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Abstract: The problem of abstracting computational relevant properties from sophisticated mathematical models of
physical environments has become crucial for cyber-physical systems. We approach this problem using
Hilbertean formal methods, a semantic framework that offers intermediate levels of abstractions between the
physical world described in terms of differential equations and the formal methods associated with theories
of computation. Although, Hilbertean formal methods consider both deterministic and stochastic physical
environments, in this paper, we focus on the stochastic case. The abstraction method can be used for verifi-
cation, but also to improve the controller design and to investigate complex interactions between computation
and physics. We define also a computational equivalence relation called adaptive model reduction, because
it considers the co-evolution between a computation device environment and its physical environment during
abstraction.

1 INTRODUCTION

The interaction between physics and computation can
be very subtle. The research experience from ar-
eas like nanoscience (Hornyak e.a. 2008) and quan-
tum computing (Accardi e.a. 2006), or from smart
dust, shows that common principles can be distilled
from these different worlds. At a larger scale, the
general system theory provides a systematic reper-
toire of common properties of the physical and digital
dynamical systems. This experiences give hope for
a sound semantic framework forcyber-physical sys-
tems(CPS). The manifestos on CPS - see, for exam-
ple(Tabuada 2006) - emphasize the need for a funda-
mentally new theoretical foundation. This foundation
should be interdisciplinary and at the right level of ab-
straction: it should offer analytical tools to investigate
physical models, and, at the same time, to be abstract
enough to give semantics for models of computation.

In this paper, we considerHilbertian For-
mal Methods(HFM) (Bujorianu, Bujorianu 2007a,
2007b) as a semantic framework for CPS model-
ing. HFM represent a logical framework that uses
functional and stochastic analysis to construct logics
for reasoning about qualitative properties of physi-
cal phenomena. These logics can be easily integrated

with specification logics for automata. In this work,
we focus more on the method part of HFM, and less
on the formal aspects. In the HFM framework, we
use hybrid systems to design an abstraction method
that simplifies the physical models whilst the com-
putational properties are simulated. Intuitively, the
computational discrete steps are preserved, while the
mathematical models of the continuous phenomena in
the environment are drastically simplified.

The qualitative model reductions method we pro-
pose is a fundamental step towardsstochastic model
checking(SMC) (Bujorianu, Bujorianu 2006) for un-
certain CPS. Stochastic model checking coincides
with probabilistic model checking(Bujorianu, Katoen
2008) for Markov chains. In the case of continuous
or hybrid stochastic dynamical systems, the SMC is
a specialization of thestochastic reachability analy-
sis (Bujorianu 2004) by means of computer science
inspiredabstraction(Bujorianu, Lygeros, Bujorianu
2005a) orbisimulation methods(Bujorianu, Lygeros,
Bujorianu 2005b) , (Bujorianu, Bujorianu 2008b).

In the context of uncertain cyber-physical sys-
tems, we introduce a new concept of behavior equiv-
alence calledadaptive bisimulation. In the theory
of concurrent discrete processes, bisimulation is a
method for reducing the state space, while the tran-
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sitions are preserved. Using category theory the con-
cept of bisimulation was defined for continuous and
hybrid dynamical systems (Haghverdi, Tabuada, Pap-
pas 2005). Based on the same categorical machin-
ery, in (Bujorianu, Lygeros, Bujorianu 2005b), bisim-
ulation has been defined for stochastic hybrid sys-
tems. However, in the context of uncertain CPS,
the classical concept of bisimulation seems to be too
strong (i.e., systems that are considered equivalent
by a designer or by an observer, fail to be bisimi-
lar). More appropriate concepts of behavioral equiv-
alence, like approximate bisimulation and behavioral
bisimulation have been proposed in (Bujorianu, Bu-
jorianu, Blom 2008) and (Bujorianu, Lygeros, Bujo-
rianu 2005a). Underapproximate bisimulation, the
trajectories of two randomized hybrid systems differ
with a small distance, the measurement being done
according with a suitable metric. For thebehavioral
bisimulation, two equivalent systems have the same
probabilities of reaching some specific state sets. Al-
though these bisimulation concepts are better in de-
scribing properties of systems that operate in physical
environments, they do not imply the preservation of
the interaction between computation and physics. The
key point in defining such a bisimulation consists in
modeling this interaction. In this paper, we model this
interaction using an abstract measure calledenergy,
which is a basic concept of HFM. The energy char-
acterizes globally the cyber physical process, but also
it can discriminate continuous (physical) evolutions,
discrete (computational) transitions and control (the
process killing, in order to start another one). This
last aspect makes the difference between a CPS and
a classical automaton: a computation device has the
capability to influence its physical environment (and
achievingco-evolutionin this way). Naturally, the
CPS bisimulation should be related to energy preser-
vation. An intuitive illustration of adaptive bisimu-
lation is given by the following scenario. During its
evolution, a CPS may produce a change of its envi-
ronment. Suppose that for the new dynamical system
modeling the environment is classically bisimilar with
the former one. Then, for an adaptive bisimilar CPS
the computational component will exhibit a equiva-
lent behavior.

