
XIPE
An XML Integrated Processing Environment

Anguel Novoselsky and Zhen Hua Liu
Oracle Corporation, 400 Oracle Parkway, Redwood Shores, CA 94065, U.S.A.

Keywords: XML, XQuery, XQuery Scripting Extension, XQuery Update Facility, XSLT, XPath, XML DB, Software

Engineering.

Abstract: As XML becomes a common flexible data model for data exchange and representation, more and more

adoptions of “XML-only” application design paradigm start to appear. This pure XML based approach

views XML as a logical data model and uses the high-level XML declarative and imperative programming

languages, such as XQuery, XQuery scripting extension, XQuery Update Facility, XQuery Full Text,

XPath, XSLT, as the primary languages for application development. The “XML only” paradigm has its

merits because it promotes the opportunities of global cross-tier optimisations and eliminates the impedance

mismatches between different data models and different programming language styles that exist in the

alternative “multi-language” approach. In this paper, we present a “pure” XML Integrated Processing

Environment (XIPE) built around an XML Virtual Machine (XVM) and XML Data Repository (XDR). We

present the XIPE key components - XCompiler, XVM, XQDOM, XML Tree Index, … etc, that are needed

to build such a programming environment. We also show the design rationale and principles we apply to

build each one of the components. The goal is to make the XIPE itself open, flexible and scalable. In order

to achieve that, we use an interface-based component interaction model and use the so called “light” and

“heavy” data repositories, which helps XIPE to scale seamlessly with different sizes, shapes and

characteristics of the underlying XML.

1 INTRODUCTION

XML and its associated technologies have been

widely used for application development. With the

emergence of high-level XML languages, such as

XQuery/XPath (Fernandez, 2007), XSLT (Kay,

2007) and with the help of the recent XQuery

extensions XQuery/UF (Chamberlin, Florescu,
2008), XQuery/FT (Amer-Yahia, 2008), XQuery/SE

(Chamberlin, Engovatov, 2008), the number of

“pure XML” applications started to grow. The “pure

XML” approach is characterized with using XML as

a single data model and using an XML high-level

language for application development.

The design of XSLT, XPath and especially

XQuery was heavily influenced by SQL and this is

why they are considered as declarative languages.

Declarative languages let the users to specify what

they want instead of how to do it. The XML
languages can be used and processed as queries but

unlike SQL they are not restricted to be used in SQL

like way only. Therefore, there have been

considerable efforts from programming language

and database communities to find an efficient

processor implementation for them. XQuery

scripting extension (SE) further adds imperative

procedural constructs, such as statements and

assignments, which from one hand improves the

language expressiveness but on the other hand adds

more problems to processors designers.

XML data can range from highly structured data

to non-structured one, which affects the way XML is

stored. For example, the structured data can be
stored in relational DB with SQL language access

whereas unstructured data can be stored in a file

system in some kind of binary form with file system

interface to access it. In addition to that, the XML

Schema (Thomson, 2004) defines a wide range of

data characteristics, which widens the range of

possible XML representations. However, for

application builders, XML provides a single data

interface (DOM) plus type information (PSVI). In

this paper we call the combined interface XQDOM.

 In a multi-tier application, tiers are usually

programmed in different languages using different

85

Novoselsky A. and Liu Z. (2009).
XIPE - An XML Integrated Processing Environment.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 85-92
Copyright c© SciTePress

data models. For example, in a typical Web

application, the front web tier is coded in scripting

languages, such as Perl, PHP, manipulating XHTML

based text. The application server mid-tier is coded
in Java or C# using object oriented data model and

the database backend is coded in SQL with

relational data model. Optimization among tiers is

not feasible automatically and usually the decision

of what tier runs what code to manipulate what data

has to be determined ahead of time. If the same

application is build with one XML language

(XQuery) and uses XML data model only then a

global optimization among tiers is feasible with

possibility of applying data shipping or code

shipping techniques or both.
Based on our experience with XIPE, we believe

that a full-blown “pure” XML application

development environment should support both

declarative and imperative XML language

extensions and it should use a single data interface

for accessing the different underlying XML

representations. Also, it should allow users to easily

create a broad range of XML applications starting

from “light” standalone one to “heavy” multi-tier

DB based application.

