
A SECURITY DESIGN PATTERN TAXONOMY
BASED ON ATTACK PATTERNS

Findings of a Systematic Literature Review

Andreas Wiesauer and Johannes Sametinger
Department of Business Informatics - Software Engineering, Johannes Kepler University of Linz

Altenbergerstrasse 69, Linz, Austria

Keywords: Security design pattern taxonomy, Security design patterns, Attack patterns, Literature review.

Abstract: Security design patterns are proven solutions to security problems in a given context with constructive mea-
sures of how to design certain parts of a software system. The literature contains numerous definitions, ex-
amples, and taxonomies of such patterns. There are also a few quality criteria for them. We suggest a new
taxonomy based on attack patterns in order to enhance applicability of security design patterns especially for
non-experts in software security. We further suggest a combined consideration of attack patterns, security
design patterns and test cases for the validation and evaluation of security design patterns.

1 INTRODUCTION

Patterns provide a convenient way for encapsulating
and reusing knowledge. Their purpose is to com-
municate proven solutions in a certain domain. The
use of patterns has emerged from architecture and has
been applied to software engineering by Gamma et
al. (Gamma et al., 1995). Starting with Yoder and
Barcalow, the pattern concept has been transformed
to the field of software security (Yoder and Barcalow,
1997). The idea of providing security knowledge as
patterns seems obvious. Numerous security design
patterns have been published over the last years.

The term ”security pattern” is used in various con-
texts. Security patterns may be reflected directly in
software. This is also true for patterns known from the
seminal work of (Gamma et al., 1995). In this case,
patterns typically have an impact on the architecture
and the design of software. Other security patterns
deal with administrative means for securing software,
e.g., with fire-walls or with demilitarized zones. The
term security pattern is also used for patterns that in-
fluence activities of software life-cycle phases other
than the design, e.g., blueprints for security require-
ment specifications or test case definitions. In this pa-
per we focus on patterns that are reflected in software
architecture and design. We use the term ”security
design pattern” for that purpose.

In this paper, we present the results of a systematic

literature review aimed at identifying security design
patterns and classification schemes. Further, we sup-
pose a classification scheme of security design pat-
terns that is based on attack patterns. The paper is
structured as follows: In Section 2 we introduce de-
sign patterns. Objectives and the methodology of
our approach, a systematic literature review, is pre-
sented in Section 3. Results of the literature review
are discussed in Sections 4, 5 and 6, i.e., security pat-
tern definitions, quality criteria, and taxonomies, re-
spectively. A new taxonomy that is based on attack
patterns is introduced in Section 7. Conclusions are
drawn in Section 8.

2 DESIGN PATTERNS

Design patterns can be described as a prob-
lem/context/solution triple (Buschmann et al., 2007;
Gamma et al., 1995). ”A design pattern systemati-
cally names, motivates, and explains a general design
that addresses a recurring design problem in object-
oriented systems” (Gamma et al., 1995). Design pat-
terns are abstract ideas that can be illustrated in differ-
ent ways and that can be instantiated in many ways.
They can be illustrated, for example, using class dia-
grams or using role models. Design patterns provide
a common design vocabulary, a documentation and

387
Wiesauer A. and Sametinger J. (2009).
A SECURITY DESIGN PATTERN TAXONOMY BASED ON ATTACK PATTERNS - Findings of a Systematic Literature Review.
In Proceedings of the International Conference on Security and Cryptography, pages 387-394
DOI: 10.5220/0002232503870394
Copyright c© SciTePress



learning aid, an adjunct to existing methods, and a
target for refactoring.

Gamma et al. first proposed a uniform descrip-
tion template which includes the name of the pattern,
its intent and motivation, applicability structure and
other patterns that are related to it (Gamma et al.,
1995). Buschmann et al. have developed an extension
to this template (Buschmann et al., 2007). It includes:

• Name:
a name and a short summary of the pattern

• Also Known As:
other names of the pattern

• Example:
a real world example that demonstrates the pur-
pose and the benefit of the pattern

• Context:
situations in which the pattern may apply

• Problem:
a description of the problem the pattern addresses
including its associated forces

• Solution:
a description of how the problem can be solved

• Variants:
a reference to other patterns that are variants or
specialization of this pattern

• Consequences:
an outline of the benefits and potential tradeoffs
of the pattern

Starting in 1997, design patterns had been used
for security-specific issues, see (Yoder and Barcalow,
1997). They used a similar description scheme with
a similar understanding of what a design pattern is.
Subsequently, most authors have relied on the tradi-
tional definition of design patterns as a foundation.