The paper road map can be described as follows.
The following section contains the mathematical set-
ting. In Section 3 we formulate the stochastic model
checking problem and we prove two results that make
the problem solvable. In Section 4 we investigate the
qualitative model reductions and bisimulations. The
final section contains some short conclusions.

2 THE MATHEMATICAL
FRAMEWORK

2.1 Uncertain Cyber-physical Systems

The theory of hybrid systems is a well-established
modeling paradigm for embedded systems. Similarly,
the theory of concurrent embedded hybrid systems
(Bujorianu, Lygeros, Bujorianu 2005a) constitutes a
suitable modeling framework for CPS. In the follow-
ing an uncertain cyber-physical system is modeled as
a randomized embedded hybrid system.

There are two major ways to randomize a contin-
uous or hybrid dynamical system: In one approach,
the concept of noise is used to model small random
perturbations. The randomized system has trajecto-
ries that closely resemble those of the deterministic
initial system. The noise based randomization is car-
ried out using stochastic differential equations. When
the influence of the random perturbation changes dra-
matically the system evolution, the randomization is
carried out using stochastic kernels that replace the
concept of reset maps from deterministic hybrid sys-
tem models.
A UcpsU = (Q,X ,F,R,λ) consists of
• a finite set of discrete variablesQ;
• a mapX : Q → R

d(.) that sends eachq ∈ Q into a
mode (an open subset)Xq of R

d(q), whered(q) is the
Euclidean dimension of the corresponding mode;
• a mapF : Q → 2FSDE which specifies the continu-
ous evolution of the automaton in terms of stochastic
differential equations (SDE) over the continuous state
xq for each mode;
• a family of stochastic kernelsR= (Rq)q∈Q,

Rq : X
q
× (∪B (X j)| j ∈ Q\{q}) → [0,1];

• a transition rate function

λ : (∪X
j
| j ∈ Q) → R

+, (1)

which gives the distributions of the jump times.
The executions of a Ucps can be described as fol-

lows: start with an initial pointx0 ∈ Xq, follow a
solution of the SDE associated toXq, jump when
this trajectory hits the boundary or according with
the transition rateλ (the jump time is the minimum
of the boundary hitting time and the time, which is
exponentially distributed with the transition rateλ).
Under standard assumptions, for each initial condi-
tion x ∈ j ∈ Q∪X j , the possible trajectories starting
from x, form a stochastic process. Moreover, for all
initial conditionsx, the executions of a Ucps form
the semantics, which can be thought of as a Markov
process in a general setting. Let us considerM =
(Ω,F ,F t ,xt ,Px) be the semantics ofU . Under mild
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assumptions on the parameters ofU , M can be viewed
as a family of Markov processes with the state space
(X,B ), whereX is the union of modes andB is its
Borel σ-algebra. LetB b(X) be the lattice of bounded
positive measurable functions onX. The meaning of
the elements ofM can be found in any source treat-
ing continuous-parameter Markov processes (see, for
example, (Davis 1993)). Suppose we have given aσ-
finite measureµ on (X,B ).

