
AN ANOMALY-BASED WEB APPLICATION FIREWALL

Carmen Torrano-Gimenez, Alejandro Perez-Villegas and Gonzalo Alvarez
Instituto de Fı́sica Aplicada, Consejo Superior de Investigaciones Cientı́ficas, Serrano 144 - 28006, Madrid, Spain

Keywords: Web attacks, Anomaly intrusion detection, Web application firewall.

Abstract: A simple and effective web application firewall is presented. This system can detect both known and unknown
web attacks following a positive security model. For attack detection, the system relies on an XML file, which
thoroughly describes normal web application behavior. Any irregular behavior is flagged as intrusive. An
initial training phase is required to statistically characterize how normal traffic for a given target application
looks like. The system has been tested with a real web application as target and an artificial request generator
as input. Experiments show that after the training phase, when the XML file is correctly configured, good
results are obtained, with a very high detection rate and a very low false alarm rate.

1 INTRODUCTION

Web applications are becoming increasingly popular
and complex in all sorts of environments, ranging
from e-commerce applications, to social networks, to
banking. As more vital information and services are
moved to web platforms, their interest as potential tar-
gets increases. As a consequence, web applications
are subject to all sort of attacks, many of which might
be devastating (Alvarez and Petrovic, 2003). Unfor-
tunately, conventional firewalls, operating at network
and transport layers, are usually not enough to protect
against web-specific attacks. To be really effective,
detection is to be moved to the application layer.

Intrusion detection is the act of detecting mali-
cious actions and behaviors that can compromise the
security and trust of a computer system. An Intrusion
Detection System (IDS) analyzes information from a
computer or a network to identify possible security
breaches. Traditionally, IDS’s have been classified as
either signature detection systems or anomaly detec-
tion systems. The first method looks for signatures
of known attacks using pattern matching techniques
against a frequently updated database of attack signa-
tures. The second method looks for anomalous sys-
tem activity: once normal behavior is well defined,
irregular behavior will be tagged as intrusive. An
hybrid intrusion detection system combines the tech-
niques of the two approaches.

Signature-based IDS’s rely on large signature
databases and are unable to detect new attacks. To
work properly, databases must be updated frequently

and signature matching usually requires high compu-
tational effort. Anomaly-based IDS’s overcome these
problems. However, in rather complex environments,
obtaining an up-to-date and feasible picture of what
“normal” network traffic should look like proves to
be a hard problem.

The results of signature-based WAFs depend on
the actual signature configuration for each web appli-
cation, and cannot be compared with anomaly-based
WAFs.

Varied techniques have been used to solve the gen-
eral intrusion detection problem (Patcha and Park,
2007) , like clustering (Petrović et al., 2006). How-
ever some of these techniques are not appropriate to
solve the web intrusion detection problem due to the
difficulty of coding a request as an input. Some of the
main works developed to solve web attack detection
are (Kruegel et al., 2005) which follows an statistical
approach and (Estévez-Tapiador et al., 2004) which
uses Markov chains.

In this paper, a simple and effective anomaly-
based Web Application Firewall (WAF) is presented.
This system relies on an XML file to describe what a
normal web application is. Any irregular behavior is
flagged as intrusive. The XML file must be tailored
for every target application to be protected.

The rest of the paper is organized as follows. In
Sec. 2, a system overview is given, where system ar-
chitecture, normal behavior modeling, and attack de-
tection are explained. Section 3 refers to experiments.
Traffic generation, the training phase, the test phase
and results are also described. Section 4 describes

23
Perez-Villegas A. and Alvarez G. (2009).
AN ANOMALY-BASED WEB APPLICATION FIREWALL.
In Proceedings of the International Conference on Security and Cryptography, pages 23-28
DOI: 10.5220/0002218900230028
Copyright c© SciTePress



system limitations and suggests future work. Finally,
in Sec. 5, the conclusions of this work are captured.