This paper describes our experience of building

XIPE and how its design satisfies the above
requirements. In order to achieve that we comply

with the following design paradigms:

 XIPE components are self-contained

and plug-able. They communicate with

each other through well-defined

abstract interfaces, which hide the

implementation details. That allows

each component to be swapped when

necessary in order to satisfy the new

requirements.

 The “light” and “heavy” data repository

models allow XIPE to scale seamlessly

when deployed on variety of platforms

dealing with wide range of XML

volume-processing requirements.

The rest of the paper is organized as follows:

section 2 gives an architecture overview of various

components to support XIPE and discusses the most

important XIPE components in details. Section 3

discusses related work. Section 4 concludes the
paper.

2 XIPE ARHITECTURE

2.1 Architecture Overview

The XIPE consists of the following components:

 XCompiler - it compiles XPath, XSLT,

and XQuery/SE/UF/FT into a machine

and platform independent XML byte-

code. Because the byte-code is platform

independent it can be compiled, stored,

distributed and executed on XIPE on

different tiers;

 XVM, an XML Virtual Machine
component that runs the byte-code

produced by the compiler. The virtual

machine uses stacks for function calls,

single-assigned variables, parameters

and intermediate results and a heap for

multi-assigned variables and some

intermediate XML data;

 XML Data Repository (XDR) provides

an XML data abstraction on the top of

underlying XML data. The data

abstractions is implemented as an
extended DOM interface (XQDOM)

that abstracts out the XML tree

creation, traversal, modification, node

type retrieval and XML document

deletion. The XDR provides both

“heavy weight” XML Data Base (XDB)

and “light weight” in-memory only

XQDOM implementations;

 XML Schema Processor - it includes

schema repository, schema compiler

and a validator. The schema compiler
compiles XML Schemas into an

internal schema object. The XIPE

components can access the schema

objects via an abstract XML Schema

Interface. Like XDR, schema objects

offer both “heavy weight” (XDB

schema) and “light weight” (in-memory

only) schema implementations;

 XML Parser component that provides

fast XML parsing, implementing both

SAX, DOM and XQDOM (with XML

schema processor) output over textual
XML input data;

 XDebugger – a symbolic debugger that

is able to control the XVM execution

and to provide an introspection of the

run time stack and variables via JDWP

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

86

(Java 2 SDK) protocol to the external

debugger agent, such as JDeveloper;

 XEditor provides a language sensitive,

GUI based, editing for XIPE supported
XML languages.

XIPE components are shown in Figure 1.

Figure 1: XVEE architecture.

All XML languages supported by XIPE share the

same XQuery data model (XQDM) (Liu and,

Novoselsky, 2006) and the same function and

operator library (Liu and Krishnaprasad, 2005).

Therefore, they share a common compiler internal

representation and a common byte-code instruction

set. The byte-code is platform independent it can be

distributed to XIPE running in potentially different
tiers and platforms and executed without

recompilation. The instruction set is RISC (Reduced

Instruction Set Computing) like. However, it may

interleave with CISC (Complex Instruction Set

Computing) style instructions that can compute

certain XQuery expressions more efficiently by

delegating the computation to other processors.
The XVM runs byte-code that manipulates data

on the main stack where all function calls, XSLT

template invocation, local variables and expression

results reside. Execution can be stopped with

debugger instructions. The debugger component

communicates with external GUI debugger agent via

JDWP protocol.

As it was mentioned earlier XIPE addresses the

scalability requirement by using light and heavy

XDR. When the XML document size is small,

creating DOM tree in memory is sufficient and the
most efficient method to implement XQDM

interface. However, when XML document size is

large or large document collections are to be

processed, then XIPE uses page-able XML Tree

Indexing to implement XQDM interface, which can

scale with limited memory environment.