In the following we give some operator character-
izations of stochastic processes, which are employed
in this paper to define a qualitative model reduction
for Ucps.

2.2 Hilbertean Formal Methods

The HFM abstract away the analytical properties of
deterministic and stochastic differential operators us-
ing the so called kernel operator (defined in the fol-
lowing). Using methods of functional analysis HFM
elegantly generalize both deterministic and stochas-
tic systems. In this work we focus on the stochastic
case. Let us describe briefly the mathematical appara-
tus that is usually employed to study continuous time
continuous space Markov processes.
The transition probability function is pt(x,A) =
Px(xt ∈ A), A ∈ B . This is the probability that, if
x0 = x, xt will lie in the setA.
Theoperator semigroupP is defined by

Pt f (x) =

∫
f (y)pt (x,dy) = Ex f (xt),∀x∈ X,

whereEx is the expectation w.r.t.Px.
Theoperator resolventV = (Vα)α≥0 associated with
P is

Vα f (x) =

∫ ∞

0
e−αtPt f (x)dt,

x ∈ X. Let denote byV the initial operatorV0 of V ,
which is known as thekernel operatorof the Markov
processM. The operator resolvent(Vα)α≥0 is the
Laplace transform of the semigroup.
Thestrong generatorL is the derivative ofPt att = 0.
Let D(L )⊂ Bb(X) be the set of functionsf for which
the following limit exists (denoted byL f ):

lim
tց0

1
t
(Pt f − f ).

In the HFM, there is developed a semantic frame-
work for concurrent embedded systems constructed
using energy forms. We specialize this theory for
function spaces, reaching in this way the theory of
Dirichlet forms (Ma, Rockner 1990).

A quadratic formE can be associated to the gen-
erator of a Markov process in a natural way.

Let L2(X,µ) be the space of square integrable
µ-measurable extended real valued functions on
X, w.r.t. the natural inner product< f ,g >µ=∫

f (x)g(x)dµ(x).
The quadratic formE :

E ( f ,g) =−< L f ,g>µ, f ∈D(L ),g∈ L2(X,µ) (2)

defines a closed form. This leads to another way of
parameterizing Markov processes. Instead of writing
down a generator one starts with a quadratic form. As
in the case of a generator it is typically not easy to
fully characterize the domain of the quadratic form.
For this reason one starts by defining a quadratic form
on a smaller space and showing that it can be extended
to a closed form in subset ofL2(µ). When the Markov
process can be initialized to be stationary, the measure
µ is typically this stationary distribution (see (Davis
1993) p.111). More generally,µ does not have to be a
finite measure.

A coercive closed formis a quadratic form
(E ,D(E )) with D(E ) dense inL2(X,µ), which sat-
isfies the: (i) closeness axiom, i.e. its symmetric part
is positive definite and closed inL2(X,µ), (ii) con-
tinuity axiom. E is called bilinear functional en-
ergy (BLFE) if, in addition, it satisfies the third ax-
iom: (iii) contraction condition, i.e. ∀u ∈ D(E ),
u∗ = u+∧1∈ D(E ) andE (u±u∗,u∓u∗) ≥ 0.
For a the general theory of closed forms associated
with Markov processes see (Ma, Rockner 1990).

Let (L ,D(L )) be the generator of a coercive form
(E ,D(E )) on L2(X,µ), i.e. the unique closed linear
operator onL2(X,µ) such that 1−L is onto,D(L ) ⊂
D(E ) and E (u,v) =< −L u,v > for all u ∈ D(L )
andv ∈ D(E ). Let (Tt)t>0 be the strongly continu-
ous contraction semigroup onL2(X,µ) generated by
L and (Gα)α>0 the corresponding strongly continu-
ous contraction semigroup (which exist according to
the Hille-Yosida theorem).

A right processM with the state spaceX is as-
sociatedwith a BLFE (E ,D(E )) on L2(X,µ) if the
semigroup(Pt) of the processM is a µ-version1 of
the form semigroup(Tt). It has been proved (Al-
beverio, Ma, Rockner 1993) and (Ma, Rockner 1990)
that only those BLFEs, which satisfy some regularity
conditions can be associated with some right Markov
processes and viceversa (Th.1.9 of (Albeverio, Ma,
Rockner 1993)).