Examples of security design patterns are:

• Secure Pipe Pattern
Prevent eavesdropping and tampering of client
transactions caused by man-in-the-middle attacks
(Steel et al., 2005).

• Secure Logger Pattern
Application events and related data must be se-
curely logged. Log data should be secured from
unauthorized access (Steel et al., 2005).

• Single Access Point Pattern
Systems with external access should have a single
point of access that grants or denies access after
checking a client (Schumacher et al., 2006).

• Checkpointed System Pattern
Design a system in a way that its state can be re-
covered and restored to a known valid state in case
a component fails (Halkidis et al., 2004).

• Limited View Pattern
Users should only see those parts of a system that
they have access to (Yoder and Barcalow, 1997).

Additional patterns can, for example, be found at
www.securitypatterns.org/patterns.html.

3 OBJECTIVES AND
METHODOLOGY

According to Barnum and Sethi, only a minority of
software architects and developers is well educated in
security issues (Barnum and Sethi, 2006). It is doubt-
ful that people with minor security knowledge will be
able to apply security design patterns in a correct, an
effective and an efficient manner. We need pattern
selection criteria that are based on security require-
ments and that are applicable in practical contexts.
This leads us to the following questions:

• How are security design patterns defined?

• Which different kinds of security design patterns
have been proposed and how are they best de-
scribed and documented?

• Which classification schemes for security design
patterns exist?

• Have any quality criteria been suggested for eval-
uating security design patterns?

The application of systematic approaches for the
assessment and the aggregation of research outcomes
is needed in order to gain a balanced and objec-
tive summary for a particular research topic (Brere-
ton et al., 2007). Conducting a systematic literature
review is such an approach. According to Kitchen-
ham (Kitchenham, 2004), systematic literature re-
views aim at ”identifying, evaluating and interpreting
all available research relevant to a particular research
question, or topic area or phenomenon of interest”.
When conducting such a review, research studies that
are analyzed are calledprimary studies, the analysis
itself is calledsecondary study. Fig. 1 shows the steps
that make up a systematic literature review. The activ-
ities are grouped in three main phases: planning, con-
ducting the review and reporting. For further details
see (Brereton et al., 2007) and (Kitchenham, 2004).

We have followed these steps and have started
by defining search queries and using various scien-
tific search engines, e.g., computer.org, acm.org and
springerlink.com. The search has led us to an ample
number of papers as well as books, conference tracks
and web sites. We have identified many definitions,
quality criteria and taxonomies. These will be dis-
cussed in Sections 4, 5 and 6, respectively.

SECRYPT 2009 - International Conference on Security and Cryptography

388



Figure 1: Literature review (Brereton et al., 2007).

4 DEFINITIONS

Yoder and Barcalow have been the first to apply de-
sign patterns to security issues (Yoder and Barcalow,
1997). They have used a similar description scheme
to Gamma et al. with a similar understanding of de-
sign pattern definition. Schumacher has defined a se-
curity design pattern as a way of documenting proven
solution to recurring problems in a well-structured
manner (Schumacher, 2002). As patterns are written
by experts, Schumacher emphasizes that they provide
an effective way to learn from experts. This is es-
pecially important in the area of security, since there
are only few software architects and designers that
have experienced knowledge concerning security is-
sues. The definition of security patterns has been fur-
ther concretized: ”A pattern describes a particular re-
curring security problem that arises in specific con-
texts, and presents a well-proven generic solution for
it” (Markus Schumacher, 2005). The solution part of
a pattern consists of a set of interacting roles that can
be arranged into multiple concrete design structures.

Additionally, the process to create the mentioned
design structure is considered to be an important part
of the solution. The motivation of using security pat-
terns originates from the facts that patterns codify
knowledge in an understandable way, that the rep-
resentation of patterns is familiar to software devel-
opers and system engineers, and that patterns help
to expand the security focus from low-level imple-
mentation to higher-level architectures (Markus Schu-
macher, 2005). The latter is especially important
since around 50% of all security vulnerabilities arise
from design flaws (McGraw, 2006).

