
 

GENERAL SPANNING TREES AND CORE LABELING 

Yangjun Chen 
Dept. of Applied Computer Science, University of Winnipeg, R3B 2E9 Manitoba, Canada 

Keywords: General Spanning Trees, Core Labelling, Reachability Queries, Transitive Closure. 

Abstract: The checking of graph reachability is an important operation in many applications, by which for  two given 
nodes u and v in a directed graph G we will check whether u is reachable from v through a path in G or vice 
versa. In this paper, we focus ourselves on this issue. A new approach is proposed to compress transitive 
closure to support reachability. The main idea is the concept of general spanning trees, as well as a new 
labeling technique, called core labeling. For a graph G with n nodes and e edges, the labeling time is 
bounded by O(n + e + t⋅b), where t is the number of non-tree edges (edges that do not appear in the general 
spanning tree T of G) and b is the number of the leaf nodes of T. It can be proven that b equals G’s width, 
defined to be the size of a largest node subset U of G such that for every pair of nodes u, v ∈ U, there does 
not exist a path from u to v or from v to u. The space and time complexities are bounded by O(n + t⋅b) and 
O(logb), respectively. 

1 INTRODUCTION 

Given two nodes u and v in a directed graph G = (V, 
E), we want to know if there is path from u to v. The 
problem is known as graph reachability. In many 
applications, such as transportation network, internet 
traffic analyzing, semantic web, and computer 
vision, as well as metabolic network and XML query 
processing, graph reachability is one of the most 
basic operations, and therefore needs to be 
efficiently supported. Among the above applications, 
some use sparse graphs, such as XML documents 
which are a labeled tree plus several IDREF/ID 
links, and metabolic networks which are an evo-
lution tree plus some genes’ interactions. 

A naive method is to precompute the reachability 
between every pair of nodes – in other words, to 
compute and store the transitive closure (TC for 
short) of a graph. Then, a reachability query can be 
answered in constant time. However, this requires 
O(n2) space, which makes it impractical for massive 
graphs. Another method is to compute the shortest 
path from u to v over such a large graph on demand, 
which results in high query processing cost. 

In this paper, we propose a new approach to 
compress transitive closure and to speed up 
reachability queries for massive graphs. The main 
idea behind them is to recognize a subset of nodes of 
G and assign them labels in such a way that the 
reachability through non-tree edges can be deter-

mined by checking such labels only. For this 
purpose, we introduce the concept of general 
spanning trees and a new labeling technique, the so 
called core labeling. Based on them, the space 
overhead for storing a transitive closure can be 
reduced to O(n + t⋅b), where n is the number of the 
nodes in G, t is the number of non-tree edges (edges 
that do not appear in the general spanning tree T of 
G) and b is the width of G, defined to be the size of 
a largest node subset U of G such that for every pair 
of nodes u, v ∈ U, there does not exist a path from u 
to v or from v to u. The query time is bounded by 
O(logb); and the labeling time is bounded by O(n + 
e + t⋅b), where e is the number of the edges in G. 

The remainder of the paper is organized as 
follows. In Section 2, we review the related work. 
Section 3 is devoted to the description of our 
algorithms. Section 4 is a short conclusion. 

2 RELATED WORK 

In the past two decades, many interesting labeling-
based methods have been proposed to speed up 
reachability query evaluation, which can be roughly 
classified into two groups: strategies for sparse 
graphs and strategies for non-sparse graphs.  

The Dual labeling discussed in (Wang et al., 
2006) is a method for sparse graphs. The main idea 
of this method is to assign to each node v a dual 
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label: (av, bv) and (xv, yv, zv), which can be used to 
check reachability. The size of all labels is bounded 
by O(n + t2) and can be produced in O(n + e + t3) 
time, where t is the number of non-tree edges. The 
method proposed by Cohen et al. (2004) is another 
strategy for sparse graphs and labels a graph based 
on the so-called 2-hop covers. However, to find a 
well-constructed 2-hop cover is a NP-hard problem.  

There are a bunch of strategies for non-sparse 
graphs, such as those discussed in (Agrawal et al., 
1989; Jagadish, 1990). In (Jagadish, 1990), the 
reachablity problem is transformed to a min flow 
problem, which needs O(n3) time to label a graph. In 
(Agrawal et al., 1989), Agrawal et al. proposed a 
method based on interval labeling, which requires 
O(n) query time in the worst case.  

There are also some other graph labeling 
methods, such as the methods using signatures 
(Teuhola, 1996), PE-Encoding (Cohen, 1991) and 
PQ-Encoding (Zibin and Gil, 2001). The idea of the 
signature-based method is to assign to each node a 
signature (which is in fact a bit string) generated 
using a set of hash functions. The space complexity 
is O(l⋅n), where l is the length of a signature. But 
this encoding method suffers from the so-called 
signature conflicts (two nodes are assigned the same 
signature). Moreover, in the case of DAGs, a graph 
needs to be decomposed into a series of trees; and no 
formal decomposition was reported in that paper. 
The PE-Encoding and the PQ-Encoding are similar 
to the 2-hop labeling, but with higher computational 
complexities. The methods discussed in (Schenkel et 
al., 2004; Schenkel et. al., 2006) reduce 2-hop’s 
labeling complexity from O(n4) to O(n3), but are still 
not applicable to massive graphs. The method 
proposed in (Cheng et al., 2006) is a geometry-based 
algorithm to find high-quality 2-hop covers. It also 
improves the 2-hop labeling by avoiding 
computation of transitive closures, which is required 
by Cohen’s to find 2-hop covers. However, it has the 
same theoretical computational complexities as 
Cohen’s method (Cohen, 2004). Finally, the method 
discussed in (Thorup, 2004) is suitable only for 
planar graphs with O(nlogn) labeling time and 
O(nlogn) space. The query time is O(1). 