Prop. 4.2 from (Albeverio, Ma, Rockner 1993)
states that two right Markov processesM andM′ with
state spaceX associated with a common quasi-regular
BLFE (E ,D(E )) are stochastically equivalent (Ma,
Rockner 1990). That means a quasi-regular BLFE

1I.e., for all f ∈ L2(X,µ) the functionPt f is aµ-version
(differs on a set ofµ-measure zero) ofTt f for all t > 0.
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characterizes a class of stochastically equivalent right
Markov processes.
Let M = (Ω,F ,F t ,xt ,Px) be a right Markov process
with the state spaceX. Now assume thatX is a Lusin
space (i.e. it is homeomorphic to a Borel subset of
a compact metric space) andB (X) or B is its Borel
σ-algebra. Assume also thatµ is a σ-finite measure
on (X,B ) andµ is a stationary measure of the process
M. Let X# another Lusin space (withB # its Borel
σ-algebra) andF : X → X# be a measurable function.
Let σ(F) be the sub-σ-algebra ofB generated byF . If
µ is a probability measure then the projection operator
betweenL2(X,B ,µ) andL2(X,σ(F),µ) is the condi-
tional expectationEµ[·|F ]. Recall thatEµ is the expec-
tation defined w.r.t.Pµ and thatPµ(A) =

∫
Px(A)dµ,

A ∈ F . We denote byµ# the image ofµ underF,
i.e. µ#(A#) = µ(F−1(A#)), for all A# ∈ B #. In gen-
eral, anything associated withX# will carry the #-
superscript symbol in this section.

Let E be the BLFE onL2(X,µ) associated toM.
F induces a formE # onL2(X#,µ#) by

E #(u#,v#) = E (u#◦F,v#◦F); (3)

for u#,v# ∈ D[E #], where

D[E #] = {u# ∈ L2(X#,µ#)|u# ◦F ∈ D[E ]}. (4)

It can be shown (see Prop.1.4 in (Iscoe, McDonald
1990)), under a mild condition on the conditional ex-
pectation operatorEµ[·|F ] that E # is a BLFE. If, in
addition,E # is quasi-regular then we can associate it
a right Markov processM# = (Ω,F ,F t ,x#

t ,P
#
x ) with

the state spaceX#. The processM# is called thein-
duced Markov processw.r.t. to the proper mapF . If
the image ofM underF is a right Markov process
thenx#

t = F(xt). The processM# might have some
different interpretations like a refinement of discrete
transitions structure, or an approximation of continu-
ous dynamics or an abstraction of the entire process.
It is difficult to find a practical condition to impose
on F , which would guarantee thatE #, as defined by
(3) and (4), is also quasi-regular. To circumvent this
problem, it is possible to restrict the original domain
D[E #] and impose some regularity conditions onF
(for more details, see (Iscoe, McDonald 1990)).

Assumption 1. Suppose thatE # is a quasi-regular
BLFE.

3 THE STOCHASTIC MODEL
CHECKING PROBLEM

Let us considerM = (Ω,F ,F t ,xt ,Px) a strong
Markov process, which is the semantics of a UCPS.

For this strong Markov process we address a verifica-
tion problem consisting of thestochastic reachability
problemdefined as follows. Given a setA ∈ B (X)
and a time horizonT > 0, let us to define (Bujorianu
2004):

ReachT(A) = {ω ∈ Ω | ∃t ∈ [0,T] : xt(ω) ∈ A}

Reach∞(A) = {ω ∈ Ω | ∃t ≥ 0 : xt(ω) ∈ A}. (5)

These two sets are the sets of trajectories ofM, which
reach the setA (the flow that entersA) in the interval
of time [0,T] or [0,∞).
The reachability problem consists of determining the
probabilities of such sets. The reachability problem
is well-defined, i.e. ReachT(A), Reach∞(A) are in-
deed measurable sets. Then the probabilities of reach
events are

P(TA < T) or P(TA < ∞) (6)

whereTA = inf{t > 0|xt ∈A} andP is a probability on
the measurable space(Ω,F ) of the elementary events
associated toM. P can be chosen to bePx (if we want
to consider the trajectories, which start inx) or Pµ (if
we want to consider the trajectories, which start inx0
given by the distributionµ).

