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Abstract. Due to impatient customers and competitive threats, it has become 
increasingly important to shorten the lead time of development projects and to 
bring new products faster to the market. Furthermore, many organizations are 
faced with the challenge of planning and managing the simultaneous execution 
of multiple dependent projects under tight time and resource constraints. Within 
that kind of business environment, effective project management and 
scheduling is crucial to organizational performance. A genetic algorithm 
approach with a novel genotype and GP mapping operation is proposed to 
minimize the overall project duration and budget of multiple projects for a 
resource constrained multi project scheduling problem (RCMPSP) without 
violating inter-project resource constraints or intra-project precedence 
constraints. Stochastic rework of tasks, variable assignment of actors and 
stochastic makespan of a specific task are considered by the introduced GA. 
The proposed Genetic Algorithm is tested on scheduling problems with and 
without stochastic feedback. This GA demonstrates to provide a quick 
convergence to a global optimal solution regarding the multi-criteria objectives. 

1 Introduction 

Challenges that are posed to an increasing number of companies are budget and 
deadline overruns of development projects, missed specification, and therefore 
customer and management frustration [11]. As a result, novel methods for identifying, 
analyzing and optimizing the main performance shaping factors of development 
projects as well as their interaction regarding complexity and coherence are necessary 
[25]. 

Our vision is a novel approach to reduce the risk of multi-project management by 
using optimization methods for multi-project planning to support project managers’ 
decision making. This concept should enable project managers to model, simulate and 
optimize a work organization regarding their multi objective target system (cost, lead 
time, utilization etc.) at each point of time during a development project. However, as 
a consequence of the inherent complexity of development projects, [10] scientific 
methods for a multi-criteria optimization of valid development project models are 
missing. Based on results of the latest research, first results of a research project are 
presented to close the identified gap between work process modeling and optimization 
methods in order to continuously improve the performance of an organization’s 
project portfolio.  
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The rest of the paper is organized as follows. In the next section, we review the 
sequencing complexity of a project organization. Section 3 provides some background 
of task scheduling and selected approaches for the systematical improvement of 
project organizations due to optimization algorithms. The section 4 presents the 
developed genetic algorithm. It comprises the GA structure as well as the 
chromosome representation and initialization, the developed genetic operators and 
especially the transformation of a chromosome representation into a specific project 
organization model. To investigate the performance of the GA we discuss the results 
of computational experiments for a project portfolio of an enterprise of the chemical 
industry. Furthermore we evaluate the results of the proposed GA-based approach in 
comparison to outcomes of a stochastic simulation model. The paper concludes with a 
brief summary of the work completed, a critical acclaim and possible extension in 
future.  

2 Problem Complexity 

The objective of a project manager is the prioritization of the precedence-constrained 
tasks of a project to optimize an objective function such as minimizing project 
duration or project costs. There are many possible objectives when considering a 
resource-constrained project scheduling problem – RCPSP [15]. 
Therefore the scheduling problem for a multi project environment of a company – m 
concurrent projects P1...Pm, with a set of tasks TAi= {ta(1)...ta(n)}, where n specifies 
the total number of tasks in project Pn – is known as the resource-constrained multi 
project scheduling problem (RCMPSP). The scheduling problem can be very complex 
as the number of projects, tasks, actors and resources increases. It was shown by 
Lenstra and Rinnooy (1978) that the scheduling of tasks under consideration of 
precedence and resource constraints is NP-hard [5]. Due to the fact that a semi formal 
project model can be transformed into a Design Structure Matrix – DSM [3] the 
sequencing and assigning process can be formulated as a Quadratic Assignment 
Problem (QAP). The QAP is well known as a NP-hard combinatorial optimization 
problem [33]. Therefore at present no algorithm can be found to solve real-world 
project models of arbitrary sizes for a multi project environment to optimality with an 
adequate performance. A benchmark study done by Hartmann [9] demonstrated that a 
project with as few as 60 activities has not been solved to the global optimum by 
computational experiments. Furthermore additional projects can extremely enlarge the 
number of feasible schedules. When considering the set of feasible project schedules 
for a RCMPSP θ = θT ∩ θR, where θT denotes the set of precedent-feasible schedules 
and θR denotes the set of resource-feasible schedules, there exist many possible θ and 
many potential objectives for choosing between them. Therefore it is important to 
note, that the global optimum of θ is not compulsively based on the local optima of θT 
and θR. 
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3 Background 

