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Abstract: Recently there has been growing interest in creating large-scale simulations of certain areas in the brain.  
The areas that are receiving the overwhelming focus are visual in nature, which may provide a means to 
compute some of the complex visual functions that have plagued AI researchers for many decades; robust 
object recognition, for example.  Additionally, with the recent introduction of cheap computational 
hardware capable of computing at several teraflops, real-time robotic vision systems will likely be 
implemented using simplified neural models based on their slower, more realistic counterparts.  This paper 
presents a series of small neural networks that can be integrated into a neural model of the human retina to 
automatically control the white-balance and exposure parameters of a standard video camera to optimize the 
computational processing performed by the neural model.  Results of a sample implementation including a 
comparison with proprietary methods are presented.  One strong advantage that these integrated sub-
networks possess over proprietary mechanisms is that ‘attention’ signals could be used to selectively 
optimize areas of the image that are most relevant to the task at hand. 

1 INTRODUCTION 

Recent advances in neuroscience have allowed us 
unprecedented insight into how assemblies of 
neurons can integrate together to establish complex 
functions such as the deployment of visual attention 
(Moore & Fallah, 2004), the conscious visual 
perception of objects (Pascual-Leone & Walsh, 
2001), or the remapping of visual items between eye 
movements (Melcher, 2007).  This accumulation of 
detailed knowledge regarding the structure and 
function of the individual neurons and neural areas 
that are responsible for such functions has led a 
number of neuroscientists to prepare large-scale 
neural models in order to simulate these areas.  
Some of the modeled areas include the primary 
visual cortex (McLaughlin, Shapley, & Shelly, 
2003), the middle temporal area (Simoncelli & 
Heeger, 1998), or an amalgamation of areas 
(Walther & Koch, 2006).  Although the usual 
motivation for creating such models is to ultimately 
make predictions about their possible mechanisms or 
functional roles in biological organisms, recent 
advances in parallel computing – in particular, the 
introduction of the Cell processor as well as the 

graphics processing unit (GPU) – will likely direct 
the attention of robotics researchers toward 
developing comprehensive neural models for use in 
robotic applications. 

Robotic vision systems that are based on 
biologically inspired neural models represent an 
initially promising path to finally achieving 
intelligent vision systems that have the power to 
perform the complex visual tasks that we take for 
granted on a daily basis.  A classic example is that of 
object recognition, at which computer vision 
systems are notoriously poor performers.  Humans, 
on the other hand, can quickly – on the order of 
hundreds of milliseconds – and effortlessly 
recognize complex objects under a variety of 
situations – e.g., various lightning conditions, 
rotations, or levels of occlusion.  Various models of 
how this processing may occur in humans have been 
proposed, which have resulted in increased object 
recognition abilities by artificial systems (e.g., 
Riesenhuber & Poggio, 1999; Walther & Koch, 
2006).  Consequently, it is likely that subsequent 
iterations of these models will make their way into 
future robotic vision systems. 

305
W. Garaas T., Marino F. and Pomplun M. (2009).
AUTONOMOUS CAMERA CONTROL BY NEURAL MODELS IN ROBOTIC VISION SYSTEMS.
In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Robotics and Automation, pages 305-311
DOI: 10.5220/0002217303050311
Copyright c© SciTePress



Most neural models of visual areas operate in an 
idealized space (e.g., Lanyon & Denham, 2004); 
receiving pre-captured and manipulated images, 
whereas in robotic vision systems certain constraints 
are necessarily imposed.  These constraints largely 
revolve around the need to process information in 
realistic time-frames – optimally real-time – as well 
as to interact directly with the physical world; likely 
through some form of video camera.  Since these 
models will operate on input that cannot be known 
ahead of time, the system should be designed to 
handle a wide range of situations that may arise.   

Most video cameras suitable for a robotic vision 
system include some ability to automatically 
monitor and adjust white-balance, exposure, and 
focus.  However, in a robotic vision system that 
employs large-scale neural models, these automatic 
functions may lead to suboptimal processing 
conditions or even conflicts with the neural 
mechanisms.  This paper presents a proof-of-concept 
method for manually controlling certain parameters 
in the camera to optimize the processing of a neural 
model of the retina, which will likely form the initial 
processing stage of future biologically inspired 
vision systems.  In particular, the control of white-
balance (WB) and exposure parameters are 
considered.  Implementation details and a 
comparison to proprietary methods are given in the 
following sections. 