Usually a target setA in the state space is a level
set for a given functionF : X → R, i.e. A = {x ∈
X|F(x) > l} (F can be chosen as the Euclidean norm
or as the distance to the boundary ofE). The proba-
bility of the set of trajectories, which hitA until time
horizonT > 0 can be expressed as

P(supF(xt)|t ∈ [0,T]) > l . (7)

Our goal is todefine a new stochastic process M# such
that the probabilities (6) are preserved.

Ideally, since (6) can be written as (7),F(xt)
would represent the best candidate for defining a pos-
sible qualitative model reduction forM, which pre-
serves the reach set probabilities. The main difficulty
is that F(xt) is a Markov process only for special
choices ofF (Rogers, Pitman 1981). The problem
is how to chooseF well.

Note, if A# is open inX# andA = F−1(A#), then
we consider the two first hitting timesTA (w.r.t. M)
andT#

A# (w.r.t. M#) of A andA#, respectively. Recall
thatTA = inf{t > 0|xt ∈ A}.

The following results show that the stochastic
model checking problem is solvable for uncertain cps.

Proposition 1. Under the assumption.1, if µ is a
probability measure andξ = +∞ (M has no killing),
then

Eµexp(−TA) ≤ Eµ# exp(−T#
A#) (8)

where Eµ (resp. Eµ#) is the expectation defined w.r.t.
Pµ (resp. Pµ#).
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If M is the semantics of a UCPSU , given a tar-
get state setA ∈ B (X), then the goal in the stochas-
tic reachability analysis is to compute the probability
Pµ(TA ≤ T) for a finite horizon timeT > 0. We now
translate the relation (8) in terms of probability of the
reachable sets.

Proposition 2. Under the assumption.1, if µ is a
probability measure, then

Pµ(TA ≤ T) ≤ eKmin{TE #(u#,u#)+ (9)

< u#,u# >µ# |u# ∈ D(E #), u# ≥ 1, (10)

µ#−a.e. on A#} (11)

where K> 0 is the sector constant ofE .

4 ADAPTING VERIFICATION TO
CO-EVOLUTION

The idea is to apply a “state space reduction” tech-
nique based on the general ‘induced BLFEs’ method
to achieve qualitative model reductions for Ucps.
With this technique, the semantics of Ucps are ‘ap-
proximated’ by a one-dimensional stochastic process
with a much smaller state space.

4.1 Qualitative Model Reduction

The stochastic reachability definition gives the idea to
introduce the following concept of qualitative model
reduction for Ucps.

Definition 1. Given a right Markov process M de-
fined on the Lusin state space(X,B ), and F :
X → R a measurable weight function, suppose that
assumption.1 is fulfilled. The process M# associated
to the induced BLFEE # under function F is called a
qualitative model reduction of M.

Let U be a UCPS andM its semantics. Suppose
thatM is a right Markov process defined on the Lusin
state space(X,B ).

Definition 2. Any UCPS U# whose semantics is a
qualitative model reduction of M is called a qualita-
tive model reduction of U.

Let U be a Ucps andM its semantics (that is a
right Markov process, with the state spaceX).

Proposition 3. If M is a diffusion then any qualitative
model reduction M# of M is a diffusion.

Proposition 4. If M is a jump process then any qual-
itative model reduction M# of M is again a jump pro-
cess.

Proof. This statement can be obtained as a conse-
quence of the abstract version of theKolmogorov
backward equations(Davis 1993)

∂
∂t

Pt f (x) = LPt f (x), P0 f = f , f ∈ D(L ) (12)

and the equality (14). If the equations (12) are as-
sociated to an initial diffusion process (resp. jump
process) then the relation (14) allow to obtain the fact
that the transition probabilities of the induced process
satisfy a similar equation, such that the induced pro-
cess is still a diffusion process (resp. jump process).
The same conclusion can be obtain using the stochas-
tic calculus of BLFEs (Iscoe, McDonald 1990).�

Since the semantics of a Ucps is, in most cases, a
stochastic process, which can be viewed an interleav-
ing between some diffusion processes and a jump pro-
cess (see (Bujorianu, Lygeros 2004) for a very gen-
eral model for Ucps and its semantics as a Markov
string), we can write the following result as a corol-
lary of Prop.3.