2 SYSTEM OVERVIEW

2.1 Architecture

Our anomaly-based detection approach analyzes
HTTP requests sent by a client browser trying to get
access to a web server. The analysis takes place ex-
clusively at the application layer, specifically HTTP
protocol. Thus, the system can be seen as an anomaly-
based Web Application Firewall, in contrast with ex-
isting signature-based WAFs (ModSecurity, 2009).
By analyzing HTTP requests, the system decides
whether they are suspicious or not. An HTTP request
is considered suspicious when it differs from the nor-
mal behavior according to some specific criteria.

In our architecture, the system operates as a proxy
located between the client and the web server. Like-
wise, the system might be embedded as a module
within the server. However, the first approach enjoys
the advantage of being independent of the web plat-
form.

This proxy analyzes all the traffic sent by the
client. The input of the detection process consists of a
collection of HTTP requests{r1, r2, . . . rn}. The out-
put is a single bitai for each input requestr i , which
indicates whether the request is normal or anomalous.
Since the main goal of our system is to detect web at-
tacks trying to reach the web server, a single bit alert
and event log upon detection is enough. However, it
could be more practical to give the system the ability
to operate as a firewall, that is, allow normal requests
to reach the server and block malicious ones. There-
fore, the proxy is able to work in two different modes
of operation: as IDS and as firewall.

In detection mode, the proxy simply analyzes the
incoming packets and tries to find suspicious patterns.
If a suspicious request is detected, the proxy launches
an alert; otherwise, it remains inactive. In any case,
the request will reach the web server. When operat-
ing in detection mode, attacks could succeed, whereas
false positives don’t limit the system functionality.

In firewall mode, the proxy receives requests from
client users and analyzes them. If the request is valid,
the proxy routes it to the server, and sends back the re-
ceived response to the client. If not, the proxy blocks
the request, and sends back a generic denegation ac-
cess page to the client. Thus, the communication be-
tween proxy and server is established only when the
request is valid.

A diagram of the WAF’s architecture is shown in
Fig. 1.

Figure 1: Web Application Firewall Architecture.

2.2 Normal Behavior Description

Prior to the detection process, the system needs a pre-
cise picture of what the normal behavior is in a spe-
cific web application. For this purpose, our system
relies on an XML file which contains a thorough de-
scription of the web application’s normal behavior.
Once a request is received, the system compares it
with the normal behavior model. If the difference ex-
ceeds a given threshold, then the request is flagged as
an attack and an alert is launched.

The XML file consists of a set of rules describ-
ing the different aspects of the normal request. More
precisely, the XML contains rules regarding to the
correctness of HTTP verbs, HTTP headers, accessed
resources (files), arguments, and values for the argu-
ments. This file contains three main nodes:

Verbs

The verbsnode simply specifies the list of allowed
HTTP verbs. Requests using any other verb will be
rejected.

Headers

Theheadersnode specifies the list of allowed HTTP
headers and their allowed values.

Directories

Thedirectoriesnode has a tree-like structure, in close
correspondence to the web application’s directory
structure.

1. Each directory in the web application space is rep-
resented in the XML file by adirectorynode, al-
lowing nesting of directories within directories.
The attributenamedefines these nodes.

SECRYPT 2009 - International Conference on Security and Cryptography

24



2. Each file in the web application space is repre-
sented by afile node within adirectorynode and
is defined by its attributename.

3. Input arguments are represented byargument
nodes within the correspondingfile node. Each
argument is defined by the following set of at-
tributes:

• name: the name of the argument, as expected
by the web page.

• requiredField: a boolean value indicating
whether the request should be rejected if the ar-
gument is missing.

4. Legal values for arguments should meet some sta-
tistical rules, which are represented by astats
node within the correspondingargumentnode.
These statistical properties together give a de-
scription of the expected values. Requests with ar-
gument values exceeding their corresponding nor-
mal properties by a given threshold will be re-
jected. Each relevant property is defined by an
attribute within thestatsnode. In our approach
we considered the following relevant properties:

• Special: set of special characters (no letters and
no digits) allowed.

• lengthMean: mean value of input length.
• lengthDev: std deviation of character length.
• letterMean: mean number of letters.
• letterDev: std deviation of number of letters.
• digitMean: mean number of digits.
• digitDev: std deviation of number of digits.
• specialMean: mean number of special charac-

ters (of those included in the propertie Special).
• specialDev: std deviation of number of special

characters (of those included in the propertie
Special).

When an incoming request is received, the fea-
tures of each argument value are measured. Since
these measurements are quantitative, it is possi-
ble to compute the distance to the average value.
If the distance is greater than the corresponding
threshold (scaled by the standard deviation), the
value is considered anomalous.

The construction of the XML file and the adequate
selection of the threshold parameters are crucial for a
good detection process. An example of XML config-
uration file is shown in Fig. 2.

2.3 Detection Process

In the detection process, our system follows an ap-
proach of the form “deny everything unless explicitly

<configuration>
<verbs>
<verb>GET</verb>
<verb>POST</verb>

</verbs>

<headers>
<rule name="Accept-Charset"

value="ISO-8859-1"/>
<rule name="Accept-Charset"

value="utf-8"/>
</headers>

<directories>
<directory name="shop">
<file name="index.jsp"/>
<directory name="public">

<file name="add.jsp">
<argument name="quantity"

requiredField="true">
<stats
Special=""
digitDev="0.0"
digitMean="100.0"
lengthDev="0.1410730099"
lengthMean="1.93"
letterDev="0.0"
letterMean="0.0"
otherDev="0.0"
otherMean="0.0"/>

</argument>
...

Figure 2: XML file example.

allowed”, also known aspositivesecurity model. This
approach is always more secure than looking for at-
tack signatures in incoming requests, known asnega-
tivesecurity model. However, the positive approach is
prone to more false positives, with a possible impact
on functionality and user comfort.

The detection process takes place in the proxy. It
consists of several steps, each constituting a different
line of defense, in which a single part of the request
is checked with the aid of the XML file. If an incom-
ing request fails to pass one of these lines of defense,
an attack is assumed: a customizable error page is re-
turned to the user and the request is logged for further
inspection. It is important to stress that these requests
will never reach the web server when operating in fire-
wall mode.

The following are the lines of defense considered
in our system.

• HTTP Verbs. The system can be configured to
accept a subset of HTTP verbs. For example, in
the applications in which only GET, POST and
HEAD are required to work correctly, the XML
file could be configured accordingly, thus reject-

AN ANOMALY-BASED WEB APPLICATION FIREWALL

25



ing requests that use any other verb.

• HTTP Headers. Allowed HTTP headers and
their expected data types can also be configured
in the XML file, thus preventing attacks embed-
ded in these elements.

• Static Files. In this line of defense, the system
checks whether the requested resource is valid.
For this purpose, the XML configuration file con-
tains a complete list of all files that are allowed to
be served. If the requested resource is not present
in the list, a web attack is assumed.

• Dynamic Files. If an allowed resource is re-
quested, then it is checked whether it accepts in-
put arguments. In this case, the incoming data are
checked against the validation rules. These rules
include all arguments that are allowed for the re-
source, and which ones are mandatory in the re-
quest. Again, these rules are of the form “deny
everything unless explicitly allowed”. Thus, if
the user-supplied request contains incorrect argu-
ments for an allowed resource, an attack is as-
sumed and the request will not reach the web
server.

• Argument Values. If an allowed resource with
allowed parameters is requested, the value of the
arguments is checked. An incoming request will
be allowed if all parameter values are identified as
normal. Argument values are decoded before be-
ing checked. As described in Sec. 2.2, for each
resource and parameter, the XML file describes
statistical features of normal values. By analyz-
ing actual values, the system decides whether they
are anomalous (rejecting the incoming request) or
normal (allowing the request).

3 EXPERIMENTS

3.1 Case Study: Web Shopping

The WAF has been configured to protect a specific
web application, consisting of an e-commerce web
store, where users can register and buy products us-
ing a shopping cart.

3.2 XML File Generation

As already stated, the XML file describes the normal
behavior of the web application. Therefore, to train
the system and configure this file, only normal and
non-malicious traffic to the target web application is
required. Nevertheless, how to obtain only normal

traffic may not be an easy task. Since a statistical
approach was used for the characterization of normal
argument values, thousands of requests are needed.
There are some alternatives to obtain normal traffic:

• Thousands of legitimate and non-malicious users
can surf the target web application and gener-
ate normal traffic. However, getting thousands of
people to surf the web might not be an easy task.