2 SYSTEM OVERVIEW 

The vision system presented here consists of a 
number of simple neural layers (2D layout of 
neurons that process image signals from nearby 
neruons) interconnected to form the basis for a 
robotic vision system; Figure 1 gives a simplified 
illustration of how the neurons within each layer are 
connected.  The layers are modeled after a subset of 
the neurons present in the human retina.  Figure 2 
illustrates the individual neuron types and 
connections that constitute the artificial retina, which 
are briefly described below in order to establish the 
motivation for the WB and exposure sub-networks 
(subnets) presented hereafter.  The neural model 
(excluding WB and exposure subnets) consists of 17 
layers which total to approximately 225,000 
individual neurons and 1.5 million connections.  The 
network is designed to be executed on the GPU of a 
standard video card. 

 

 
Figure 1: Simplified illustration of the connections used in 
the neural model and camera control subnets: (left) 
random connections to cells in previous layers and (right) 
random connections demonstrating a center-surround 
organization.  Information in both cases flows from the 
upper layer to the bottom layer. 

 
Figure 2: Connections between the various neuron types in 
the retina and camera control subnets.  Solid arrows 
indicate excitatory connections while arrows with a white 
circle indicate inhibitory connections; ellipses between 
WB1 and WB4 indicate a continuation of the connection 
pattern directly above. 

2.1 Apparatus 

The network presented hereafter was simulated on 
two computer graphics cards (Nvidia 380 gtx) using 
an SLI setup. The OpenGL shading language 
(GLSL) was used to implement the computations for 
individual neurons. Video input was retrieved using 
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Figure 3: Activation maps and connection structure of the neural model and camera control subnets.  Lighter areas represent 
higher activations while the colors indicate the spectral contributions to the activations. 

a Cannon VCC4 video camera, and images were 
captured from the camera using the Belkin Hi-Speed 
USB 2.0 DVD Creator.  Activations of the entire 
network can be computed very quickly: 100 
iterations of computing activations for every single 
neuron take approximately 0.5 seconds. 

2.2 Simulated Retina 

The human retina is often considered a simple 
means for sensing light that enters the eye.  On the 
contrary, the retina is actually a complex extension 
of the brain that is responsible for both reducing the 
amount of information transmitted to the various 
visual centers of the brain and converting the 
incoming signal into a form that is suited for higher-
level processing by cortex.  In the neural model 
presented here, we simulate the cones (R, G, B; 
referred to as long-, medium-, and short-wavelength 
cones in biological organisms, which are responsible 
for extracting the contributions of three primary 
color-components of the image), the horizontal cells 
(H1 & H2 cells, which essentially compute a 
‘blurred’ version of the incoming image), on- and 
off-center bipolar cells (R, G, B cells, which 
compute an initial contrast-sensitive activation due 
to the antagonistic center-surround arrangement), 
and on- and off-center ganglion cells (R, G, B cells, 

which also compute a center-surround, contrast-
sensitive signal that is also spectrally opposed, due 
to the inhibitory connections from bipolar cells).  
For the sake of brevity, we do not describe the 
specifics of individual neuron activations and 
connections.  However, the essentials of the retinal 
neurons simulated here follow very closely those 
laid out by Dacey (2000) and Dowling (1987). 

3 WHITE-BALANCE CONTROL 

WB control in cameras was included so that changes 
in illumination could be countered to keep white 
areas within an image looking white.  For instance, 
lighting that is stronger across the red spectrum of 
visible light will cause white areas to take on a 
reddish hue.  Many different algorithms, such as 
white point estimation (Cardei, Funt & Barnard, 
1999), chromaticity estimation using neural 
networks (Funt & Cardei, 1999), and gray world 
(Buchsbaum, 1980), have been proposed to control 
for changes in color due to the infinite spectrum of 
light sources.  Although humans do not have the 
ability to directly control the color of objects as they 
are being received by the various early visual areas, 
neural mechanisms do exist to counter the effect of 
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illuminants on the actual perception of color 
(Brainard, 2004).  This ability is aptly referred to as 
color constancy. 

The automatic white-balance mechanism 
described here is a subnet of the neural model 
portrayed above.  The basic goal is largely the same 
as that of previously proposed mechanisms; that is, 
to make white objects project white color onto the 
incoming image regardless of the illumination color.  
As such, the proprietary automatic white-balance 
mechanism would provide an adequate means to 
achieve this; however, there are a few caveats that 
may make a specifically designed WB control 
mechanism desirable.  First, ganglion cells, from 
which the WB function will be computed, do not 
directly encode the primary image colors (i.e., 
RGB); instead, they encode a spatially and spectrally 
opponent signal that encodes the differences 
between red/green and blue/yellow signals.  This 
property may introduce differences between an 
optimal white-balance parameter set by proprietary 
mechanisms and the optimal white-balance 
parameter for network computation.  Second, certain 
biologically inspired mechanisms may take 
advantage of having the computation of such things 
implemented directly inside the network.  This will 
be discussed in detail later. 