Direct XPath expression evaluation or value

comparison via XQDOM interface may not be

efficient with large XML document collection

containing millions of XML documents. In such an

environment, XMLIndex (Murthy, 2007) (Liu,

2007) is built on the document collection and for
XIPE the leveraging of that index becomes critical.

In such a case the XCompiler generates CISC like

instructions that use the host-indexing component to

efficiently evaluate certain fragments of the XQuery

expressions.

Similar to scale with large size XML document,

scaling large size XML Schema also needs to be

addressed. XML Schema component may have its

own XML Schema and index support. However, this

is hidden from the rest of the components as the

schema information is obtained only through XML
Schema Interface.

2.2 XIPE Components

2.2.1 XCompiler

XCompiler is traditionally multi-phased designed

where the compilation consists of four processing:

 Parsing and semantic analysis.

 Platform-independent optimizations.

 Platform-specific optimizations.
 Code generation.

During the first phase, the input program is

parsed, semantically analyzed and converted into an

Intermediate Language (IL) representation. The IL

forms a graph, where graph nodes represent

 XVM

X
C
o

m
p
i
l
e
r

 XDebugger

 XML Parser

 XML data XML Schema

 data

Schema Compiler

XQuery

XSLT

XPath

XQuery/SE

 XEditor

XQDOM

Interface

Validator

Schema

Interface
Light
schema

Heavy
schema

Light
DOM

Heavy
DOM

 XVM

Byte-

code

XIPE - An XML Integrated Processing Environment

87

operations and semantic entities, forward arches

represent control flow and backward arches stand for

function and variable references. The second phase

uses data-flow analysis in order to perform loop
optimizations, let clauses code replacement, constant

propagations, type dependent optimizations, … etc.

The third phase applies platform-specific iterator-

based CISC optimizations, if the corresponding

plug-able components are registered with the

compiler. The last phase generates the XVM byte-

code.

Figure 2: XCompiler Architecture.

Traditional imperative programming languages, such

as C/Java, require user to write code as a sequence

of computation steps. Side effects from each step are

visible to all subsequent steps. The computational

state for each step, is not explicitly saved because it

is captured by the result and side effects of the step.
Therefore, expressions in imperative language are

compiled into a set of RISC style instructions that

compute the result of an expression from each of the

sub-expressions in bottom up fashion. Some

processors may use a stack where results from sub-

expressions are pushed and popped. We call this

eager evaluation strategy.

On the other hand, the query execution engine

for declarative query languages uses lazy evaluation

(iterator) execution in order to avoid materialization

of large intermediate results (Graefe, 1993; Florescu,
2003). That is, results are not fully computed and

materialized until when they are absolutely needed

for consumption. Side effects are not applied

directly. Instead, they are recorded and are not

applied until the entire query is finished. This is

known as snapshot semantics. Consumer of query

language typically uses iterator interface to fetch a

subset of results at a time instead of the entire result

set at once. Therefore, expressions in declarative
query language are compiled into an expression

iterator tree, which is a tree of nodes, each of which

is responsible for computing one expression using an

iterator interface with its computational state stored

as part of the node. Execution is driven top down.

That is, consumer requests the top tree node for the

next set of results, then the top tree node passes

down the result fetching requests to the rest of the

nodes recursively and each node computes next set

of results from its previous computational state

stored in the node and derives the new computation
state stored in the node.

XQuery/SE and XSLT have both imperative

procedural and declarative query semantics.

XQuery/UF (Chamberlin, Florescu, 2008) explicitly

defines snapshot semantics for its updating

expressions while XQuery/SE (Chamberlin, 2008)

has a pure imperative semantics.

There is a trade-off between processing

declarative query construct using lazy evaluation

model versus eager evaluation model. The lazy

evaluation model scales with large data size but does

not scale with large program size because the entire
execution tree with all of its intermediate

computational have to be tracked. The eager

evaluation strategy scales with large program size

but not with large data size because intermediate

results have to be materialized. Eager evaluation

strategy is more efficient than lazy evaluation when

all intermediate results are needed to determine an

answer. However, eager evaluation strategy is sub-

optimal if only partial results are needed. In our

compiler design we try to combine both eager and

lazy strategies in order to achieve a sub-optimal
balance of the two.