 

3 NEW LABELING APPROACH 

In this section, we present our labeling approach. 
The input is a directed graph G with n nodes and e 
edges. We assume that it is acyclic. If not, we will 
find all the strongly connected components (SCCs) 
of G and collapse each of them into a representative 

node. Obviously, each node in an SCC is equivalent 
to its representative node as far as reachability is 
concerned. This process takes O(e) time using 
Tarjan’s algorithm (Tarjan, 1972). 

The main idea of our approach is to find a subset 
of nodes and assign them labels, which can be used 
to check reachability via non-tree edges. For this 
purpose, a new tree structure is generated for G, 
called the core of G, to figure out such nodes. In the 
following, we first show the tree labeling used in our 
approach in 3.1. Then, we define the core tree in 3.2. 
Next, we show our labeling scheme in 3.3. 

3.1 General Spanning Trees and Tree 
Labeling 

We begin our discussion by introducing the concept 
of general spanning trees, based on which a new 
labeling approach is developed. 
 
Definition 1 (General Spanning Trees). Let G be a 
DAG (acyclic directed graph). A tree (forest) T is 
called a general spanning tree if the following two 
conditions are satisfied: 

1. T covers G, i.e., for each node v ∈ G, we have 
v ∈ T. 

2. For each edge u → v in T, there exists a path 
from u to v in G. 

Since an edge u → v in G is also a path, a 
traditional spanning tree is a special case of general 
spanning trees. 

As an example, consider the graph G shown in 
Fig. 1(a), for which a general spanning tree T can be 
found as shown in Fig. 2. 

 
a [0, 12) a

 
Figure 1: A graph and a spanning tree. 

In T, special attention should be paid to the edge 
h → i, which corresponds to a path from h to i in G. 
We also notice that the number of the leaf nodes in T 
is 5 while any (traditional) spanning tree of G has at 
least 6 leaf nodes (see Fig. 1(b) for illustration). 

As demonstrated in (Chen, 2009), we can always 
find a general spanning tree with the least number of 
leaf nodes, which is bounded by b, the width of G. 
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Figure 2: A general spanning tree. 

Each node v is assigned an interval [start, end), 
where start is v’s preorder number and end - 1 is the 
largest preorder number among all the nodes in T[v]. 
So another node u labeled [start’, end’) is a 
descendant of v (with respect to T) iff start’ ∈ [start, 
end) (Wang et al., 2006). Fig. 2 helps for illustration. 

Let v and u be two nodes in T, labeled [a, b) and 
[a’, b’), respectively. If a ∈ [a’, b’), we say, [a, b) is 
subsumed by [a’, b’). In this case, we must also have 
b ≤ b’. Therefore, if v and u are not on the same path 
in T, we have either a’ ≥ b or a ≥ b’. In the former 
case, we say, [a, b) is smaller than [a’, b’), denoted 
[a, b) ≺ [a’, b’). In the latter case, [a’, b’) is smaller 
than [a, b). 

3.2 Core of G 

Now we define another important concept, the so-
called core of G. 

Let T be a general spanning tree of G. We denote 
by E’ the set of all the non-tree edges, i.e., the edges 
not appearing in T. Denote by V’ the set of all the 
end points of the non-tree edges. Then, V’ = Vstart ∪ 
Vend, where Vstart stands for a set containing all the 
start nodes of the non-tree edges and Vend for all the 
end nodes of the non-tree edges. 

 
Definition 2 (Anti-subsuming Subset). A subset S 
⊆ Vstart is called an anti-subsuming set iff |S| > 1 and 
no two nodes in S are related by ancestor-descendant 
relationship with respect to T. 

As an example, consider the general spanning 
tree shown in Fig. 2 once again. 

With respect to this spanning tree, Vstart = {d, f, g, 
h, i}. We have altogether 11 anti-subsuming subsets 
as shown in Fig. 3. 

 

 
Figure 3: Anti-subsumming subsets. 

Definition 3 (Critical Node). A node v in a 
spanning tree T of G is critical if v ∈ Vstart or there 
exists an anti-subsuming subset S = {v1, v2, ..., vk} 

for k ≥ 2 such that v is the lowest common ancestor 
of v1, v2, ..., vk. We denote by Vcritical the set of all 
critical nodes. 
 