The design of a detailed feasible project organization in a multi-project environment 
has been shown to be critical to the success of a development project [6]. 
Nonetheless, there is still a significant demand for fundamental research on planning, 
execution and optimization of development projects [14]. Thus, project portfolio 
managers are currently incapable to define effective and flexible project 
organizations. The latter is basically caused by the high complexity of development 
projects due to large degrees of freedom regarding the sequence of targets, the 
assignment of actors and resources to targets, the occurrence of iterations as well as 
types of cooperation, coordination and communication. Therefore substantiated and 
comprehensive organizational models and methods for continuous improvement are 
required [14]. However these have not yet been developed. Against this background, 
the status of research in the field of optimization methods for development projects 
will be reviewed in the following. 

Project scheduling is of great practical significance, and generalized models can 
be applied in product development, production planning as well as a variety of 
scheduling applications. Early attempts at project scheduling were focused on 
reducing the total project lead time (makespan) assuming unlimited resources. Well 
known techniques include the Critical Path Method (CPM) [13] and the Project 
Evaluation and Review Technique, PERT [22]. Scheduling problems have been 
extensively studied for many years by attempting to establish precise solutions using 
methods from the field of operations research [15]. 

It was shown that the general scheduling problem concerning precedence and 
resource constraints is NP-hard [19]. Therefore, exact optimization methods are too 
time consuming and ineffective for solving large organizational problems found in 
real enterprises. Yang et al. [30] and Kolisch and Padman [15] surveyed the most 
common methods that were developed for resource-constrained project scheduling 
(RCPSP), such as dynamic programming, zero-one programming and implicit 
enumeration with branch and bound.  

Surveys of heuristic and metaheuristic approaches which solve intractable 
problems quickly, efficiently and fairly satisfactorily can be found in Grünert and 
Irnich [8] and Kolisch and Hartmann [17]. Nonobe and Ibaraki [24] developed a 
technique to solve the RCPSP based on local search. Alternative approaches based on 
tabu search and genetic algorithms were presented by Shouman et al. [26]. The 
RCMPSP as a generalization of the RCPSP not only deals with the scheduling of one 
project but also several projects. Each project is composed of a number of activities. 
Goncalves et al. [7] solved multi-project instances consisting of up to 50 single 
projects and 120 activities with a genetic algorithm (GA). The generation of solutions 
of the RCMPSP based on GAs is also analyzed by Yassine et al. [31, 32]. Kolisch 
[16], however, proposed a list scheduling algorithm. Due to its fast convergence and 
easy implementation Linyi et al. [21] developed a particle swarm optimization. Their 
study proved the results of former works that meta-heuristics are a promising 
approach to project scheduling problems.  
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Fig 1. The GA structure. 

4 Design and Implementation 

This section introduces a novel GA to solve the RCMPSP. The probability of an 
iterative execution of tasks during the project as well as stochastic values for the 
duration of an activity can be also integrated in problem encoding. 

4.1 GA Structure 

Each chromosome consists of a collection of genes. Genes are placed at different 
locations or loci of the chromosome and have values which are called alleles. The 
characteristic of each gene of one chromosome is thereby represented by an allele. 
The combination of genes (defined by loci and alleles) refers to the specific genetic 
makeup of an individual, termed as genotype. While the genotype corresponds to the 
structure of a GA, the term phenotype represents the decoded structure for the 
RCMPSP – a specific project organization model which can be regarded as one point 
in the search space. Classic genetic operations and functions as fitness function, 
selection, crossover and mutation were adapted to our semi-formal description of 
project models – C3 method [27] – to find optimal task sequences and assignments of 
actors or tools for the predefined objectives.  