Proposition 5. Any qualitative model reduction of a
Ucps is again a Ucps.

Let (L ,D(L )) and(L #,D(L #)) be the generators
of E andE #, respectively. For the following results
we suppose that the Ass.1 is fulfilled.

Proposition 6. The generatorsL andL # are related
as follows

L (u#◦F) = L #u#◦F,∀u# ∈ D(L #) (13)

Theorem 7. For all A# ∈ B #(X#) and for all t> 0 we
have

p#
t (Fx,A#) = pt(x,F

−1(A#)) (14)
where(p#

t ) and(pt) are the transition functions of M#

and M, respectively.

Proof. Let F# be defined asF# : B b(X#) → B b(X);
F#u# = u# ◦ F . Then (13) becomes(L ◦ F#)u# =
(F# ◦L #)u#,∀u# ∈ D(L #) (∗∗). For a strong Markov
process, the opus of the kernel operator is the inverse
operator of the infinitesimal generator of the process.
Now, from (∗∗) we get a similar relation between the
kernel operatorsV andV# of the processesM andM#,
i.e. F#◦V# = V ◦F# onB b(X#), or

V#u#◦F = V(u#◦F),∀u# ∈ B b(X#) (15)

since ifu# ∈B b(X#) thenV#u# ∈D(L #). Foru# = 1A#

(the indicator function ofA#), by the kernel operator
integral definition, we obtain (14).�

Relation (15) implies the following corollary:

Corollary 8. The semigroups(P#
t ) and(Pt) of M# and

M are related by

P#
t u#◦F = Pt(u

# ◦F),∀u# ∈ B b(X#). (16)
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4.2 Adaptive Bisimulation

In this subsection we define a new concept of adap-
tive bisimulation for cps. This concept is defined as
measurable relation, which induces equivalent BLFEs
on the quotient spaces. In defining adaptive bisimula-
tion, we do not impose the equivalence of the quotient
processes, which might not have Markovian proper-
ties (Rogers, Pitman 1981), but we impose the equiv-
alence of the qualitative model reductions (that can
differ from the quotient processes) associated with the
induced BLFEs, with respect to the projection maps.

Let (X,B (X)) and(Y,B (Y)) be Lusin spaces and
let R ⊂ X ×Y be a relation such thatΠ1(R ) = X
andΠ2(R ) = Y. We define the equivalence relation
on X that is induced by the relationR ⊂ X ×Y, as
the transitive closure of{(x,x′)|∃y s.t. (x,y) ∈ R and
(x′,y) ∈ R }. Analogously, the induced (byR ) equiv-
alence relation onY can be defined. We writeX/R
andY/R for the sets of equivalence classes ofX and
Y induced byR . We denote the equivalence class of
x∈ X by [x]. Let

B #(X) = B (X)∩{A⊂ X| if x∈ A and[x] = [x′] then
x′ ∈ A}

be the collection of all Borel sets, in which any equiv-
alence class ofX is either totally contained or totally
not contained. It can be checked thatB #(X) is a σ-
algebra. LetπX : X → X/R be the mapping that maps
eachx∈ X to its equivalence class and let

B (X/R ) = {A⊂ X/R |π−1
X (A) ∈ B #(X)}.

Then(X/R ,B (X/R )), which is a measurable space,
is called the quotient space ofX w.r.t. R . The quo-
tient space ofY w.r.t. R is defined in a similar way.
We define a bijective mappingψ : X/R →Y/R as

ψ([x]) = [y] if (x,y) ∈ R for somex∈ [x] and some
y∈ [y].

We say that the relationR is measurableif X andY
if for all A ∈ B (X/R ) we haveψ(A) ∈ B (Y/R ) and
vice versa, i.e.ψ is a homeomorphism. Then the real
measurable functions defined onX/R can be identi-
fied with those defined onY/R through the homeo-

morphismψ. We can writeB b(X/R )
ψ
∼= B b(Y/R ).

Moreover, these functions can be thought of as real
functions defined onX or Y measurable w.r.t.B #(X)
or B #(Y).

Assumption 2. Suppose that X/R and Y/R with the
topologies induced by projection mappings are Lusin
spaces.

Suppose we have given two right Markov processes
M andW with the state spacesX andY. Assume
that µ (resp. ν) is a stationary measure of the pro-
cessM (resp.W). Let µ/R (resp.ν/R ) the image of
µ (resp.ν) underπX (resp.πY). Let E (resp.F ) the
quasi-regular BLFE corresponding toM (resp. W).
The equivalence between the induced processes can
be used to define a new bisimulation between Markov
processes, as follows.

Definition 3. Under assumptions 1 and 2, a measur-
able relationR ⊂ X ×Y is a bisimulation between
M and W if the mappingsπX andπY define the same
induced BLFE on L2(X/R ,µ/R ) and L2(Y/R ,ν/R ),
respectively.

This definition states thatM andW are bisimilar if
E /R = F /R . Here,E /R (resp.F /R ) is the induced
BLFE of E (resp. F ) under the mappingπX (resp.
πY). Clearly, this can be possible iffµ/R = ν/R .

Assumption 3. Suppose thatE /R and F /R are
quasi-regular BLFE.

Denote the Markov process associated toE /R
(resp.F /R ) by M/R (resp.W/R ).

Proposition 9. Under assumptions 1, 2 and 3, M and
W are stochastic bisimilar underR iff their qualita-
tive model reductions M/R and W/R with respect to
πX and, respectivelyπY are µ/R -equivalent.

LetU andU ′ be two UCPSs, with the semanticsM
andW, strong Markov processes defined on the state
spaces(X,B (X)) and(Y,B (Y)), respectively.

Definition 4. U and U′ are called bisimilar if there
exist a bisimulation relation under which their seman-
tics M and W are bisimilar

4.3 An Example

Let us recall the chemically reacting system case
study from (Singh, Hespanha 2005), where it is in-
vestigated using the theory of polynomial stochastic
hybrid systems. Consider a system ofn speciesXj ,
j = 1, ..,n, inside a fixed volumeV involved inK re-
actions of the form

(Ri)uaiAi+ui1X1+...+uinXn
ci−→ νi1X1+...+ νinXn,∀i ∈ {1, ...,K}

where the speciesAi have a constant number of
molecules. The meaning and the assumptions about
the coefficients of the reaction equation are given in
(Singh, Hespanha 2005).ci is a reaction parameter
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which is used in defining the probability that a par-
ticular reaction takes place on(t, t + dt). The sys-
tem is characterized by the trivial dynamics

.
x= 0, x=

[x1,x2, ...,xn]
T , a family of K reset maps x= φi(x

−),
φi : R

n → R
n, and a corresponding family oftran-

sition intensitiesλi : R
n → [0,∞), ∀i = 1, ..,K. For

eachi = 1, ..,K, the reset mapφi and the correspond-
ing λi is uniquely defined by theith reaction equation
and given byx 7→ φi(x), φi(x) = x+ [νi1 − ui1,νi2 −
ui2, ...,νin−uin]

T ; λi(x) = cihi(x), whereUi represents
the number of distinct molecular reactant combina-
tions present inV at time t for the reactionRi . The
executions of such a system are defined in (Singh,
Hespanha 2005).

Now we apply the method of qualitative model re-
duction to this process. We can show that executions
of this cps form a particular kind of right Markov
process called jump process (Davis 1993). The ex-
tended generator (Th.1 (Singh, Hespanha 2005)) is
(Lψ)(x) = ∑K

i=1(ψ(φi(x))−ψ(x))λi(x), ψ ∈ D(L).