XCompiler compiles sequential expressions into

sequential instructions so that they are evaluated in

eager evaluation manner. In run-time, XVM

executes the instructions and immediately consumes

the results. On the other hand, XCompiler can

compile non-sequential expressions into an iterator

CISC instruction, which contains a serialized

expression iterator tree, stored as part of the byte

code data segments. In run-time, the CISC tree is de-

serialized and executed. The result of the execution

is an iterator data object, whose elements are
consumed in an iterator manner.

XVM byte-code is a platform independent

sequence of two byte units. It has a header and a

body. The header contains byte-code description,

XQuery

XPath

XSLT

Parsing & Semantic Analysis

 Platform-Independent

Optimizations

Platform-Dependent Optimizations

 XVM Byte-code generation

XVM

byte-code
Iterator

 Host

Query

Qptimize

r

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

88

XQuery or XSLT or XPath version, total lengths and

offsets to each body section (Novoselsky, 2008).

The body contains sections for the byte-code itself

(which are referred as XVM virtual instructions),
strings, numbers (as strings), string-tables, types,

patterns, pattern tables, external function tables, …

etc. All byte-code references are in the form of

relative offsets (as a number of units) from the

beginning of the corresponding section or offsets

from the current address. Each virtual instruction has

op-code, operands and flags. The flags carry

information about the operand type, XPath step

modes, sequential type occurrence, … etc.

XCompiler implements both static and dynamic

(default) modules linking. If the static linking mode
is set, all dependent modules are compiled together

with the main module, all external references are

resolved and one composite executable byte-code

module is generated. The result byte-code contains

all dependent modules with no demarcation

boundary between them. If dynamic mode is set, all

modules are compiled separately and their byte-code

has an extended header containing tables for

imported and exported entities. The exported entities

are top-level function and variables while the

imported ones are all external references that refer to

entities in other modules plus type references. When
compiler compiles an import statement, it reads the

imported module header and adds all module export

entities to the symbol-table. If the compiler

encounters a reference to imported entity, it adds it

to the current module import-table. All external

references are resolved by name and module id,

quite like references in Java classes. In run-time,

when XVM executes an instruction that refers to

unresolved imported entity, it checks if the

corresponding module is loaded. If the module is not

loaded, the XVM loads it and allocates a table for
the module external references. As it was said

earlier, the external references are resolved lazily on

demand. The XVM dynamic module linking is

better suited for larger applications that use module

libraries. Also, it has a smaller run time memory

footprint. On the other hand the static linking has a

minor performance advantage over the dynamic one.

When XIPE works with a “heavy” XDR (usually

an XML DB) some of CISC instruction can be

executed directly by XDR host processor. To

accomplish this, XCompiler provides a Query Push-

Down Interface, which allows the host XDR to plug
in a host query optimizer. The host query optimizer

has a detailed knowledge of the underlying XML

data indexing so it can decides what part of the input

program will be compiled into CISC instructions. In

run-time the corresponding host iterator-executer

will be invoked by the XVM as an external function

and will perform the iterator tree execution. The

returned iterator data object does not materialize the
result sequence. Instead, it provides an iterator

interface (open-fetch-close) to its consumer.

2.2.2 XML Virtual Machine (XVM)

The data model all XML languages referred here use

the XQMD (Fernandez, 2007), which treats data
objects as sequence of items. The item type can be a

basic built-in type, such as number, string, dates etc,

or an XML node reference. The size of the sequence

is dynamic and so is the size of strings.