The fitness function is used to evaluate a chromosome how good the underlying 
project organization fulfils the multi criteria target system of a project manager. Next, 
the function selection chooses chromosomes that will be passed on to the next 
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generation. To map the random process a crossover function is used to produce a new 
offspring chromosome from minimum two parent chromosomes according to a user-
defined probability pc. If an offspring takes the best parts from each of its parents, the 
result will likely be a better solution [31]. Modified as well as unmodified 
chromosomes can be further mutated according to a user defined probability pm. The 
mutation leads to a variability of the alleles regarding the characteristic of the project 
organization. A new generation of chromosomes replaces the previous one, and the 
fitness of the new generation is evaluated. The cycle of functions is repeated until a 
termination condition is met, –number of generations or fitness convergence in the 
population.  

The novelty of the presented approach is the characteristic of a chromosome, the 
evaluation of the fitness as well as the transformation of the modified chromosomes 
into a detailed, feasible project organization model. Therefore we will focus on these 
three aspects. 

4.2 Data Structure  

The sequence of tasks as well as the assignment of actors (workers, teams) and 
resources (tools, machines, facilities) must be represented in a chromosome, which 
describes the project organization model. Various representation models for encoding 
a project as chromosomes in GAs exist, but the most common is the natural encoding 
by integer numbers. Yassine et al. [31] and Zhuang et al. [33] introduce an encoding 
where a specific element or sub-element of a project is assigned exactly once to a 
locus in the permutation. Therefore each activity of a project is represented once in 
the chromosome. From our point of view this encoding does not permit an extensive 
and efficient permutation of a realistic complex project organization. Especially 
uncertainties regarding the makespan of tasks, execution of iterations and restrictions 
regarding the assignment of actors cannot be easily integrated in the encoding of a 
project organization. 

As shown in Figure 1 our approach introduces a novel representation of a project 
organization as a chromosome to fulfill the requirements of an adequate project 
representation. Each task of a project or multi project portfolio is given an unique 
identification number (ID) and each gene represents a task. A gene therefore contains 
information about the Task ID, ID of Actors and Resources, Period relating to the 
ending time of the predecessor tasks, Stochastic factor for the makespan of an activity 
and Occurrence of iteration. As shown in Figure 1 the structure of the gene is 
mandatory. A representation technique is used where the location of each gene in a 
chromosome is fixed and cannot be modified by genetic operators. The information 
regarding the task and execution of activities is linked via pair representation <locus, 
allele> – the locus of a gene is determined by the value of the corresponding task ID. 
Due to the composition of a multi project organization based on genes the 
chromosome length is set to the total task number of all considered projects. 
Chromosomes and genes are linked to a central database which contains the static 
values of the project portfolio specific actors, resources and iterations. 
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4.3 Objective Function 

Every optimization method must be able to assign a measure of quality to generated 
results in the search space to distinguish good and bad results [32]. For this purpose a 
fitness function is used for GAs to assign each individual chromosome a fitness value.  

To break down the RCMPSP it can be decomposed into a genotype-phenotype 
mapping fgp and a phenotype-fitness mapping fpf [20, 32]. Therefore a genotypic 
search space Φg as well as a phenotypic search space Φp exist which can be either 
discrete or continuous. The genotypic search space Φg covers all permutations of 
chromosomes and genes. A feasibility function fgassigns each element in Φg a value as 
follows: f(x):Φg → {0,1}. According to the introduced decomposition, the genotype-
phenotype mapping occurs first, where feasible genotype elements (value = 1) are 
mapped to elements in the phenotypic search space Φg: fg(xg) : Φg → Φp (Sec. 4.6). 
The result of the mapping is a feasible representation of a detailed project 
organization. Subsequently, the fitness of a phenotype in Φp is calculated by: fp(xp): 
Φp → ℜ. Thus, the fitness of an element is a result of both mappings: f = fp ° fg = fp(fg 
(xg)) (see also [32]). 