Similarly, Fernandez and Yuan define security pat-
terns as an aid for designers with little security knowl-
edge (Fernandez and Yuan, 2007). Also, Hafiz and
Johnson point out the reusability aspect of patterns
(Hafiz and Johnson, 2006). They use the general
term security pattern rather than security design pat-
tern. However, they state that security patterns influ-
ence software design decisions, suggesting that they
do understand them as security design patterns in our
sense. They also mention the problem of managing
security patterns and diagnose a need for a classifi-

cation or taxonomy. Heyman et al. differ slightly as
they first view a pattern as a ”well-known technique
to package domain-independent knowledge and ex-
pertise in a reusable way” (Heyman et al., 2007). In
contrast to other definitions, they explicitly accentuate
domain-independence as a major characteristic of a
security design pattern. The definition is substantiated
by elements that a pattern should comprise: a descrip-
tion of a scoped problem and a constructive solution.
They further outline that patterns cover different ab-
straction levels and that some patterns are too abstract
to be considered as real patterns, e.g., roles patterns
which suggest to use actors of use cases as a starting
point when defining roles within a role-based access
control system. They also propose a negative defi-
nition of security design patterns: Mere guidelines,
high-level process activities or statements of security
principles cannot be considered as patterns (Heyman
et al., 2007). A pattern definition should further con-
tain a ”known uses” element, which gives an indica-
tion of whether a pattern is real or not. By applying
their positive and negative definition they analyzed
220 pattern. Only 55% of these were considered to be
patterns, whereas 35% had been classified as guide-
lines and 15% as process activities.

Romanosky presents a catalogue of eight secu-
rity design patterns and follows the definitions already
discussed (Romanosky, 2001). He views security de-
sign patterns as a means for identifying and formu-
lating all security practices needed in a given envi-
ronment. High-level security requirements should be
transformed into security policies and further into se-
curity procedures. Patterns assist in implementing se-
curity procedures into the software product. Slightly
different, Steel et al. treat security design patterns as
”an abstraction of business problems that address a
variety of security requirements and provide a solu-
tion to the problem” (Steel et al., 2005). This def-
initions express that security design patterns should
be aligned with security requirements. Such patterns
can appear as architectural patterns or as defensive
design strategies that depict how secure code should
be written according to a given design. Kienzle et
al. have presented a security pattern repository and
distinguish between structural patterns and procedu-
ral patterns (Kienzle et al., 2002). Structural patterns
can be implemented in an application in the sense of
security design patterns, but they can be applied at the
architectural as well as at the implementation level.
Procedural patterns aim at improving the process of
developing security-critical software.

Yoshioka et al. have a broader understanding
of security patterns (Yoshioka et al., 2008). They
have carried out a survey on security patterns and

A SECURITY DESIGN PATTERN TAXONOMY BASED ON ATTACK PATTERNS - Findings of a Systematic
Literature Review

389



have classified their results by the software life-cycle
phases. They present patterns for the requirements
phase, the design and implementation phase, the test-
ing phase, etc. For example, asecurity needs pattern
in the requirements phase helps to identify assets of
a system and information in a system that has to be
considered as an asset. Yoshioka et al. do not only
classify procedural aspects as patterns, e.g., guide-
lines for carrying out a certain activity, but also secure
programming guidelines or refactoring measures, i.e.,
patterns in the implementation phase.

Horvath and Dörges criticize the usefulness of pat-
terns in the security area (Horvath and Dörges, 2008).
They outline that the concept of patterns has two ma-
jor shortcoming in the area of security. On the one
hand, patterns are only informal descriptions of what
to do. On the other hand, patterns are often not suit-
able to describe complex architectures. This is impor-
tant, because security has to be applied to the whole
system. In their opinion, patterns cannot fulfill their
expectations. They therefore suggest the application
of more formal approaches like Petri nets.