• The application can be published in the Internet,
but unfortunately attacks would be mixed with
normal traffic. Classifying normal and anomalous
traffic is unviable. In (Kruegel et al., 2005) this
approach is used. However their training data in-
clude attacks, so some attacks cannot be detected,
as they are considered as normal traffic.

• Traffic can be generated artificially. Although the
traffic is not real, we can be sure that only normal
traffic is included.

Normal traffic acquisition is a general problem in
attack detection, still to be completely solved. For our
purposes, we considered artificial traffic generation to
be the most suitable approach.

3.3 Artificial Traffic Generation

In our approach, normal and anomalous request
databases are generated artificially with the help of
dictionaries.

3.3.1 Dictionaries

Dictionaries are data files which contain real data to
fill the different arguments used in the target applica-
tion. Names, surnames, addresses, etc., are examples
of dictionaries used.

A set of dictionaries containing only allowed val-
ues is used to generate the normal request database.
A different set of dictionaries is used to generate the
anomalous request database. The latter dictionaries
contain both known attacks and illegal values with no
malicious intention.

3.3.2 Normal Traffic Generation

Allowed HTTP requests are generated for each page
in the web application. If the page presents a form, the
fields are filled out only with legal values. Arguments
and cookies in the page, if any, are also filled out with
allowed values. Depending on the case, the values
can be chosen randomly or obtained from the normal
dictionaries. The result is a normal request database
(NormalDB), which will be used both in the training
and test phase.

SECRYPT 2009 - International Conference on Security and Cryptography

26



3.3.3 Anomalous Traffic Generation

Illegal HTTP requests are generated with the help
of anomalous dictionaries. There are three types of
anomalous requests:

• Static attacks fabricate the resource requested.
These requests include obsolete files, session id
in URL rewrite, directory browsing, configuration
files, and default files.

• Dynamic attacks modify valid request argu-
ments: SQL injection, CRLF injection, cross-site
scripting, server side includes, buffer overflows,
etc.

• Unintentional illegal requests. These requests
should also be rejected even though they do not
have malicious intention.

The result is an anomalous request database
(AnomalousDB), which will be used only in the test
phase.

3.4 Training Phase

During the training phase, the system learns the web
application normal behavior. The aim is to obtain the
XML file required for the detection process. In this
phase only requests from NormalDB are used. In the
construction of the XML file, different HTTP aspects
must be taken into account.

• Argument values are characterized by extracting
statistical features from the requests.

• Verbs, headers and resources found in the requests
are included directly in the XML file as allowed
requests.

3.5 Test Phase

During the test phase, depicted in Fig. 3, the proxy
accepts requests from both databases, NormalDB and
AnomalousDB, and relies on the XML file to decide
whether the requests are normal or anomalous.

The performance of the detector is then measured
by Receiver Operating Characteristic (ROC) curves
(Provost et al., 1998). A ROC curve plots the attack
detection rate (true positives,TP) against the false
alarm rate (false positives,FP).

DetectionRate=
TP

TP+FN
(1)

FalseAlarmRate=
FP

FP+TN
(2)

Once the system has characterized how normal re-
quests look like, the proxy analyzes a set of requests

(normal and anomalous) varying a certain parameter.
The results are measured by the ROC curves.

A sensibility parameters can be tuned to obtain
different points in the ROC curve. An argument is
considered normal only if all its statistical properties
are inside the corresponding interval. Otherwise, the
request is classified as anomalous and a log is gener-
ated.

The three allowed intervals of the argument values
are calculated from the statistical features registered
in the XML file and the sensibility parameters:

[µ−σ∗ s, µ+ σ∗ s], (3)

Figure 3: System Test Phase.

3.6 Results

Regarding normal traffic, 36,000 normal requests are
generated in 1,000 iterations. With respect to anoma-
lous traffic, approximately 25,000 malicious requests
are generated in 500 iterations. Tests have been done
varying the sensibility parameter, showing that results
only vary when the sensibility parameter values are
between 1 and 18. The ROC curve obtained is shown
in Fig. 4.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.3

0.99

1

Figure 4: ROC curve of WAF protecting the web store.

