
A SECOND PREIMAGE ATTACK ON THE MERKLE-DAMGARD
SCHEME WITH A PERMUTATION FOR HASH FUNCTIONS

Shiwei Chen and Chenhui Jin
Institute of Information Science and Technology, Zhengzhou 450004, China

Keywords: Hash functions, MD construction, MDP, Multicollisions, Second preimage attack, Computational complexity.

Abstract: Using one kind of multicollsions of the Merkle-Damgard(MD) construction for hash functions proposed by
Kelsey and Schneier, this paper presents a second preimage attack on MDP construction which is a simple
variant of MD scheme with a permutation for hash functions. Then we prove that the computational complexity
of our second preimage attack isk× 2n/2+1 + 2n−k less than 2n wheren is the size of the hash value and
2k +k +1 is the length of the target message.

1 INTRODUCTION

A cryptographic hash functionH maps a messageM
with arbitrary length to a fixed-length hash valueh.
It has to satisfy the following three security require-
ments:

- Preimage resistance: For a given hash valueh,
it is computationally infeasible to find a messageM
such thath = H(M);

- Second preimage resistance: For a given mes-
sageM, it is computationally infeasible to find a sec-
ond messageM

′
6= M such thatH(M

′
) = H(M);

- Collision resistance: It is computationally infea-
sible to find two different messagesM

′
andM such

thatH(M
′
) = H(M).

The resistance of a hash function to collision at-
tack or second preimage attack mainly depends on the
size n of the hash value. Regardless of how a hash
function is designed, an adversary will always be able
to find a preimage or a second preimage after trying
2n different messages, or find a collision pair after
2n/2 trials according to the birthday attack. There-
fore, if the computational complexity of finding a col-
lision pair or a (second) preimage for a particular hash
function is less than what could be expected based
on the size of the hash value, then the hash function
is considered to be broken. Generally, a hash func-
tion includes two parts, that is, the compression func-
tion which maps a fixed-length value to a fixed-length
value, and the domain extension transform which can
transfer a message with arbitrary length to a fixed-
length hash value. Aimed to these two parts, the re-
sults of analyzing on hash functions can be divided

into two kinds:
- Cryptanalytic attacks: Mainly apply to the com-

pression functions of the hash functions. Using the
internal properties of the compression functions, an
adversary can attack the hash functions. For exam-
ple, the collision attacks on MD-family proposed in
(Xiaoyun and Hongbo, 2005);

- Generic attacks: Apply to the domain extension
transforms directly with some assumptions on the
compression functions. Examples are long-message
second preimage attack(Kelsey and Schneier, 2005),
herding attack(Kelsey and Kohno, 2006) and the at-
tack on the MD with XOR-linear/additive checksum
in (Gauravaram and Kelsey, 2007).

Since Wang et al.(Xiaoyun and Hongbo, 2005)
presented the collision attacks on MD-family hash
functions and the recent results on the MD con-
struction, some cryptographers have been trying to
propose new domain extension transforms for hash
functions, such as MD with XOR-linear/additive
checksum(Gauravaram and Kelsey, 2007), ChopMD
construction (Coron et al., 2005), EMD construc-
tion(Bellare and Ristenpart, 2006), MD with a per-
mutation (MDP)(Hirose and Park, 2007), and so
on. In 2007, Praveen Gauravaram and John Kelsey
(Gauravaram and Kelsey, 2007) pointed out that the
MD with XOR-linear/additive checksum construc-
tion gained almost no security against generic at-
tacks. Coron et al.(Coron et al., 2005) presented
that the prefix-free MD and ChopMD were indiffer-
entiable from a random oracle and gave out the se-
curity bounds. However, Mihir Bellare and Thomas
Ristenpart(Bellare and Ristenpart, 2006) proved that
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pseudorandom-oracle preserving did not imply the
collision-resistance preserving and presented that the
variants of MD construction presented in (Coron et
al., 2005) was not collision-resistance preserving. In
Asiacrypt 2007, Hirose et al.(Hirose and Park, 2007)
proposed a simple variant of the Merkle-Damgard
scheme with a permutation and analyzed its security
by using the indifferentiability formulism. However,
there is no paper discussing whether the MDP resists
the second preimage attack or not.

In this paper, using the multicollsions of MD con-
struction proposed in (Kelsey and Schneier, 2005), we
will present a second preimage attack on MDP con-
struction, the computational complexity of which is
less than what could be expected based on the size of
the hash value.

2 DESCRIPTION OF MDP
CONSTRUCTION AND
NOTATIONS

Let f : {0,1}n×{0,1}b→ {0,1}n be a compression
function andM be al-block b-bit message. We can
describe theMD f below, which isMD construction
with the compression functionf :
Function : MD f (IV,M)

let M = (m1,m2, . . . ,ml) and h0 = IV
f or i = 1 to l do

hi← f (hi−1,mi)
return hl .
Let Mpad be a padded message according to the

padding function given in (Hirose and Park, 2007) and
φ is a random permutation. Then theMDP f is defined
as follows:
Function : MDP f (IV,Mpad)

let Mpad = (m1,m2, ...,ml) and h0 = IV
hl−1←MD f (IV,(m1,m2, . . . ,ml−1))
hl ← f (φ(hl−1),ml)
return hl .
Since the padding function of MDP construction

requires that the last block of the padded message en-
codes theq-bit representation of the length of the orig-
inal message, the second preimage attack proposed
in the following paper need to find a second preim-
age with the same length as the target message. Re-
fer to (Hirose and Park, 2007) for the specifics of the
padding function of MDP construction.

Note that|M| represents the number of blocks of
a messageM, mi is theith b-bit block of M andhi is
theith intermediate chaining value in hashing ofM. If
there is no special explanation, the notations represent
the same means throughout this paper.

3 OUR SECOND PREIMAGE
ATTACK ON MDP
CONSTRUCTION

Though Hirose et al.(Hirose and Park, 2007) have an-
alyzed the security of MDP construction using the in-
differentiability formulism, up to now no paper has
discuss whether the MDP resists the second preimage
attack or not. In this paper, using the multicollisions
of MD construction, we will present a second preim-
age attack on the MDP construction. Through all this
paper, we assume that the compression functionf is
random.

3.1 Building the Multicollisions of MD f

The k messagesM1,M2, . . . ,Mk are called k-
multicollision of MD construction if

MD f (M1) = MD f (M2) = · · ·= MD f (Mk)

The papers (Kelsey and Schneier, 2005)(Kelsey
and Kohno, 2006)(Joux, 2004) have presented dif-
ferent methods to construct the multicollisions of
MD construction. Specifically, in (Kelsey and
Schneier, 2005) they introduced a way to construct
(a,b)-expandable messages, which are(b− a + 1)-
multicollison naturally whose lengths can vary in a
range from a to b. Using the method introduced in
(Kelsey and Schneier, 2005), now we describe the al-
gorithm 1 to construct(t,2t + t−1)-expandable mes-
sages with a starting chaining value IV and lengths
varying from t to 2t + t − 1, which will be used to
propose our second preimage attack onMDP f .

Algorithm 1:

Step1. Find two messagesB1,B
′

1 such that

MD f (IV,B1) = MD f (IV,B
′

1) = H1

where|B1|= 1, |B
′

1|= 20 +1;
Step2. UseH1 as the starting chaining value to con-
struct the next collision pairB2,B

′

2 satisfying

MD f (H1,B2) = MD f (H1,B
′

2) = H2

where|B2|= 1, |B
′

2|= 21 +1;
Step3. For theith step, we need to start with the chain-
ing valueHi−1 and find a collision pairBi,B

′

i such that

MD f (Hi−1,Bi) = MD f (Hi−1,B
′

i) = Hi

where|Bi|= 1, |B
′

i|= 2i−1+1;
Step4. Until obtainingt pairs messages(Bi,B

′

i)(i =
1,2, ...,t), we can construct the(t,2t + t − 1)-
expandable messages by choosingBi orB

′

i(i =
1,2, ...,t) in every pair.
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Remark:

(1) From the above algorithm 1, we know that the
shortest message in the multicollisions isB1 ‖ B2 ‖

· · · ‖ Bt and the longest message isB
′

1 ‖ B
′

2 ‖ · · · ‖ B
′

t
whose length is

t

∑
i=1

(2i−1 +1) = 2t + t−1

Moreover, by choosingBi or B
′

i(i = 1,2, . . . ,t) in ev-
ery pair, we can obtain messages of different lengths
varying fromt to 2t + t−1.