XQuery/UF/FT, XSLT and XPath are functional

languages. They don’t allow side effects and their

variables are single-assigned only. That means that a

single stack can be used to hold their intermediate

results during execution. This is why XVM uses

stacks to hold XQDM instances in order to minimize

dynamic memory allocations. Intermediate results
that have a fixed data size, such as number, dates

etc, are loaded into the system main-stack. The

content of the intermediate results with a dynamic

data size, such as strings and sequences, is stored

into complimentary content stacks with an object

descriptor in the main-stack. That way, since

intermediate results are transient, the majority of the

intermediate computation results do not require

additional memory allocation. Only when the stack

is full, XVM dynamically grows that stack with an

additional segment. Also, all single-assigned

variables, function and template parameters,
function and template call-frames reside in the main

stack. Logically, XVM doesn’t need more than one

stack but because run-time objects have a dynamic

size the loop variables can’t be hold in pre-allocated

slots in the main stack. This is why XVM uses a

second stack (context-stack) for loop and context

variables. Both, the main-stack and the context-stack

have the corresponding item, string and node stacks

for dynamically sized objects.

However, XQuery/UF/SE introduces some

sequential (non-functional) construct such multi-
assigned variables and DOM updates. That means,

that dynamically sized multi-assigned variable

values can’t be stored in the complimentary stacks

anymore. To hold such variable values XVM uses a

non-stack based dynamic memory (heap). Garbage

collector techniques are applied to free the memory

when the results are no longer needed.

XVM execution architecture is quite simple.

There is a set of functions, one for each instruction,

XIPE - An XML Integrated Processing Environment

89

implementing the instruction semantics. The XVM

main loop moves the instruction pointer over byte-

code instructions and calls the corresponding

function. The default instruction pointer step is one
instruction. Only instructions like „branch‟ or „call‟

can change the instruction pointer according to their

operand values. Each instruction takes its operands

from the main-stack and pushes back the result.

Figure 3: XVM Architecture.

When a function is called or an XSLT template
is activated, the corresponding function or template
stack frame is pushed into the XVM-stack. The
frame contains the return address, current stack
pointers, current node, a descriptor address plus (if
needed) slots for parameters and local variables. The
result of an execution is a sequence, which XVM
provides with an iterator interface to allow XML
applications to fetch the result. However, XVM also
provides alternative interfaces to serialize the output
so the embedding applications can fetch the result in
the form of DOM trees, SAX events or XML text. In
such a case of non-sequence output, XVM generates
SAX-like events and depending on the current
output mode, the events are directed to the DOM
builder, Streamer or SAX event generator.

2.2.3 XML Data Repository (XDR)

XVM interacts with XML data layer via XQDOM

interface. XQDOM interface provides full

navigation capabilities of the DOM tree in order to

implement the XPath child-parent-sibling axis

traversal semantics and provides a virtual XML

storage layer for XVM.

When XML input size is small, building a

“light” in-memory DOM tree that implements

XQDOM interface is efficient. However, when the

input XML is large or in a case of “heavy” XML

DB, a scalable XQDOM implementation is required.
To accomplish this, an intermediate XML Tree Index

(XTI) layer is used. XTI works as a mediator

between XML users and the actual XML

representation. It provides XQDOM interface for

XML users and it accesses the physical XML

storage via a simple XML Content Interface (XCI).

XCI has the classical file system methods such as

open, read, write, seek and close plus few other

methods for data storage and retrieval. XTI manages

a set of fixed size pages, where each one of them

contains a constant number of XTI nodes. Since

nodes have a constant size, they can be addressed by
an offset (number of nodes) from the beginning of

the document. Nodes contain their parent, child and

sibling node addresses (offsets), making that way the

full axis traversal more efficient. For element or

attribute nodes, the encoded qualified-name (Bray,

2006) is stored in the node in order to speed up name

comparisons during XPath evaluation. For text,

comment and processing-instruction nodes, only a

locator to the content of the nodes is stored in the

node. This approach efficiently separates the

XQDOM navigational fixed size component (XTI)
from the physical variable size XML data

representations. This separation allows applying

significantly more efficient memory management

algorithms for the fixed size XTI nodes. Also, XTI

can be viewed as an index that provides efficient

node navigational access over the physical XML

content, which remains opaque to the XTI layer. Not

all XTI pages are needed to be loaded into memory

at a time. Instead, they are cached as an in memory

page cache, which keeps frequently accessed pages.