Let us consider a proper mapF : R
n →R and write

the generator of the induced process for
ψ# ◦F, ψ# ∈ D(L#):
L(ψ#◦F)(x) = ∑K

i=1(ψ#(F(φi(x)))−ψ#(F(x)))λi(x)

Define φ#
i : ImF → R by φ#

i (Fx) = F(φi(x)) and
λ#

i : ImF → R by λ#
i (Fx) = λi(x). In order to have

these two function well-defined we need to impose
some compatibility conditions betweenF and reset
mapsφi and their corresponding transition intensities
λi as follows:Fx = Fx′ ⇒ F(φi(x)) = F(φi(x

′)) and
λi(x) = λi(x′). This means thatF preserves the jumps
(reset maps and transition intensities), i.e. the pre-
jump locations have the same image underF then the
intensities of transition should be equal and the post-
jump locations have the same image underF. Using
(13), the generator of the induced process is

L#ψ#(x#) =
K

∑
i=1

(ψ#(φ#
i (x

#))−ψ#(x#))λ#
i (x

#);

x# = Fx; x∈ X.

For simplicity, we suppose that the reactionsRi are
reversible in time. Then the generator is self-adjoint
(or Hermitian). The (symmetric) quasi-regular energy
bilinear form onL2(Rn,µ) associated to the given pro-
cess (withµ a stationary distribution) can be written

E (ψ,ϕ) = ∑K
i=1

∫
Rn(ψ(φi(x))−ψ(x))(ϕ(φi(x))−

ϕ(x))λi(x)µ(dx)

Then the induced energy bilinear formE # on
L2(R,µ#) (whereµ# is the image ofµ underF) w.r.t.

F is

E #(ψ#,ϕ#) =
K

∑
i=1

∫
Rn

[ψ#(φ#
i (Fx))−ψ#(Fx)]

[ϕ#(φ#
i (Fx))−ϕ#(Fx)]λ#

i (Fx)

µ(dx)

=
K

∑
i=1

∫
R

[ψ#(φ#
i (x

#))−ψ#(x#)][ϕ#

(φ#
i (x

#))−ϕ#(x#)]λ#
i (x

#)µ#(dx#).

Clearly,E # is associated to a jump process - thequal-
itative model reduction of the given process. In this
particular case, the induced process is exactly the im-
age underF of the initial jump process.

5 CONCLUSIONS

In this paper, we have used the concept of energy,
which is a key ingredient of Hilbertean formal meth-
ods, to define qua;itative model reduction and behav-
ioral equivalence for cyber-physical systems operat-
ing in random environments. Energy is a versatile an-
alytical concept that characterizes in a subtle way the
interaction between computation and physics, as well
as their co-evolution.

Adaptive bisimulation means the energy preser-
vation of the stochastic processes generated by the
cyber-physical system evolutions. The energy con-
cept can be also used to define qualitative model re-
ductions for cyber-physical systems. Given an quali-
tative model reduction function that reduces the state
space, we have defined a standard construction that
associates a qualitative model reduction (called stan-
dard) on the reduced state space. The mathemati-
cal results from Section 4.1 show that the qualitative
model reduction method preserves important analytic
properties (related to HFM). Two uncertain CPS are
adaptive bisimilar if they have the same energy. The
theorem from Section 4.2 shows that two uncertain
CPS are adaptive bisimilar iff their standard qualita-
tive model reductions are equivalent as Markov pro-
cesses.

We have formulated the stochastic model check-
ing problem (a subproblem of stochastic reachabil-
ity analysis, corresponding to the probabilistic model
checking of Markov chains). We proved two results
that show that the problem is solvable for uncertain
cyber-physical systems. The mathematical results
from Section 3 provide a upper bound for the reach
set probabilities. In this way, one can prove that the
probability of reaching a state in a certain set can be
small enough.
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The most closely related model is that ofstochas-
tic hybrid automata(Bujorianu 2004). These au-
tomata are not necessarily embedded systems and
their hybrid behavior is often an internal feature (as
for cars, aircraft, mobile robots and so on) rather than
the interaction with a physical environment (a feature
of embedded systems). Cyber-physical systems are
also networked.

In following work we will refine the formal
framework presented in this paper to be used for
nanoscience.
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