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Abstract: A comparison between the Dynamic Principal Component Analysis (DPCA) method and a bank of Diagnostic
Observers (DO) under the same experimental data from a shell and tube industrial heat exchanger is presented.
The comparative analysis shows the performance of both methods when sensors and/or actuators fail. Different
metrics are discussed (i.e. robustness, quick detection, isolability capacity, explanation facility, false alarm
rates and multiple faults identifiability). DO showed quicker detection for sensor and actuator faults with
lower false alarm rate. Also, DO can isolate multiple faults. DPCA required a minor training effort; however,
it cannot identify two or more sequential faults.

1 INTRODUCTION

Early detection and diagnosis of abnormal events in
industrial processes represent economic, social and
environmental profits. Generally, the measuring and
actuating elements of a control system fail causing ab-
normal events. Thus, when the process has a great
quantity of sensors or actuators, the Fault Detection
and Isolation (FDI) task is very difficult.

Most of the existing FDI approaches for Heat Ex-
changers (HE), are based on quantitative model-based
methods. In (Ballé et al., 1997), fuzzy models are
used to generate residuals; since each fault has an
unique residual incidence, it is possible the fault iso-
lation. Similarly, a residual generator is proposed to
create fault signatures in (Krishnan and Pappa, 2005).
Generalized Likelihood Ratio is frequently used to es-
timate the fault magnitude from a residual generation
(Aitouche et al., 1998). On the other hand, a particle
filtering approach for predicting the probability dis-
tribution of different heat exchanger states (faults) is
proposed in (Morales-Menendez et al., 2003).

A comparative analysis between two FDI systems
in an industrial HE is proposed. One of them is
based on the Dynamic Principal Component Analy-
sis (DPCA) and another one on a bank of Diagnostic
Observers (DO).

Some researches are related to this work. Re-
cently, DPCA and correspondence analysis (CA) have
been compared (Detroja et al., 2005). CA shows a
greater efficiency of fault detection in terms of the
shorter detection delay and lower false alarm rates;

however, CA needs a greater computational effort. An
adaptive standardization of the DPCA has been pro-
posed for MIMO systems (Mina and Verde, 2007);
simulation results allow to detect faults and avoid nor-
mal variations in process signals.

An adaptive observer of a nonlinear discrete-time
system with actuator faults is proposed in (Caccavale
and Villani, 2004). Using process linear models, a dy-
namic observer detects malfunctions caused by mea-
surement and modeling errors (Simmani and Patton,
2008). In order to detect multiple faults in a process,
a set of unknown input-observers can be used, each
one of them is sensitive to a fault while insensitive to
the remaining faults (Verde, 2001).

The aforementioned works were implemented un-
der different types of faults and processes; then, a
comparison under same experimental data in an in-
dustrial HE is considered.

This paper is organized as follows: Section 2 for-
mulates the DPCA approach. Section 3 describes the
steps for designing a set of DO. Section 4 describes
the experimental system. Section 5 discusses the re-
sults. Finally, conclusions of this work are presented.

2 DPCA

Let X be a matrix ofm observations andn variables
collected from a real process. This data set repre-
sents the normal operating conditions.X̄ is the scaled
data matrix and ¯x is a vector containing mean (µ)
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of each variable. Such that ¯x = ( 1
m)XT1 and X̄ =

(X− 1x̄T)D−1 whereD is a diagonal matrix contain-
ing standard deviation (σ) of each variable and1 is a
vector of elements equal to 1.

When the system has a dynamic behavior, the data
present a serial and cross-correlation among the vari-
ables. This violates the assumption of normality and
statistical independence of the samples. To overcome
these limitations, the column space of the data matrix
X must be augmented with a few past observations for
generating a static context of dynamic relations.

X̄D = [X1(t)X1(t −1), . . . ,X1(t −w), . . .
Xn(t)Xn(t −1), . . . ,Xn(t −w)]

(1)

wherew represents the quantity of time delays. By
performing PCA on the augmented data matrix, a
multivariate auto regressive model is extracted di-
rectly from the data (Ku et al., 1995). For a multi-
variate system, the process variables can have differ-
ent ranges of values, thus the data matrixXD[m×(n×w)]

must be standardized. With the scaled data ma-
trix, a set of a smaller number (r < n) of variables
is searched through the process of decomposing the
variance in the data.r must preserve most of the in-
formation given in these variances and covariances.

The dimensionality reduction is obtained by a
set of orthogonal vectors, calledloading vectors(p),
which are obtained by solving an optimization prob-
lem involving maximization of the explained variance
in the data matrix by each direction (j) with t j = X̄p j ;
the maximal variance oft j must be computed from:

max(tT
j t j) = max(pT

j X̄
T
X̄p j) = max(pT

j Ap j) (2)

Such thatpT
j p j = 1. Solving the optimization problem

through the Singular Value Decomposition (SVD),
the eigenvaluesλ j of the matrixA are computed from,

(A−λ jI)p j = 0 for j=1,...,n (3)

where,A represents the correlation matrix of the data
matrix X̄, andI is an×n identity matrix. Using the
new orthogonal coordinate system, the data matrixX̄

can be transformed into a new smaller data matrixT,
calledscores matrix.

T[m×r] = X̄[m×n]P[n×r] (4)

where,P represents the obtained loading vectors of
the SVD with the most significant eigenvaluesλ j .
As this transformation is a rotation matrix, it holds
PTP = I. Therefore alsoX̄ = TPT is valid. Thus,
PCA decomposes the matrix̄X as,

X̄ = t1pT
1 + t2pT

2 + . . .+ tr pT
r (5)

The matrixT can be back-transformed into the
original data coordination system as,

X
∗
[m×n] = T[m×r]P

T
[r×n] (6)

2.1 FDI using DPCA

The normal operating conditions can be characterized
by T2-statistic (Hotelling, 1993). Equation (7) allows
to generate online theT2-statistic based on the firstr
loading vectors (principal components).

T2 = xT
[1×n]P[n×r]Λ−1

[r×r]P
T
[r×n]x[n×1] (7)

where,x is a new measurement vector taken online
and Λ is a diagonal matrix which contains firstr
eigenvalues of the correlation matrix (A). If the value
of T2-statistic stays within its control limit then, the
status of the process is considered normal (Ku et al.,
1995). Thus, a fault occurs, when a value ofT2-
statistic is greater than its control limit (T2

α ).

T2
α =

(m−1)r
(m− r)

Fα(r,m− r) (8)

where,Fα(r,m− r) is the F-distribution with r and
m− r degrees of freedom with 100α% of confidence.

Due T2-statistic only detects variation in the di-
rection of the firstr principal components, Jacksonet
al. (Jackson and Mudholkar, 1979) propose to mon-
itor the variation in the residual space (components
associated with the smallest singular values) usingQ-
statistic for helping to fault detection. Both statis-
tics must detect a fault, however they have not the
same resolution in the deviation when the fault oc-
curs. Similarly toT2-statistic, when a value ofQ-
statistic is greater than its threshold (Qα) indicates the
occurrence of a fault. The values ofQ-statistic and its
control limit can be calculated through the equations:

Q = [(I−PP
T)x]T[(I−PP

T)x] (9)

Qα = θ1

[

h0cα
√

2θ2

θ1
+1+

θ2h0(h0−1)

θ2
1

]

1
h0

(10)

where,θi = ∑n
j=r+1(λ j)

2i , h0 = 1− 2θ1θ3
3θ2

2
and cα is the

normal deviation corresponding to (1−α) percentile.
Once a fault is detected, the next step is the isola-

tion. In order to determine which variable is the most
relevant to cause the fault, the use of contribution
plots has been proposed (Miller et al., 1998). Con-
tribution plots quantify the error of each process vari-
able when the process is not in normal operating con-
ditions. The variable which shows the highest contri-
bution (Coni) to the error is isolated and associated as
the most relevant to the fault which has occurred.

Coni =
R2

i

∑r
j=1R2

j

(11)

where,Ri represents the residue in the residuals space
(Isermann, 2006). The residueR can be calculated by
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subtracting the back-transformation data (equation 6)
to scaled data matrix (̄X),

R[m×n] = X̄[m×n] −T[m×r]P
T
[r×n] (12)

whereP contains the loading vectors corresponding
to components with the smallest singular values.

3 DESIGN OF A BANK OF DO

As the state observer compute the error between the
process states and adjustable model states, it can be
used as a further alternative for model-based fault de-
tection. The discrete state space model which can de-
scribe the process dynamic is,

xp(k+1) = Gxp(k)+Hu(k)
y(k) = Cxp(k)

(13)

A state observer for unmeasurable state variables
can be represented as

x̃o(k+1) = Gx̃o(k)+Hu(k)+Ke[y(k)− ŷ(k)]
ŷ = Cx̃o(k)

(14)

where,Ke is the observer feedback matrix.

3.1 FDI using a Bank of DO

The error of the observer can be computed as:

xp(k+1)− x̃o(k+1) = (G−KeC)[xp− x̃o] (15)

Defining e(k) = xp − x̃o as the error vector, the pre-
dicted error can be calculated as

e(k+1) = (G−KeC)e(k) (16)

The dynamic behavior of the errore(k) is deter-
mined by the eigenvalues ofG-KeC. If the matrixG-
KeC is a stable matrix, the error vector will converge
to zero for any initial errore(0).