The WB subnet introduced here is conceptually 
very simple.  It begins by including a layer into the 
network (WB0) that ‘extracts’ areas of the image 
that represent candidates for white or light gray 
regions (technically, B/Y – R/G neutral).  The 
candidate areas are exactly those areas in which the 
on-center ganglion cells have nearly the same level 
of activation and where the sum of the activations is 
greater than some threshold.  A small amount of 
programming code is given below which gives a 
basic idea of how neurons’ activations in layer WB0 
are computed; red, green, and blue variables store 
the average activations of incoming red, green, and 
blue on-center ganglion cells, respectively; on-center 
activations range from 0.0 (no activation) to 1.0 (full 
activation). 
 
float intensity = red + green + blue; 
float R = red / intensity; 
float G = green / intensity; 
float B = blue / intensity; 
 
if(R > 0.25 && G > 0.25 && B > 0.25 && 
total > 1.0) 
 activation = (B – R)*4.0; 
else 
 activation = 0.0; 

After layer WB0 has extracted the areas that are 
potentially white or light gray, neurons in WB1 then 
compute a local maximum of the WB0 neurons to 
which it is connected; Figure 1 (left) illustrates the 
basic connection structure. Finally, layers WB2 
through WB4 perform a simple averaging of the 
neuron activations from incoming layers; however, 
only neurons with non-zero activation (i.e., those 
representing a candidate area) will contribute to the 
average.  The end-product of the WB subnet is a 
value that can be used to step the white-balance 
parameter either towards a more blue hue or a more 
red hue depending on the situation.  If, for instance, 
the activations of red and blue ganglion cells are 
close to equal across the image, the step functions 
will be zero and the white-balance parameter will 
not change.  However, if red ganglion cells have 
larger activations, in general, then the stepping 
function will be negative, which will cause the 
camera to introduce a slightly bluer hue to the 
image. 

The WB subnet was designed to balance the 
activations across red and blue on-center ganglion 
cells. Consequently, the subjective view of the 
image cannot be used to assess the performance of 
the subnet, which is contrary to proprietary 
mechanisms. With that said, the WB subnet adjusts  

Figure 4: White-balance results: (top) adjusted image 
using proprietary auto-WB mechanism, (middle) adjusted 
image using the WB subnet, and (bottom) activation map 
of WB2.  Lighter portions in WB2 represent candidate 
areas that contain greater activations of blue ganglion 
cells, while darker portions represent candidate areas 
greater activations of red ganglion cells. 
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the WB of the camera in much the same way as the 
proprietary mechanism in certain situations; see 
Figure 4 (left), for example. In contrast, other 
situations can produce deviations in WB settings 
between the subnet and proprietary mechanisms; see 
Figure 4 (right), for example. The size of WB steps 
should also be considered, as too large a step size 
will introduce over-correction and, ultimately, a 
ping-ponging of the WB parameter as the subnet 
slowly narrows in on the correct value; on the other 
hand, too small a step size will lead to a very slowly 
adjusting WB. Finally, in the current network, 
following a change in the white-balance parameter, 
it was necessary to insert a short delay before 
another step could be made; this was needed to 
allow the changes in image color due to the WB 
parameter change to spread through the various 
neural layers. 

4 EXPOSURE CONTROL 

One of the most remarkable properties of the human 
vision system is its ability to function over a 
strikingly large range of luminance conditions, a 
span of approximately 10 billion to 1 (Dowling, 
1987).  The human eye has essentially two ways of 
dealing with the variation it experiences in day-to-
day luminance levels.  (1) The pupil can reduce its 
area by a factor of approximately 16 due to changes 
in ambient illumination.  (2) The circuitry in the 
retina is specially designed to handle two general 
lighting conditions: dim light, primarily handled by 
the rod-pathway in the retina; and bright light, 
handled by the cone-pathway in the retina. 

Video cameras, on the other hand, do not have 
the luxury of such robust input mechanisms.  
Nevertheless, various methods have been developed 
to allow cameras to function under a rather 
impressive span of luminance levels – at least when 
all things are considered.  The camera used for the 
present study employs two primary parameters that 
can be adjusted to compensate for luminance levels: 
iris size and gain control. 