In the general spanning tree shown in Fig. 2, 
node e is the lowest common ancestor of {f, g}, and 
node a is the lowest common ancestor of {d, f, g, h}. 
So e and a are two critical nodes. In addition, each v 
∈ Vstart is a critical node. So all the critical nodes of 
G with respect to T are {d, f, g, h, i, e, a}. We call a 
critical node trivial if it belongs to Vstart; otherwise, 
non-trivial. 

 
Definition 4 (Core of G). Let G = (V, E) be a 
directed graph. Let T be a spanning tree of G. The 
core of G with respect to T is a tree structure with 
the node set being Vcritical, in which there is an edge 
from u to v (u, v ∈ Vcritical) iff there is a path P from 
u to v in T and P contains no other critical nodes. 
The core of G with respect to T is denoted Gcore = 
(Vcore, Ecore). 
 
Example 1. Consider the graph G  shown in Fig. 1(a) 
and the corresponding spanning tree T shown in Fig. 
2. The core of G with respect to T is shown in Fig. 4. 
 

 
Figure 4: The core of G. 

3.3 Graph Labeling 

In this subsection, we show our graph labeling. The 
approach works in two steps. In the first step, we 
generate a data structure, called the core label (for 
G). It is in fact a set of interval sequences. In the 
second step, the core label is used to create non-tree 
labels for all the nodes in G. 

3.3.1 Core Labeling 

The core label for G is defined as below. 
 
Definition 5. Let Vcore = {v1, ..., vg} be the node set 
of Gcore. The core label for G is a set {L(v1), ..., 
L(vg)}, where each L(vl) (l = 1, ..., g) is an interval 
sequence associated with vl, satisfying the following 
two properties: 

(1) Let L(vl) = [
1l
,

1l
), ..., [
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the intervals in L(vl) are considered to be 
sorted.) 

(2) Let [a, b) be the interval associated with a 
descendant of vl with respect to G. There 
exists an interval [

il
, ) (1 ≤ i ≤ r) in L(vl) 

such that a ∈ [ , b ). 
a

il
b

il il

In order to generate the core label for G, we will 
first establish a graph, called a link graph, specified 
in the following definition.  

a

 
Definition 6 (Link Graph). Let G = (V, E) be a 
directed graph. Let T be a spanning tree of G. The 
link graph of G with respect to T is a graph, denoted 
Glink, with the node set being V’ (the end points of all 
the non-tree edges) and the edge set E’ ∪ E’’, where 
E’ is the set of all the non-tree edges, and for any u, 
v ∈ V’, (u, v) ∈ E’’ iff u ∈ Vend, v ∈ Vstart, and there 
exists a path from u to v in T. 

 

 
Example 2. In Fig. 5, we show the link graph of G 
(shown in Fig. 1(a)) with respect to the 
corresponding T shown in Fig. 2.  
 

 
Figure 5: A Glink. 

As the first step to generate the core label for G, 
we unite Gcore and Glink to create a combined graph, 
denoted Gcom = (Vcom, Ecom) = Gcore ∪ Glink as shown 
in Fig. 6(a).  

 

 
Figure 6: A combined graph and set of interval sequences. 

Now we notice that by labeling T, each node in 
Gcom will be initially associated with an interval as 
illustrated in Fig. 6(a). That is, if a node v is labeled 
with [a, b) in T, it will be initially labeled with the 
same interval [a, b) in Gcom. Next, we will find a 
reverse topological sequence of the nodes in Gcom 
such that （vi, vj） ∈ Ecom implies that vj appears 
before vi in the sequence. Then, scan the sequence 
from the beginning to the end and at each step merge 
the interval sequences of the children of a node into 

the interval sequence associated with that node. See 
Fig. 6(b) for illustration. 

Using such interval sequences, the descendants 
of a node in Gcom can be represented in an 
economical way. Let L = [a1, b1), ..., [ak, bk) be an 
interval sequence and each [ai, bi) is an interval 
labeling a node vi (i = 1, ..., k) in Gcom. Then, L 
corresponds to the union of a set of subtrees 
T[v1] , ...,  and T[vk]. For example, the interval 
sequence [2, 4)[4, 5)[6, 9)[11, 12) associated with e 
in Fig. 7(b) represents a union of 4 subtrees: T[c], 
T[d], T[e] and T[f], which contains all the de-
scendants of h in G. 

Now we consider all the nodes of Gcore. Each 
node is associated with an interval sequence as 
shown in Fig. 7. 

 

 
Figure 7: Interval sequences for critical nodes. 

In this figure, we remark that the interval 
sequence for node a is [0, 12), which is the interval 
initially assigned to it. It is because when we merge 
all its children’s interval sequences into it, they are 
all absorbed into [0, 12) (since all the intervals 
appearing in them are subsumed by [0, 12)). 

 
Proposition 1. The time for generating the core 
label for G is bounded by O(t⋅b). 
Proof. First, we note that the numbers of the edges 
in both Gcore and Glink are bounded by O(t). Second, 
the number of intervals in an interval sequence is 
smaller than or equal to b since among any b + 1 
intervals we have at least two intervals that are 
appear on a same path in T. So, one of them is 
absorbed by the other. Thirdly, each interval 
sequence is sorted. Therefore, merging two 
sequences needs only O(b) time. The total time is 
bounded by 

O( ