-joints  in the coordinate 
frames {4} and {5} respectively. In practice, due to 
the manufacturing and assembly errors, the 
coordinate  and  will deviate from their 

nominal values and  will also have an initial 
offset, altogether there will be 42 identified 
parameters provided by Hexa-WH. 
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2.3 Kinematics and Identified Error 
Model of the Hybrid Manipulator 

The schematic diagram of the redundant hybrid 
manipulator is shown in Fig. 4, which consists of 
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Carriage and Hexapod manipulator as mentioned 
above. The base plate frame {4} of Hexa-WH is 
coincided with the end task frame of Carriage. The 
global base frame {0} is located at the left rail of 
Carriage. 
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 denote the 58 
identified parameter vectors, among which 16 
parameters are from Carriage and 42 parameters 
from Hexa-WH. N is measurement number,  

and  l  respectively represent the calculated value 
and measured value of the   leg in the ith  
measurement point. 
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3 DIFFERENTIAL EVOLUTION  

Differential Evolution (DE), which introduced by 
Price and Storn (Storn, 2005), has been proven to be 
a promising candidate for minimizing real-valued, 
non-linear and multi-modal objective functions. It 
belongs to the class of evolutionary algorithms and 
utilizes the same steps as Genetic Algorithm, i.e. 
mutation, crossover and selection. Individuals in DE 
are represented by D-dimensional 
vectors ,Gi,x },,2,1{ NPi L∈∀ , where D is the 
number of optimization parameters and NP is the 
population size. There are several variants or 
strategies of DE, but the DE scheme which classified 
by notation DE/rand/1/bin is the most commonly 
used one. The optimization process of this classical 
DE can be summarized as follows: 

Figure 4: Schematic diagram  of IWR. 

According to the geometry, a vector-loop 
equation can be derived: 
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From (7), we can obtain the nominal leg length, 
i.e. the inverse solution of the robot as: 

( ) ( iiiil bRaRPPRl 5
5

04
4

0
4

0
5

01
4

0 +−−=
− )      (8) 

3.1 Initialization 
where  and  is the position vector and 
rotation matrix of the task frame {5} (or end-
effector) with respect to the fixed base frame {0}. 

5
0 P 5

0 R
To establish a starting point for the optimization 
process, an initial population must be created. 
Typically, each decision parameter in every vector 
of the initial population is assigned by a randomly 
chosen value from its feasible bounds: 

Let  represent the whole leg length which 
made up of the measured leg length with the inner 
sensor and the fixed initial leg length offset. 
Therefore, if parameter errors are not be taken into 
account, there is the following relation. 

m
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where Dj ,,2,1 L=  is parameter index, and 

NP,Li ,2,1=  is population index,  and  

are the lower and upper bound of the decision 
parameter, respectively. After the initial population 
has been created, it evolves through the following 
operations of mutation, crossover and selection until 
the terminal condition satisfied. 

L
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U
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m
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As a matter of fact, since geometrical errors and 
other error sources exist, two sides of (9) will never 
be equal, even if their geometrical parameters are 
properly corrected. Consequently, if we get enough 
measurement point data from the inner sensors of 
the parallel Hexa-WH legs and the Carriage 
actuators, then our identified kinematic error model 
can be expressed as an optimization function given 
as follows:   
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3.2 Mutation 

For each vector , a mutant vector  is 
generated according to 
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)( ,3,2,1, GrGrGrGi F xxxm −⋅+=            (12) 

where randomly selected 
integers , ,1r 2r { } irrrNPr ≠≠≠∈ 3213 ,,2,1 L
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, 
and mutation scale factor . 

3.3 Crossover 

The trial vector is generated as follows:  
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where  denotes generation index, the 

index  is chosen randomly from the set 
, which is used to ensure that vector 

 gets at least one parameter from , and 
 is known as a crossover rate constant which is a 

user-defined parameter within the range [ ]. 
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3.4 Selection 

To decide whether or not the trail vector should 
become a member of the next generation, the trail 
vector is compared to the target vector 

by evaluating the cost or objective function. A 
vector with a minimum value of cost function will 
be allowed to advance to the next generation. That 
is, 
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Using this selection procedure, all individuals of 
the next generation are as good as or better than the 
individuals of the current population. 

4 SIMULATION RESULTS 

To simulate the above process, we randomly 
generate 100 measurement poses within the robot 
workspace to form the measured input values. As 
stated above, we can take (10) as our fitness 

function, among which, we assume a set of fixed 
geometric errors for the identified parameter to 
represent the actual measurement values of the 
robot, and at the same time suppose these error 
parameters to be our simulation variables. Through 
enough evolution generations, the simulated 
identification parameter will finally approximate to 
the assumed parameter errors. Table 2 shows the 
constant parameters we have chosen and the best 
objective function values of each generation are 
plotted in Fig. 5. 

Table 2: Parameters of DE. 

Symbol Parameter Value 

D Number of parameters 
(Variables) 

58 

NP Number of population 600 

F Scale or difference factor 0.9 

CR Crossover control constant 1.0 

N Measurement number 100 

maxG The maximum generations 60000 

L
ijx ,

Lower bound of identified 
error parameters 

-0.5 

U
ijx ,

Upper bound of identified 
error parameters 

0.5 

 

 

Figure 5: Best objective function values of 60000 
generations. 

From the above tables and the figure of 
evolutionary process, we can see that the objective 
function values decrease dramatically at the 
beginning, but with the advance of evolution 
process, they tend to be calm and the convergence 
speed also become slow. After 60000 generations, 
most of the identified errors are approximated to the 
assumed errors, and the final best object function 
value reach to the accuracy of 10-4. Of course, if we 
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increase the maximum generation number and add 
more measured poses, then the identification 
accuracy will be improved and the identified 
parameters will infinitely approach to the actual 
values. 

5 CONCLUSIONS 

In this paper, a hybrid redundant robot used for both 
machining and assembling of Vacuum Vessel of 
ITER is introduced. Furthermore, a parameter 
identification model which has the ability to account 
for the static error sources is derived. Due to the 
redundant freedom of the robot, we first divide the 
robot into two parts according to its mechanism, 
then formulate the parameter identification model 
respectively, and finally combine them together to 
get the final optimization identification model. 
Based on the DE algorithm and the derived 
identification model, the 58 kinematic error 
parameters of the robot were identified by computer 
simulations. According to the simulation results, we 
can see that DE has a very strong stochastic 
searching ability, which is reliable and can be easily 
used to identify the high non-linear kinematic error 
parameter models. 
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