The network control of exposure is similar to that 
of WB in that a conceptually simple subnet 
progressively computes various properties of the 
incoming image which allows it to ‘step’ the 
relevant parameter towards optimizing some 
computation.  The computation that is optimized in 
exposure control is contrast; too much light entering 
and the image gets ‘washed-out’; too little light 
creates an underexposed image.  This mechanism in 
particular will likely be very important to robotic 

vision systems using biologically neural models, as 
contrast has shown to play a particularly critical role 
in the neural computations that take place in the 
primate visual cortex (Sceniak et al., 1999).   

As with the WB subnet, the functioning of the 
exposure subnet is conceptually very simple.  
Essentially, the subnet attempts to maximize the 
contrast of two spatially adjacent areas using the on- 
and off-center ganglion cells.  Recall that in the 
neural model of the retina (and the biological retina) 
contrast plays a specific role for two classes of 
neurons, bipolar cells and ganglion cells.  That is, 
these cells compute an activation that highlights high 
contrast areas of the image.  Consequently, much of 
the work required for computing our exposure 
control function is already implemented. 

The remaining work is performed by two 
independent subnets, an off-subnet and an on-
subnet.  Each subnet first computes a local 
maximum of the incoming ganglion cell activations 
(on-center ganglion cells will have higher 
activations in bright areas, especially if it is adjacent 
to a dark area, and vice-versa for off-center ganglion 
cells).  This maximum is then averaged across the 
image to produce an exposure step-value similar in 
nature to the WB step-value, with one difference, the 
step value for the exposure control must work to 
control both the iris and gain of the camera, which is 
handled by a simple scheme: changes to the iris take 
precedence over changes to gain, which instead 
serves to fine-tune the exposure using small step-
values. 

Sample results of the exposure subnet are shown 
in Figure 5 for both bright-light conditions (left) and 
dim-light conditions (right).  Exposure values in 
dim-light conditions closely follow those computed 
by the proprietary control mechanisms.  However, 
significant differences can be seen in bright-light 
conditions.  This is likely due to the goal of the 
exposure subnet to extract a maximum contrast 
signal, which may only occur in a portion of the 
image, as opposed to enhancing a global contrast 
signal.  This difference is most prominent around the 
wheel in Figure 5 (left) where the proprietary 
mechanism introduces spectral highlighting on the 
rubber (black) portion of the wheel; whereas when 
under the exposure subnet’s control, the gain is 
weaker to allow the natural blackness of the wheel to 
maximize the contrast between the plastic (white) 
and rubber (black) portions. 
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5 CONCLUSIONS 

The current paper introduced small subnets that can 
be integrated into biologically inspired neural 
models of human visual areas to control the WB and 
exposure parameters on most standard video 
cameras.  In contrast to their usual functions, WB 
and exposure parameters are used to optimize the 
actual processing that occurs in the neural model, as 
opposed to simply providing a clearer image.  The 
subnets of this particular implementation are based 
on the activations of on-center and off-center 
ganglion cells from a neural model of an artificial 
retina. 

Figure 5: Exposure results: (top) adjusted image using the 
proprietary auto-exposure mechanism, (upper-middle) 
adjusted image using the exposure subnet, (bottom-
middle) activation map of on-center EX0, and (bottom) 
activation map of off-center EX0. 

Aside from customizing the parameters of the 
camera to optimize model computation, the subnets 
introduced here have other features that would make 
them a desirable replacement for proprietary 
mechanisms.  One feature in particular could 

provide a substantial benefit, which is the ability to 
selectively optimize computation for areas in the 
image in which the neural model is ‘interested’.  
Indeed, one of the most studied neural signals in 
biological organisms is that of attention, which is 
often implemented in artificial neural models 
(Lanyon & Denham, 2004).  Consequently, with 
very little modification, the subnets presented here 
could be modified to selectively provide emphasis to 
attended areas based on incoming attention signals.   
For instance, imagine a robotic vision system that is 
placed in a daylight setting receiving very bright 
light from the sun.  If the robot wishes to examine a 
dark portion of the incoming image – say the 
lettering of a poster printed on a black background, 
proprietary mechanisms will be inadequate as they 
will selectively optimize the range of high pixel 
values – i.e., those representing bright areas.  
Instead, if the image is adjusted to optimize the 
range of low pixel values – i.e., those representing 
the poster, the robot may then successfully achieve 
its goal.  Attention signals representing the robot’s 
desire to inspect the poster would provide a perfect 
indicator by which to optimize the correct portion of 
the incoming image.  Future implementations will be 
directed toward realizing such models. 
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