When an unknown input (fault) changes the pro-
cess normal operation, the error signal calledresidual,
should be different to zero. Therefore, if the residual
is close to zero (i.e. noise withµ = 0 andσ = 1), the
process variable is into its normal operating condition,
called nominal behavior.

If the process is affected by several faults, it is pos-
sible to use a bank of DO for identification of different
faults. All DO are designed from different fault mod-
els and they are sensitive to any fault except the used
fault for their design.

Water Outlet Water Inlet

Steam Inlet

Condensed

Figure 1: Experimental System.

4 EXPERIMENTAL SYSTEM

An industrial shell-tube heat exchanger is used,
whose characteristics of non-linearity and slow tran-
sient response are the most relevant, see Figure 1.

Faults in sensors and actuators, calledsoft faults,
have been implemented in additive form. Also, the
process always was free of disturbances.

DPCA used 1 second as sample time delay; and
1900 measurement data of each sensor were taken.

x(t) = [FT2(t) FT1(t) TT1(t) TT2(t)] (17)

where,FT1 andFT2 are flow transmitters andTT1 and
TT2 are temperature transmitters.

In case of diagnostic observers, 5 seconds of sam-
ple time are used to obtain the state space models for
each faulty condition. The observer feedback matrix
in each observer is designed via pole placement with
closed loop poles close to origin in the discrete space.

Four types of additive soft faults will be imple-
mented: abrupt fault in sensors, gradual fault in sen-
sors, abrupt faults in actuators and multiple faults in
sensors, Table 1.

Table 1: Types of faults in the sensors.

Sensor Abrupt Gradual
fault fault (slope)

FT1 6% (5σ) 0.1%/sec
FT2 8% (5σ) 0.1%/sec
TT1 2◦C (8σ) 0.1◦C/sec
TT2 2◦C (8σ) 0.1◦C/sec

Five types of faults were implemented in the steam
and water control valves, Table 2.

FAULT DETECTION AND DIAGNOSIS IN A HEAT EXCHANGER

267



Table 2: Types of faults in actuators.

CaseStatus of the steam valveStatus of the water valve
0 normal (70%) normal (38%)
1 low pressure (60%) normal (38%)
2 high pressure (80%) normal (38%)
3 normal (70%) low pressure (28%)
4 normal (70%) high pressure (48%)

5 RESULTS

5.1 DPCA Approach

Taking one sample time delay of each measurement,
it is possible to explain a high quantity of variance in-
cluding the possible auto and cross correlations. The
normal operating conditions can be explained with 5
principal components (99.95%).

When an abrupt fault was implemented in theTT2
sensor at time 105, the Figure 2(left plot) shows thatQ
andT2 statistics clearly overshoot their control limits.
Figure 2(right lot) shows how the contribution plot
helps correctly with the fault isolation. The 78% of
total error corresponds to outlet temperature signal.

Figure 3 (left plot) shows a gradual fault in the
TT2 sensor at time 200.Q andT2 statistics overshoot
their control limits and indicate the fault detection af-
ter 14 and 10 seconds respectively once the fault has
occurred. Figure 3(right plot) shows that 64% of total
error corresponds to outlet temperature signal.

For actuator faults, independently if the bias is
positive or negative, there is a reaction in both statis-
tics. WhenT2 andQ statistics overshoot their control
limits, the fault is detected (Figure 4).

Using contribution plots, for the cases 1 and 2, the
steam flow signal has the greatest error contribution
followed by the outlet temperature signal (Figure 5).
This result is right because the faults are associated
to changes in the pressure of steam valve (negative
and positive respectively). Similarly, the water flow
signal has the greatest contribution to the error when
the water valve is affected by a pressure change.
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Figure 2: FDI analysis for an abrupt fault in the outlet tem-
perature sensor using DPCA.
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Figure 3: FDI analysis for a gradual fault in the outlet tem-
perature sensor using DPCA.
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Figure 5: Results in actuators: case 1(left), case 2(right).
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Figure 6: Fault detection using DPCA under multiple faults.

Finally, multiple faults have been activated se-
quentially at different times. Figure 6 shows the per-
formance of DPCA; each fault presents its activation
time. Both statistics overshoot their control limits
when the fault 1 has occurred at time 10. When the
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remainder of the faults were introduced, the statistics
stay inside their control limits; however, they move
more away from their thresholds. None of the statis-
tics comes back to its normal status since none of the
faults was deactivated. Figure 7 shows that it is not
possible to isolate multiple faults since contribution
plots can not associate the error to a specific variable.
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Figure 7: Diagnostic result for multiple faults in all sensors.

5.2 DO Approach

In order to distinguish different fault conditions, a
bank of four DO was designed (i.e. water flow, steam
flow, outlet temperature and inlet temperature).

When an abrupt fault is implemented in theTT2
sensor, the outlet temperature residue is the unique
signal which does not change its nominal behavior
whereas the remainder of the residues are deviated
negatively 1.5 units at time 10 when the fault is ac-
tivated, Figure 8(top plot). Thus, it is possible to as-
sociate the fault to theTT2 sensor. Same FDI result is
obtained when a gradual fault is implemented in the
TT2 sensor. Figure 8(bottom plot) shows the fault de-
tection after 5 seconds once the fault has occurred.

Figure 9 shows the performance of DO for faults
in actuators Table 2. When is implemented a fault
in the water control valve, independently of the bias
direction, the water flow residue does not change its
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behavior from its nominal value; whereas, the remain-
der of the residues are deviated. Similarly, when is
implemented a fault in the steam control valve, the
steam flow residue does not change its behavior.
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Figure 10 shows the FDD result using a set of DO
when multiple faults have been activated sequentially
at different time instants. It is important to note that
only one signal is not deviated from its behavior when
is introduced any abrupt sensor fault. The residual
signal which does not change its behavior is associ-
ated to the occurred fault.
Comparison of the Methods. According to the Table
3, DO shows a quicker detection than DPCA when is
implemented a gradual fault in a sensor signal. In this
work, the gradual faults are added to a signal and only
the deviations about the normal operating point are
analyzed as residuals. In all fault cases, it is easy to
explain the fault propagation using both FDI methods,
i.e. the explanation facility metric is achieved.

Contribution plots indicate which variables are
hypothetically more associated to the fault since it is
possible that more fault cases are involved. On the
other hand, a set of DO can correctly isolate a fault if
all fault models and the model of the normal operating
condition are known with high reliability. For faults
in actuators, the normal operating conditions change
in more than two sensors and the diagnosis task can

0 50 100 150 200 250

−50

0

50

100

150

Time (seconds)

 

 

Water Flow Residue

Steam Flow Residue

Outlet Temperature Residue

Inlet Temperature Residue

R
e
si
d
u
e

Residual Analysis 

  Fault 

(FT1 :10s)

1

 Fault

(TT1 : 48s) 

2

   Fault

(FT2 : 147s) 

    3

   Fault

(TT2 : 250s)  

    4

Figure 10: FDI result using DO under multiple faults.
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Table 3: Comparison of DPCA and DO approaches.

DPCA DO
Abrupt Gradual Actuator Multiple Abrupt Gradual Actuator Multiple

Metrics Fault(TT2) Fault(TT2) faults faults Fault(TT2) Fault(TT2) faults faults
Detection (s) 0 10−14 9−18 0 0 5 5−8 0

Isolation X X X - X X X X

Explanation X X X - X X X X

False alarm (%) 0 0 14.13 0 0 0 9.94 0

be complicated. In this work, DO shows a quicker
detection (i.e. almost the half of detection time) than
DPCA when faults in both actuators are implemented
at different times. For these faults, DO presents a
lower false alarm rate than DPCA (Table 3).

On the other hand, both FDI methods can de-
tect multiple faults which are implemented in all sen-
sors. However, DPCA can not isolate correctly when
several faults have been implemented. According to
computational requirements, the design of DO needs
greater computational resources. The training stage
of this method is more complicated than the DPCA
training; DO requires firstly a reliable ARX model
which must be translated to a state space model. Fur-
thermore, each fault case must be modeled in a partic-
ular state space model. Once the fault model is known
with high reliability, is designed a state observer; par-
ticularly in this work all models (fault cases and nor-
mal operating) are obtained in parallel. On the other
hand, the DPCA training is quickly executed once his-
torical data of the normal operating point are known.

6 CONCLUSIONS

A comparison between the Dynamic Principal Com-
ponent Analysis (DPCA) and a set of Diagnostic Ob-
servers (DO) under same experimental data from an
industrial Heat Exchanger (HE) is presented. DPCA
do very well on fast detection of abnormal situations,
it is easier to implement in industrial applications. A
process model was not required; however, a broad
acquisition of the historical measurements is needed.
Respect to false alarm rate, DPCA showed 42% more
of false alarms than DO for actuator faults.

DO presents a quicker detection than DPCA ([4−
10] seconds lower), DO requires an accurate state
space model of the process. Furthermore, each fault
case must be modeled. If the model is not reliable,
DO can not detect a fault correctly. Due to HE is
inherently a nonlinear system, it is more difficult to
implement a FDI method based on quantitative mod-
els. Finally, DPCA can not identify multiple faults
whereas DO can.
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