For the definition of fp, essential objectives for the scheduling problem must be 
considered. Based on the comprehensive survey by Kolisch and Padman [15] we 
identified critical success factors for chemical engineering projects including 
traditional ones such as project duration and cost minimization but also more recent 
ones like the qualification of actors [12]. We use total project duration T, project cost 
C as the RCMPSP multi criteria performance measure to be minimized and degree of 
capacity utilization U to be maximized. So we use the following fitness function: 

Minimize T = {∑di + pi | i = 1,...,n}  

Minimize C = {∑ci | i = 1,2, …,n} (1) 

Maximize U = {∑ui | i = 1,2, …,n}  

where ti is the starting time of task i 
 di is the duration of task i 
 pi is the maximum time period between task i and its predecessors 
 ci is the cost of task / activity i 
 ui is the utilization of actor i 

4.4 Constraints  

The solution of the RCMPSP is subjected to the predecessor relationship between 
tasks, described in the semi formal project model (C3 model). Due to the precedence 
constraints of each project, each task needs to be checked if its immediate 
predecessors have been sufficiently executed before being performed. Thereby a 
complete fulfillment of a predecessor task is not mandatory. To integrate aspects of 
Simultaneous Engineering (SE) an overlapping of coupled activities has been 
considered in the GA. Therefore the precedence relationships are described by the 
value “minimum percentage of completion” ei in the C3 model. The precedence 
constraint can be formulated as: 
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min ti + (di × ei) ≤ ti+1, 0 < ei < 1 | 1,…,n (2) 
where ei represents the minimum percentage amount of work for task i to fulfill 

the requirements for an execution of task i+1. 
Although projects and tasks may be unrelated by precedence constraints, they 

depend on a common pool of actors and resources. Due to the resource constraints 
two actors or resource conflicting tasks tai, tai+1 cannot be executed at the same time t: 

ti + di  ≤ ti+1 or ti+1 + di+1  ≤ ti, | 1,…,n (3) 

if ai(tai) = ai(tai+1) or ri(tai) = ri(tai+1), 

tai is task i 
ai is the actor i with a specific characteristic 
ri is the resource i with specific functions 
ai(tai) is actor i assigned to task i. 

Based on the task specific requirements at least one actor (worker, team) must be 
assigned to a task. We assume that an actor and a resource must be devoted to an 
activity until it is completed. An abort of an activity to start another activity is not 
allowed. In contrast to the approaches of Zhuang et al. [33], KHosraviani [14] and 
Yassine et al. [31, 32] the processing time di and the actors ai and resources ri required 
for any task tai, ai(tai); ri(tai) are not fixed. 

4.5 Initialization 

Due to stochastic elements of the project model and several concurrent projects there 
is only a small feasible search space. Therefore a random generation of alleles could 
result in the generation of a large number of infeasible solutions [33]. Therefore a 
permutation algorithm is used to generate an initial population of precedence feasible 
individuals. This algorithm proceeds as follows: 

Step 1: A task from one of the considered projects is randomly chosen. The task is 
mapped to a gene: 

- The gene is placed; task ID of the C3 model represents the locus. 
- Values for the start time of an activity, the duration and the occurrence of an 

iteration are calculated based on the database entries and the corresponding 
probability distributions.  

- Randomly an actor who fulfills the requirements (qualification, competence) is 
chosen, and it is checked if the actor is already selected for the given period. 
If the actor was selected before, continue this random selection until an 
adequate actor is found. The assignment of resources is analogue. 

Step 2: Repeat step 1 until the set of unselected tasks of all considered projects is 
empty, which generates a chromosome that consists of all tasks. 

Step 3: Repeat 1 and 2 until all chromosomes of a population size are generated.  
The population size is determined by the project manager in consideration of the 

problem complexity. To have an indication of an adequate population size Thierens 
defined an equation necessary for a successful GA (1995). The equation was used by 
us to get a first impression of the population size.  
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4.6 GP Mapping 

A chromosome is a blueprint for a project organization. The genotype-phenotype 
mapping fg – GP-mapping – is used to generate a feasible, detailed project 
organization for each individual of a population. It results in a description of a project 
organization which covers information about the characteristics and interactions of 
tasks, the assignment of actors and resources to tasks as well as specific 
characteristics of a detailed project scenario, i.e., concrete information regarding 
starting time, makespans of activities, responsibilities etc. Attention should be paid to 
the fact that a specific definition of a task sequence and responsibilities of actors does 
not generate only one course of a project. Due to uncertainties regarding the required 
effort to solve a task and the exact starting and ending time of an activity there exist 
several courses of a project.  