We can summarize that there are differing defi-
nitions of the term security patterns. The focus of
such patterns is set quite differently, i.e., procedural
vs. structural and depending on the software life-
cycle phase. The term security design pattern gives
the most unanimous view of how a pattern is defined.
The main benefit of a security design pattern is also
seen uniformly as a mean for documenting knowledge
and transforming experience to people with little se-
curity knowledge. This benefit is scrutinized by some
authors because they see a lack on useful classifica-
tions and taxonomies as well as formalisms of the pat-
terns. Also there is a difficulty of pattern application
when being confronted with complex architectures.

We use the term security design pattern for proven
solutions to security problems in a given context.
These solutions have to contain constructive measures
of how to design certain parts of a software system,
i.e., security design patterns have to be directly re-
flected in the software design.

In contrast to the definitions, the scientific com-
munity mainly has a uniform opinion on how secu-
rity patterns should be described and documented.
Most authors stuck to the template proposed by
(Buschmann et al., 2007) with only minor modifica-
tions, see (Fernandez and Pan, 2001; Fernandez et al.,
2008; Kienzle and Elder, 2001; Romanosky, 2001;
Schumacher et al., 2006; Yoder and Barcalow, 1997;
Yoshioka et al., 2008). Some authors complement this
template by graphical notations, e.g., UML class or
sequence diagrams, see (Fernandez and Pan, 2001;
Steel et al., 2005). A strategy item has additionally

been added to the description template by (Steel et al.,
2005). The strategy outlines different possibilities to
implement and deploy a security pattern.

5 QUALITY CRITERIA

A pattern is a means to encapsulate knowledge about
proven solutions and transfer (externalize) the exper-
tise to others with less knowledge. Security design
patterns should help to mitigate security risks by ap-
plying them to software designs. Therefore, a top-
level quality aspect is whether a security design pat-
tern actually helps to mitigate the risks, i.e., whether
it effectively does what it pretends to do. A sec-
ond quality aspect is whether a pattern indeed accom-
plishes the transfer of knowledge, i.e., whether it is
documented precisely enough to be used in a practi-
cal context. Heyman et al. have carried out a study on
the quality of security design patterns (Heyman et al.,
2007). They conclude that patterns at first need a clear
and appropriate description.

They have defined quality scores for each descrip-
tion element like problem description, solution, or
consequences: 0 for ”not provided”, 1 for ”minimal”
and 2 for ”satisfactory”. Each description element ad-
ditionally has a certain weighting, e.g., problem de-
scription 19%, consequences 14.5%. For more de-
tails on the weighting see (Heyman et al., 2007). An
overall quality indicator for security design patterns is
obtained by using the quality score and its weighting.
Using this quality indicator, it turned out that between
2001 and 2003 the number of patterns published was
high but the quality was only mediocre. The qual-
ity level has increased in the following years together
with a decline of the number of published patterns.

Halkidis et al. have performed a qualitative eval-
uation on security design patterns by a set of criteria
(Halkidis et al., 2004):

• How well do they conform to the guiding princi-
ples of (Viega and McGraw, 2001)?

• How well do they help to deter a programmer
from building a system that suffers from security
holes like buffer overflows?

• How well does a specific security pattern re-
spond to attacks described in the STRIDE model
(Howard and Lipner, 2006)?

Viega and McGraw have introduced ten guiding
principles for building secure software (Viega and
McGraw, 2001). Examples are principle of least priv-
ilege and the principle of secure fail. The principle
of least privilege states that any operation in a pro-
gram should be carried out with the least privilege

SECRYPT 2009 - International Conference on Security and Cryptography

390



necessary. The principle of secure fail means that a
system should continue to work in secure mode in
case of a failure. For three typical software develop-
ment problems, Halkidis et al. have analyzed whether
patterns help to avoid security holes (Halkidis et al.,
2004). The problems were buffer overflows, poor ac-
cess control mechanisms and race conditions. The
STRIDE model groups possible attacks into different
categories. STRIDE is an acronym for Spoofing iden-
tity, Tampering with data, Repudiation, Information
disclosure, Denial of service, and Elevation of privi-
leges. Halkidis et al. have analyzed a number of secu-
rity design patterns and used an ordinal scale for their
judgement, e.g., whether a pattern does fulfill one of
the guiding principle or whether it negatively affects a
principle. They have further based their judgement on
whether a pattern ”possibly” helps to avoid an attack
like a buffer overflow or whether it delivers protection
or ”improved protection” against one of the STRIDE
attacks.