This “heavy” DOM scales very well with any XML

document size compared to the “light” in-memory
DOM approach where all DOM nodes have to be

loaded in memory.

 Main

 Stack

Function

 frame

string

sequenc

e

node-set
Node

Stack

Item

Stack

String

Stack

Context

 Stack

node-set

sequenc

e

Node

Stack

Item

Stack

String

Stack

node-set

Byte-code

Virtual

Instruction

Logic

push child comp store

Current

Instruction

XVM byte-

code

Ite

rator

Iterator

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

90

2.2.4 XML Schema Component

Unlike relational data schema where schema is

typically much smaller than actual data, XML

Schema can be large and complex. In fact, XML

Schema is served as data validation constraint

instead of playing the traditional meta-data role.

Although some XML schemas are small, others can

be large. Therefore, the design of building DOM tree

for XML schema and providing XML schema access

through in memory data structures backed up by

DOM tree may not be scalable solution with large

XML schema. XIPE handles XML schemas similar
to the way it handles XML data. There is a “light-

weight” in-memory schemas and “heavy-weight”

scalable schemas stored in schema repository. XIPE

schemas are accessed by XIPE components via an

XML Schema Interface. The interface contains all

the methods needed for schema navigation and

validation. When XML schema is initially loaded

into the system, it goes through a schema

registration process where the schema compiled

into an internal format and stored as a set of

dependable modules. Each module can be separately

loaded into memory. The module has logical
pointers to imported modules, which are loaded into

memory only when needed. The idea is similar to

the one of XTI page cache so that not all schema

information needed to be loaded in memory at once.

3 RELATED WORKS

COMPARISON

There are lots of research effort of processing XML

programming languages from both SIGPLAN and

SIGMOD communities. There are also both

commercial and open source efforts of providing

XML language processing in variety of

environments. Our XIPE approach is different from

others in the way that we combine both declarative
and imperative language processing paradigms in

one place with the help of XCompiler and XVM.

The idea of handling imperative languages by using

a byte-code and a virtual machine is not new.

However, processing XQuery/SE/UF/FT and XSLT

using an imperative virtual machine is not common

mainly because these languages have been primarily

studied as an XML database query languages. To

our knowledge, XSLT VM (Novoselsky, 2000) is

the first virtual machine built for processing XSLT.

XVM is the first single virtual machine capable to

process all XQuery/SE/UF/FT, XPath and XSLT
(Novoselsky, 2008). This paper is the first to show

the advantages of combining both declarative and

imperative approaches of handling XML

programming languages. Furthermore, this paper

addresses XML Tree Indexing as a scalable way of
handling large XML documents. Brothner (Brothner,

2004) proposes compiling XQuery into a Java byte-

code so that JVM can be used to execute XQuery.

However, the idea of combing both declarative and

imperative language processing technique is not

mentioned plus JVM is not designed to work with

XQuery Data Model.

Our second unique approach is that we design

XIPE with different size of XML data and XML

schemas in mind. We have articulated the key

concepts of XML Tree Indexing component and
XML Schema Indexing component that are essential

to scale large size XML document and schema.

However, they are all abstracted using XQDOM

interface and XML Schema Interface from the rest

of components. This is particularly different from

other approaches where decisions of XML storage

are typically hardwired with the XQuery/XSLT

processors.

4 CONCLUSIONS

In this paper, we propose the concept of XIPE with

various key components and the component

architecture paradigms. We follow the interface

based design approach so that implementations for

these interfaces can be open and flexible. Then when

XIPE is embedded into different host system,

platform-specific native components can be plugged.

In fact, since XML data and schema size can vary

within a broad range, these components are designed
with “light-weight” vs. “heavy-weight” XML data

design paradigm in mind.

For XML languages processor architecture we

follow the classical programming language compiler

and virtual machine design paradigms as the basis.