(2) We can use the algorithm described in (Kelsey
and Schneier, 2005) to construct a collision pairBi,B

′

i
such that

MD f (Hi−1,Bi) = MD f (Hi−1,B
′

i) = Hi

and|Bi|= 1, |B
′

i|= 2i−1 +1. The specifics are as fol-
lows:
Step1. Assumem is one block chosen randomly in
advance. Process 2i−1 given message blocks:
-Htemp = Hi−1;
-For j = 0 to 2i−1−1 do

H
′

temp = f (Htemp,m) and Htemp = H
′

temp

Step2. Build lists A andB as follows:
-For j = 0 to 2n/2−1−1 do

A[ j] = f (Hi−1,a j) and B[ j] = f (Htemp,b j)

where a j and b j are chosen randomly and|a j| =
|b j|= 1;
Step3. Find j1, j2 such thatA[ j1] = B[ j2] and return
the collision pairs(a j1,m ‖ m ‖ ... ‖ m ‖ b j2).

Therefore, the computational complexity of find-
ing Bi,B

′

i such that

MD f (hi−1,Bi) = MD f (hi−1,B
′

i) = hi

and |Bi| = 1, |B
′

i| = 2i−1 + 1 is about 2i−1 + 2n/2+1

compression function operations. Hence, the compu-
tational complexity of algorithm 1 is about

t

∑
i=1

(2i−1 +2n/2+1) = t×2n/2+1+2t ≈ t×2n/2+1.

3.2 Our Second Preimage Attack on
MDP f Hash Function

Let M = (m1,m2, ...,m2k+k+1) be the target message
of 2k + k + 1 blocks. Our attack is to find another
messageM

′
of 2k +k+1 blocks different fromM such

thatMDP f (M
′
) = MDP f (M). The specific algorithm

is described below:

Preprocessing step: Construct (k,2k + k − 1)-
expandable messages with a starting valueIV and an
arbitrary target valueHk according to algorithm 1;

Algorithm 2:

Step1. Randomly choose a one-block messageB such
that the value off (Hk,B) equals to one of the chaining
valuesh1,h2, ...,h2k+k produced in the hashing ofM,
that is, f (Hk,B) = hi0 wherek +1≤ i0≤ 2k + k;
Step2. Choose a messageM0 of i0−1 blocks from
the (k,2k + k− 1)-expandable messages constructed
in the preprocessing step;
Step3. Form a message

M
′
= M0 ‖ B ‖ mi0+1 ‖ · · · ‖ m2k+k+1

satisfyingMDP f (M
′
) = MDP f (M) (If i0 = 2k + k,

then only the last block of original message is in-
cluded in the second preimage).

3.3 Analysis of the Computational
Complexity of the Above Algorithm

In the above algorithm, since the one-block mes-
sageB is chosen randomly andk + 1≤ i0 ≤ 2k + k,
the probability of guaranteeing thatf (Hk,B) = hi0 is
2k/2n . So the computational complexity of step1
is about 2n−k. And the computational complexity of
the step2 and step3 can be ignored. Additionally, the
computational complexity of the preprocessing step is
aboutk×2n/2+1. Hence, the computational complex-
ity of the above algorithm is aboutk×2n/2+1+ 2n−k

which is less than 2n.

4 CONCLUSIONS

In this paper, using the(k,2k + k − 1)-expandable
messages with a starting chaining valueIV , we
present a second preimage attack on hash functions
with MDP construction and analyze the computa-
tional complexity of our second preimage attack
which isk×2n/2+1+2n−k less than 2n.
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