Both approaches can serve as a useful guideline
when selecting security patterns, but they are built
upon a subjective basis. The authors do not state ob-
jective criteria for judging a description element of
a pattern as ”minimal” or ”satisfactory”, or whether
it ”possibly” helps to prevent specific attacks. Fur-
ther, the weighting of the description elements is only
based on heuristics and seems to be quite arbitrary.

We have not been able to identify studies that pro-
vide objective quality measures or even metrics for
security design patterns.

6 TAXONOMIES

A huge number of security design patterns has been
published. This makes it difficult to select patterns
that are appropriate for a specific software system.
Additionally, many patterns with similar intent and
similar solution are published under different names
by different authors. Most authors see the need for a
classification or a taxonomy of patterns, see for ex-
ample (Schumacher et al., 2006; Hafiz et al., 2007;
Weiss and Mouratidis, 2008). A classification helps
users to navigate through available patterns and also
allows them to recognize similar patterns.

Authors have proposed classifications based on
different criteria. Hafiz et al. created an overview
of various approaches. Among others, they were able
to identify the following classification criteria (Hafiz
et al., 2007; Hafiz and Johnson, 2006):

• Applicability
They differentiate between patterns for protected
systems and patterns for available system. Pat-

terns for protected systems deal with protect-
ing resources against unauthorized use. Patterns
for available systems deal with providing pre-
dictable and uninterrupted access to services and
resources.

• Application Context
”Core security” includes patterns for security
mechanisms within a system. ”Perimeter secu-
rity” includes patterns that deal with authentica-
tion, authorization and security filtering at the sys-
tem’s entry points. ”Exterior security” includes
patterns that concern data transmission and com-
munication protocols.

• Logical tiers
Patterns are classified according to the logical tier
of a system in which they are used, e.g., in the
user interface layer or in the business logic layer.

• Security concepts
ISO-13335 defines confidentiality, integrity, avail-
ability and accountability as key concepts of secu-
rity. Patterns can be classified according to the key
concept that they support.

• Viewpoints and interrogatives
Patterns are classified according to different view-
points, e.g., business architecture, integration ar-
chitecture or application architecture, and to in-
terrogatives, e.g., purpose (why?), data (what?)
or function (how?). Business architecture covers
business and management perspective of an ap-
plication. Integration architecture deals with the
integration of internal and external systems. The
application architecture includes system and soft-
ware elements.

• STRIDE
Patterns are classified according to attacks from
the STRIDE model, see Section 5.

The classification based on viewpoints and in-
terrogatives originates from the Zachman framework
and was developed by Microsoft (Trowbridge et al.,
2004). Within one of the architectures, one can fur-
ther differentiate between different stakeholders, e.g.,
software designers or implementers. This classifica-
tion does not only comprise security design patterns
in our sense, but also, for example, procedural pat-
terns.

All classification schemes have several disadvan-
tages. The security concept based classification, for
example, has the major drawback that many patterns
belong to more categories - the classification is not
concrete enough (Hafiz et al., 2007). Classification
based on logical tier brings order into the landscape
of pattern, but it does not help in selecting appropri-
ate patterns, since one already has to know where and

A SECURITY DESIGN PATTERN TAXONOMY BASED ON ATTACK PATTERNS - Findings of a Systematic
Literature Review

391



for which purpose a pattern should be applied. The
tabular classification based on viewpoints and inter-
rogatives delivers a good overview and allows users
to navigate through different patterns, but it is not
aligned with security requirements.

7 A NEW TAXONOMY BASED ON
ATTACK PATTERNS

An architect or developer should be able to select ap-
propriate patterns in order to fulfill security require-
ments given to her. Classification based on attacks
of the STRIDE model is a first step towards this di-
rection. The overall security requirement is to re-
sist against certain attacks. When planning a secure
system, one should elicit against which attacks the
system has to resist and therefore which security re-
quirements the system has to fulfill. Given this set of
possible attacks, architects and developers should be
able to select patterns. We will introduce a taxonomy
based on attack patterns that enables architects and
developers to select appropriate patterns according to
possible attacks.