We anticipate that for pure XML application

environment, using XQuery/SE/UF/FT languages to

write business application logic will be the main

stream. Imperative XQuery/SE language constructs

will be used heavily and many XQuery modules will

be independently developed and shared to build

large-scale XML application programs. This is the
perfect use case for XVM imperative or “eager” type

of processing. Meanwhile, the XML language

compiler and virtual machine allow declarative

XQuery and XSLT constructs to be efficiently

processed by using lazy evaluation technique

whenever needed. These declarative constructs

XIPE - An XML Integrated Processing Environment

91

processed in a “lazy” non byte-code execution

manner are like CISC instructions embedded within

a stream of RISC instruction and are executed on a

native co-processor. This so called “mixed
RISC/CISC” way of processing XML languages

achieves the best balance between eager and lazy

evaluation and generally yields better performance

compared with systems that use one technique only.

REFERENCES

Boag, S., …, 2007. XQuery 1.0: An XML Query
Language. In http://www.w3.org/TR/xquery/

Amer-Yahia, S., …, 2008. XQuery and XPath Full Text
1.0. In http://www.w3.org/TR/xquery-full-text/

Bray, T., …, 2006. Namespaces in XML 1.0. In
http://www.w3.org/TR/REC-xml-names/#ns-using

Bothner, P., 2004. Compiling XQuery to Java bytecodes.
In XIME-P 2004: 31-36.

Chamberlin, D., Engovatov, D., …, 2008. XQuery
Scripting Extension 1.0. In
http://www.w3.org/TR/xquery-sx-10/

Chamberlin, D., Florescu, D., …, 2008. XQuery Update
Facility. In http://www.w3.org/TR/xquery-update-10/

Chamberlin, D., Carey, M., …, 2006. XqueryP: An XML
Application Development Language. In
http://2006.xmlconference.org/proceedings/38/

presentation.pdf
Fernandez, M., …, 2007. XQuery 1.0 XPath 2.0 Data

Model. In http://www.w3.org/TR/xpath-datamodel/
Florescu, D., Hillery, C., …, 2003. The BEA/XQL

streaming XQuery Processor. In VLDB 2003: 997-
1008.

Fourny, G., Kossmann, D., …, 2008. XQuery in the
browser. In SIGMOD Conference 2008, 1337-1340.

Graefe, G., 1993. Query Evaluation Techniques for Large
Databases. In ACM Computing Surveys 25(2):73-170.

Liu, Z., Krishnaprasad, M., 2005. Native XQuery
Processing in Oracle XML DB. In SIGMOD 2005.

Liu, Z., Novoselsky, A., 2006. Efficient XSLT Processing
in Relational Database System. In VLDB 2006: 1106 –
1116.

Liu, Z., Krishnaprasad, M., …, 2007. XMLTable Index -
An Efficient Way of Indexing and Querying XML

Property Data, In ICDE 2007.
Java 2 SDK. Java Debug Wire Protocol (JDWP). In

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jdwp/jd
wp-protocol.html

Kay, M, 2007. XSL Transformations (XSLT) Version 2.0.
In http://www.w3.org/TR/xslt

Le Hors, A., …, 2000. Document Object Model (DOM).
In http://www.w3.org/DOM/

Malhotra, A., …, 2007. XQuery 1.0 XPath 2.0 Functions
and Operators. In http://www.w3.org/TR/xquery-
operators/

Murthy, R., Liu, Z., …, 2005. Towards An Enterprise
XML Architecture , In SIGMOD 2005.

Novoselsky, A., Karun, A., 2000. XSLT VM – An XSLT
Virtual Machine. In
http://www.gca.org/papers/xmleurope2000/papers/s35
-03.html

Novoselsky, A., Liu, Z., 2008. XVM – A Hybrid
Sequential-Query Virtual Machine for Processing

XML Languages. In PLAN-X 2008.
Thomson, H., …, 2004 XML Schema Part 1. In

http://www.w3.org/XML/Schema

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

92