The GP Mapping operator acts to generate a project organization based on the 
information of the varied or unvaried chromosomes and the data base entries. The 
steps to this process are as follows:   

Step 1: A task is randomly chosen and it is checked if its immediate predecessors 
have been sufficiently executed before set in the project plan. If not, step 1 is 
continued until a task is found. 

Step 2: The makespan for the execution of a chosen task i is calculated, based on: 
- Basic effort de(i) of task i estimated by project managers without consideration 

of actor’s qualification, (constant value for each specific task, stored in 
database Activity)   

- Qualification of assigned actor (constant value q, stored in database Actor)   
- Random value h (variable value, stored in gene of the chromosome), based on 

a task specific probability distribution, e.g., Gaussian, right- or left-skewed β-
distribution (constant parameters of the distribution are stored in database 
Activity). 

The makespan of task i is calculated as follows: 

di = de(i) × q × p (4) 

and is saved in the corresponding object of the class Chromosome. 

Step 3: Calculation of the absolute starting time of activity i, based on: 
- Period related to the ending time of the predecessor activities (variable factor 

zi, saved in gene of the chromosome) 
- Starting time and duration of the predecessor(s) saved in a LinkedHashMap 

(temporary data base entry). 
The absolute starting time of activity i is calculated as follows: 

ti = ti-1 + (zi × di-1) (5) 

The variance of value for zi is determined by the project manager, zi > 0. For 
activities with more than one predecessor:  

ti = max { ti-1 + (ci × di) | i =  2, …, n-1} (6) 

As an example, consider a chromosome with the two tasks ta1 and ta2. Task ta1 is the 
predecessor of ta2 and starts at the starting time 0 Time Units (TU) with a duration d1 
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of 10 TU. The value for z2 of task ta2 (characteristic of the allele) is 0,4. Therefore 6 
TU before finishing ta1 is the earliest time to execute ta2 (starting time: 4 TU). 

Step 4: Assignment of an actor to a task, based on: 
- Actor ID (variable value), stored in gene of the chromosome.  
- Status of the actor (employed, unemployed) for the considered time period: 

pi = ti + di (7) 

The verification if an actor fulfills the minimum requirements of a task is 
previously done during the mutation of a gene.  

Step 5: Checking if the assigned actor executes another activity at any particular time 
of the period pi. If the actor is unemployed the assignment leads to a change of status 
(employed) of this actor for the period pi. If an actor is employed, the starting time of 
the activity tai is modified under consideration of predecessor conditions and the 
earliest starting time, until a feasible solution is generated. In such a case the 
equations 5 or 6 and 7 are re-executed until a valid solution is found. 

Step 6: Task Freeze – the parameters of the considered task/activity are saved for the 
current chromosome and cannot be modified again during this generation. The 
activity is “placed” in the project plan. 

Step 7: Repeat Steps 1 to 7 until all tasks of a chromosome have been placed to 
generate a whole project organization.   

It is important to note that different chromosomes may potentially have the same 
fitness value and essentially represent the same project organization after the GP 
mapping. Although uncertainties of development projects have been considered in the 
GA, due to the novel genotype and GP Mapping the mapping of a specific genotype 
into a phenotype produces always an identical project plan. 

4.7 Selection  

The selection pressure (SP) is defined as the number of expected individuals 
(chromosomes) in the next generation and determines the performance of a selection 
operator [1]. There are two popular types of selection approaches: fitness-
proportionate selection schemes and ordinal-based selection schemes. Fitness-
proportionate schemes may often fail to provide adequate SP when fitness variance in 
the population is very high or very low [31]. 