7.1 Attack Patterns

An attack is an act of carrying out an exploit of a
vulnerability (Barnum and Sethi, 2006). An attack
pattern is a blueprint for creating a kind of an attack
- a ”blueprint for disaster” (Hoglund and McGraw,
2004). The motivation behind using attack patterns
is the same as with security design patterns: If soft-
ware developers have little knowledge in determin-
ing vulnerabilities and possible attacks, attack pat-
terns should encapsulate and transfer this knowledge.
Attack patterns are a means for teaching the software
development community how to exploit software in
reality and to implement adequate ways to avoid at-
tacks (Barnum and Sethi, 2006). Barnum has devel-
oped a description and classification schema for at-
tack pattern (Barnum, 2008). This schema includes:

• Name and unique ID of the attack pattern

• Related weaknesses and vulnerabilities

• Methods of attack and attack examples

• Describing and diagnosing information

• Related attack patterns

”Describing information” includes injection vec-
tor and activation zone. An injection vector describes
the format of an input-driven attack and its playload,
see (Hoglund and McGraw, 2004)). The activation
zone is the area within the target where the payload

Figure 2: Attack Pattern Classification Tree (excerpt).

gets executed, see (Hoglund and McGraw, 2004) ”Di-
agnosing information” includes techniques to probe a
certain target to determine vulnerabilities and indica-
tors for attacks, i.e., conditions that indicate that an
attack is in progress or has occurred. The schema
additionally includes an element ”related design pat-
terns”, in order to specify design patterns that help to
avoid a successful attack or that may lead to a suc-
cessful attack. Barnum therefore sees a relationship
between attack patterns and design patterns (Barnum,
2008). The MITRE Corporation hosts a website at
capec.mitre.org that provides a publicly available cat-
alog of attack patterns. The website is sponsored by
the U.S. Department of Homeland Security and is
technically assisted by Cigital Inc. The attack pat-
terns in the catalog are documented according to the
scheme described above. Additionally, the website
provides a classification tree for attack patterns. It
classifies attack patterns into categories like spoofing,
resource depletion or exploitation of authentication.
Figure 2 shows an excerpt of this classification tree.

The attack pattern description schema explicitly
includes related security design patterns. However,
only a few attack patterns of the catalog actually men-
tion design patterns.

7.2 Taxonomy

We have decided to align design patterns with attack
patterns of the CAPEC catalog and to suggest a tax-
onomy based on the description of attack patterns and
the purpose and intent of security design patterns.
This taxonomy can be considered as a concretion of
the design pattern classification based on the STRIDE
model, since the attack patterns catalog together with
its classification tree is a concretion thereof.

The advantage of such a taxonomy is the fact that
users can easily see relevant security design patterns
when identifying specific attack patterns. It further
helps to identify similar design patterns. Security

SECRYPT 2009 - International Conference on Security and Cryptography

392



design patterns in the same attack pattern category
may be similar or even redundant. Thus, our taxon-
omy will help to rationalize the security design pat-
tern landscape. We will provide a few examples to
emphasize this fact.

The CAPEC catalogue defines a man-in-the-
middle attack (attack pattern ID 94). This attack aims
at the communication channel between a server and
a client. Attackers try to eavesdrop data transmit-
ted between server and client. The intent of the se-
cure pipe pattern (Steel et al., 2005) and the secure
channel pattern (Schumacher et al., 2006) aim at se-
curing the communication channel between different
entities. Both patterns are similar and help to pre-
vent successful man-in-the-middle attacks. If design-
ers fear a planned system might be susceptible to such
attacks, the suggested taxonomy enables them to se-
lect appropriate patterns easily.

Another example is an SQL injection attack (at-
tack pattern ID 66). This attack targets at software
that creates SQL statements out of unchecked user
input. When user input is not validated carefully, it
may be possible to create user input by appending
SQL command fragments that may cause unexpected
harmful database queries like modification, disclosure
or deletion of data. The interception validator pattern
(Steel et al., 2005) aims at checking and validating
user input and therefore helps to avoid SQL injection
attacks. The client input filter pattern (Kienzle et al.,
2002) follows the same purpose. Furthermore, attack-
ers performing a dictionary-based password attack try
to guess user passwords by using words in a dictio-
nary (attack pattern ID 16). The account lockout pat-
tern (Kienzle et al., 2002) helps to avoid such attacks
by limiting the number of incorrect login attempts.