As can be seen, very good results are obtained:
the number of false positives is close to 0 whereas
the detection rate is close to 1. The reason why such

AN ANOMALY-BASED WEB APPLICATION FIREWALL

27



good results are obtained is that the XML file closely
characterizes the web application normal behavior in
an effective manner.

4 LIMITATIONS AND FUTURE
WORK

As shown in the previous section, when the XML file
is configured correctly, the system succeeds in detect-
ing any kind of web attacks. Thus, the main issue
is how to automatically configure the XML descrip-
tion file. In our approach, the XML file is built from
a large set of allowed requests in the target web ap-
plication. However, obtaining only normal and non-
malicious traffic may not be an easy task, as was dis-
cussed in Sec. 3.2. Therefore, the main limitation
consists in correctly implementing the training phase
for any web application.

Other limitations arise when protecting complex
web applications. For instance, web sites that cre-
ate and remove pages dynamically, generate new
URLs to access resources, or allow users for updat-
ing contents, may difficult the XML file configura-
tion. Further modifications of the system will attempt
to solve these problems, by statistically characterizing
the URLs of allowed resources.

Future work refers to signing cookies and hidden
fields in order to avoid cookie poisoning and hidden
field manipulation attacks. Also, URL patterns will
be used in describing sites with dynamic resources.

5 CONCLUSIONS

We presented a simple and efficient web attack detec-
tion system or Web Application Firewall (WAF). As
the system is based on the anomaly-based method-
ology (positive security model), it proved to be able
to protect web applications from both known and un-
known attacks. The system analyzes input requests
and decides whether they are anomalous or not. For
the decision, the WAF relies on an XML file which
specifies web application normal behavior. The ex-
periments show that as long as the XML file correctly
defines normality for a given target application, near
perfect results are obtained. Thus, the main challenge
is how to create an accurate XML file in a fully auto-
mated manner for any web application. We show that
inasmuch great amounts of normal (non-malicious)
traffic are available for the target application, this au-
tomatic configuration is possible using a statistical
characterization of the input traffic.

ACKNOWLEDGEMENTS

We would like to thank the Ministerio de In-
dustria, Turismo y Comercio, project SE-
GUR@ (CENIT2007-2010), project HESPERIA
(CENIT2006-2009), the Ministerio de Ciencia e
Innovacion, project CUCO (MTM2008-02194), and
the Spanish National Research Council (CSIC),
programme JAE/I3P.

REFERENCES

Alvarez, G. and Petrovic, S. (2003). A new taxonomy of
web attacks suitable for efficient encoding.Computers
and Security, 22(5):453–449.

Estévez-Tapiador, J., Garcı́a-Teodoro, P., and Dı́az-Verdejo,
J. (2004). Measuring normality in http traffic for
anomaly-based intrusion detection.Computer Net-
works, 45(2):175–193.

Kruegel, C., Vigna, G., and Robertson, W. (2005). A multi-
model approach to the detection of web-based attacks.
Computer Networks, 48(5):717–738.

ModSecurity (2009). Open source signature-based web ap-
plication firewall, http://www.modsecurity.org.

Patcha, A. and Park, J. (2007). An overview of anomaly de-
tection techniques: Existing solutions and latest tech-
nological trends.Computer Networks, 51(12):3448–
3470.

Petrović, S.,Álvarez, G., Orfila, A., and Carbó, J. (2006).
Labelling clusters in an intrusion detection system us-
ing a combination of clustering evaluation techniques.
In Proceedings of the 39th Hawaii International Con-
ference on System Sciences, Kauai, Hawaii (USA).
IEEE Computer Society Press. 8 pages (CD ROM).

Provost, F., Fawcett, T., and Kohavi, R. (1998). The case
against accuracy estimation for comparing induction
algorithms. InProceedings of the 15th International
Conference on Machine Learning, San Mateo, CA.
Morgan Kaufmann.

SECRYPT 2009 - International Conference on Security and Cryptography

28