Therefore an ordinal-based selection scheme – Tournament Selection [2] – is 
employed in this algorithm because of its ability to ensure an adequate SP 
independent of a specific fitness structure within the population. In tournament 
selection, a certain number of chromosomes is randomly selected, depending on the 
tournament size s. The best chromosome wins the tournament with probability p and 
overcomes the selection phase. We favor a binary tournament selection. It picks two 
individuals from a population of chromosomes and selects the better. Therefore a 
chromosome’s fitness rank within a population is crucial rather than the value of its 
fitness. 
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4.8 Crossover 

Several crossover operators have been developed which enable a global exploration of 
the search space. The results of the different crossover operators are very 
heterogeneous. Therefore Whitfield et al. [29] compared several crossover strategies 
for DSM sequencing. Due to the feasibility of a mapping a C3 model into a DSM the 
results of Whitfield et al. give a conclusion about their performance regarding the 
considered C3 modeled RCMPSP. A crossover procedure based on a version of one 
point crossover is used that works as follows [23, 32]:  
Step 1: Two chromosomes that passed the selection phase are chosen randomly from 
the population (probability pc). One of them is randomly designated as the “primary” 
parent (Parent 1). These two chromosomes Parent 1 and Parent 2 undergo crossover 
according to the crossover probability pc. 
Step 2: If these both chromosomes undergo crossover a position (locus) along both 
parents is chosen by random. The position of Parent 1 corresponded with locus of 
Parent 2. 
Step 3: Select and place the genes of the first part of Parent 1 into the positions at the 
beginning of Offspring 1. The second part of Parent 2 is set into the loci right of the 
cutting position to complete Offspring 1. Due to the fixed assignment <locus, Task 
ID> for all chromosomes of a generation the crossover operator only generates valid 
solutions. 
Step 4: The generation of the second offspring (Offspring 2) is taken place 
analogously. 

Figure 1 provides a graphical example of this process. The offspring first inherits 
four genes from parent 1 at loci (1,2,3,4) and then the remaining genes from parent 2 
at loci (5,6,7). 

4.9 Mutation 

Mutation is able to produce new chromosomes and can be helpful when the effects of 
crossover diminish, diversity slowly disappears, and the GA begins to converge [31]. 
Due to empirical results of Whitfield [29] we favor a modification of a two operaton 
swap [23]. A chromosome that passed the selection phase is chosen randomly from 
the population for mutation (probability pm). Two genes (Ai, Aj) or a multiple of two 
are then accidentally selected. The first gen at loci Ai partly exchanges values (alleles) 
with the gen of loci Aj under consideration of predecessor and resource constraints. In 
particular the assignment of actors and resources are swapped but also the starting 
time of the activity (period relating to the ending time of the predecessor tasks), 
stochastic value to determine makespan or the occurrence of iteration.  

5 Computational Results 

We now present test results for the GA and the Petri-Net simulation model. We 
performed tests for C3 models with different project specific characteristics. The 
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results give a first impression of the performance of the GA. Further studies are 
currently in progression.  

5.1 Case Study 

The performance of the developed GA is tested on a RCMPSP – three a posteriori 
modeled development projects in an enterprise of the chemical engineering industry. 
The projects for the development of three large scale chemical engineering plants 
have respectively 62 different tasks with project specific characteristics. While the 
projects are unrelated, the execution of the 186 tasks depends on the common pool of 
actors and resources of the involved organization units as well as precedence 
relationships of tasks within a project. But there exist no precedence relationships 
between the three projects. Tasks durations range from 1 to 60 time units. Every 
project is characterized by two iterations which are combined to a cascade. For the 
real and complex development processes an ideal sequence and assignment of actors 
is not known, and finding the global optimum may is difficult with respect to the 
problem size and constraint. 