Applications must log events and actions in order
to guarantee accountability and non-repudiation and
for forensic purposes. When a target system does not
properly the control the log file, an attacker might ma-
nipulate or forge it (Log injection-tampering-forging
attack, pattern ID 93). This has an impact on the ac-
countability and non-repudiation of actions and may
lead to incorrect forensic analysis. The secure logger
pattern (Steel et al., 2005) provides instructions for
properly handling logging facilities.

7.3 Validation

In a first iteration, we have been able to assign some
40 security design patterns to attack patterns. So far,
our assignments rely on semantic analysis of the at-
tack pattern descriptions and on security design pat-
tern descriptions. We will have to validate the cor-
rectness and usefulness of the classification, i.e., to

Security Design Patterns

Attack Patterns

Test Cases

Assignment

Assignment validation

Vulnerability determination

Figure 3: Assignment Validation Triplet.

test whether a security design pattern actually helps
to deter from a successful attack described by an at-
tack pattern. It is also necessary to check whether
non-experts actually will be able to select appropriate
patterns in specific situations.

We envision an approach for the validation of our
assignments based on test cases, see Fig. 3. For each
attack pattern one or more test cases should be de-
fined. These test cases can be used to check whether
the attack described by the pattern can be executed
successfully on a particular software system. The as-
signment is valid if the application of the security de-
sign pattern prevents such an attack from being per-
formed successfully, or at least increases the resis-
tance of the system against such attacks.

Our goal is to have a list of attack patterns with
corresponding security design patterns with test cases.

8 CONCLUSIONS

We have introduced design patterns and presented an
overview of security design patterns. In the literature,
there are many different security design pattern defi-
nitions and specifications. Also, different taxonomies
for security design patterns are available. We ar-
gue that these taxonomies are not adequate for non-
experts in order to select patterns in specific situa-
tions. We have therefore introduced a new taxonomy
that is based on attack patterns.

In the literature, there are several approaches on
how to determine the quality of security design pat-
terns. But there is a lack on sufficiently impartial
quality measures. The two most important aspects
in this context are documentation and repeatability.
First, security design patterns have to be documented
precisely enough to let non-experts understand and
apply them. Second, test cases are needed to let non-
expert users find out whether the pattern had been ap-
plied correctly, i.e., attacks will indeed be prevented.

In the future, we plan several projects for the as-
signment validation as well as for a security pattern
evaluation based on test cases. These projects addi-
tionally aim on determining whether non-experts are
able to apply security design patterns or further oper-
ationalisation of security knowledge is required.

A SECURITY DESIGN PATTERN TAXONOMY BASED ON ATTACK PATTERNS - Findings of a Systematic
Literature Review

393



REFERENCES

Barnum, S. (2008). Common Attack Pattern Enumera-
tion and Classification (CAPEC) Schema Descrip-
tion. Cigital Inc., http://capec.mitre.org/about/ doc-
uments.html.

Barnum, S. and Sethi, A. (2006). Introduction to at-
tack patterns. Technical report, U.S. Dept. of
Homeland Security, https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/attack/585-
BSI.html.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M.,
and Khalil, M. (2007). Lessons from applying the sys-
tematic literature review process within the software
engineering domain.Journal of Systems and Software,
80(4):571–583.

Buschmann, F., Henney, K., and Schmidt, D. C. (2007).
Pattern-Oriented Software Architecture Volume 4: A
Pattern Language for Distributed Computing. Wiley
& Sons.

Fernandez, E. B., Fonoage, M., VanHilst, M., and Marta, M.
(2008). The secure three-tier architecture pattern. In
Proc. of International Conference on Complex, Intelli-
gent and Software Intensive Systems, pages 555–560,
Los Alamitos, CA, USA. IEEE Computer Society.

Fernandez, E. B. and Pan, R. (2001). A pattern language
for security models. InProceedings of PLoP 2001
Conference.

Fernandez, E. B. and Yuan, X. (2007). Securing analysis
patterns. InACM-SE 45: Proceedings of the 45th an-
nual southeast regional conference, pages 288–293,
New York, NY, USA. ACM.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Hafiz, M., Adamczyk, P., and Johnson, R. E. (2007). Orga-
nizing security patterns.IEEE Software, 24(4):52–60.

Hafiz, M. and Johnson, R. E. (2006). Security patterns and
their classification schemes.

Halkidis, S. T., Chatzigeorgiou, A., and Stephanides, G.
(2004). A qualitative evaluation of security patterns.
In Proceedings of the 6th International Conference on
Information and Communications Security (ICICS),
pages 132–144, Malaga, Spain. Springer.

Heyman, T., Yskout, K., Scandariato, R., and Joosen, W.
(2007). An analysis of the security patterns landscape.
In SESS ’07: Proceedings of the Third International
Workshop on Software Engineering for Secure Sys-
tems, page 3, Washington, DC, USA. IEEE Computer
Society.

Hoglund, G. and McGraw, G. (2004).Exploiting Software
- How to Break Code. Addison Wesley.

Horvath, V. and Dörges, T. (2008). From security patterns
to implementation using petri nets. InSESS ’08: Pro-
ceedings of the fourth international workshop on Soft-
ware engineering for secure systems, pages 17–24,
New York, NY, USA. ACM.

Howard, M. and Lipner, S. (2006).The Security Develop-
ment Lifecycle. Microsoft Press.

Kienzle, D. M. and Elder, M. C. (2001). Final
technical report: Security patterns for web
application development. Technical report,
http://www.scrypt.net/c̃eler/securitypatterns/final

Kienzle, D. M., Elder, M. C., Tyree, D., and
Edwards-Hewitt, J. (2002). Security pat-
terns repository version 1.0. Technical report,
http://www.scrypt.net/˜celer/securitypatterns/ reposi-
tory.pdf.

Kitchenham, B. (2004). Procedures for undertaking sys-
tematic reviews. Technical report, Computer Science
Department, Keele University (TR/SE-0401) and Na-
tional ICT Australia Ltd (0400011T.1).

Markus Schumacher, Eduardo Fernandez-Buglioni, D. H.
F. B. P. S. (2005).Security Patterns. Integrating Se-
curity and Systems Engineering (Wiley Series in Soft-
ware Design Patterns). Wiley & Sons.

McGraw, G. (2006).Software Security: Building Security
In. Addison-Wesley.

Romanosky, S. (2001). Security design patterns. Tech-
nical report, http://www.cgisecurity.com/lib/ security-
DesignPatterns.pdf.

Schumacher, M. (2002). Security patterns.Informatik Spek-
trum, Juni 2002:220–223.

Schumacher, M., Fernandez-Buglioni, E., Hybertson, D.,
Buschmann, F., and Sommerlad, P. (2006).Security
Patterns : Integrating Security and Systems Engineer-
ing (Wiley Software Patterns Series). John Wiley &
Sons.

Steel, C., Nagappan, R., and Lai, R. (2005).Core Security
Patterns: Best Practices and Strategies for J2EE(TM),
Web Services, and Identity Management. Prentice Hall
PTR.

Trowbridge, D., Cunningham, W., Evans, M.,
Brader, L., and Slater, P. (2004). Describ-
ing the Enterprise Architectural Space. Mi-
crosoft, http://msdn.microsoft.com/enus/library/
ms978655.aspx.

Viega, J. and McGraw, G. (2001).Building Secure Soft-
ware: How to Avoid Security Problems the Right Way.
Addison-Wesley Professional.

Weiss, M. and Mouratidis, H. (2008). Selecting security
patterns that fulfill security requirements. InIEEE In-
ternational Conference on Requirements Engineering,
pages 169–172. IEEE Computer Society.

Yoder, J. and Barcalow, J. (1997). Architectural patterns
for enabling application security. InProceedings of
the 4th Conference on Patterns Language of Program-
ming (PLoP’97).

Yoshioka, N., Washizaki, H., and Maruyama, K. (2008). A
survey on security patterns.Progress in Informatics,
(5):35–47.

SECRYPT 2009 - International Conference on Security and Cryptography

394