5.2 C3 Related Results 

We expected the population size and crossover rate to be a problem: the larger the 
crossover rate and the population, the greater is the chance that the best individuals of 
a generation are not continuously improved. As the population size increases, the best 
fitness value for each population improves. Figure 2 provides us an insight into the 
change of the best fitness value over population size and how crossover probability pc 
impacts the performance. When population size reaches the task string size (number 
of tasks: 186), the optimal makespans become stable. These results are consistent with 
the findings of Zhuang et al. [33]. For such kind of scheduling problem, a decent 
solution is expected when population size is the number of genes. With large enough 
population, the initialization ensures that good schemas appear. When crossover rate, 
pc = 0.85, the GA generated much better fitness values than those at pc = 0.05. It 
indicates that the implemented crossover operator dictate the evolution.  

 
Fig. 2. Average fitness value versus population size. 
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It is demonstrated in Figure 3 that the fitness value increases as generation 
increases. A fast convergence rate is shown for the crossover due to moderate 
precedence relationships of tasks. It is observed from Figure 3 that the global 
optimum for the fitness value does not appear until several generations. Due to the 
multi criteria objectives the optimum of the project duration does not present the best 
solution for the project costs or the capacity utilization.  

 
Fig. 3. Fitness Value at population 50. 

It is shown in Figure 4 the project duration and cost of the fittest and worst 
individual of each generation. 

 
Fig. 4. Project Duration and Cost.  

In this section we will also relate the performance of the proposed GA to a Petri 
net based simulation model for task scheduling [12]. A best solution for the RCMPSP 
is given by our simulation model: 690 TU and 505 CU. It is observed that our GA is 
capable of significantly reducing the project duration, compared to the simulated 
project scenarios. The difference regarding the project costs was low due to the low 
variance of the wage of different actors. 

The proposed GA-based scheduling method has demonstrated its advantage over 
the simulation approach in terms of simulation time, accuracy and efficiency in this 
particular test case. 
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5.3 Stochastic Feedback 

A project organization without any iterative execution of a task is often only a 
baseline schedule. In reality, some downstream tasks may be forced to be repeated 
due to changes in requirements of task`s outcome. In order to accommodate this 
problem, this GA-based approach randomly generates a value based on the feedback 
probability and thus decides whether the feedback will be part of schedule or not. The 
model also considers that the probability of a feedback loop can be decrease or 
sometimes increase during multiple executions of a loop. Also it was implemented 
that the effort of a task during several iterations can vary. The value of the variance is 
based on the knowledge of the project manager and is calculated with the equation 
(4). 

 
Fig. 5. Project Duration for projects with stochastic feedback. 

Random trials with possible different feedback tasks of the three projects are 
generated and an optimal schedule is obtained for each. A distribution function is 
found to best fit the resulting project distribution as shown in Figure 5. It is helpful to 
identify the most likely project duration range and provide a better understanding of 
how long the project may last. As such, we can conduct a sensitivity test on the 
project portfolio and evaluate how the three optimal project schedules are sensitive to 
changes in feedback structure. 

6 Concluding Remarks 

This paper has proposed an implementation of Genetic Algorithms to solve a C3 
model representation of the resource constrained multi-project scheduling problem for 
multi-criteria objectives. A population was initialized due to simulation runs of a Petri 
net model such that all individuals are precedence feasible. The novel characteristic of 
a genotype for the RCMPSP and GP mapping was introduced to maintain precedence 
and resource feasibility while obtaining the project duration, costs and degree of 
capacity utilization for fitness evaluation. The development of a novel GP mapping 
function was necessary due to the integration of uncertainties in the project model.   

Good solutions were found however by using simple mutation and crossover 
operators. These genetic operators perform well for the continuous improvement of 
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chromosomes over generations. It also accommodates feedback which is of 
paramount importance in a management of several concurrent development projects. 

A great focus of future work should be on the integration of human behavior in the 
project model. This GA-based methodology can be easily extended to project models 
that include cooperation, coordination and communication processes between actors. 
In the latter case, preemption of tasks will be allowed. Therefore actors and resources 
will be available whenever tasks of a higher priority are ready to be performed. 
Finally, extensions to GA operators (crossover, mutation) to enlarge the performance 
can be made as well as the multi-objective fitness function can be revised to find 
better solutions for conflictive targets. 
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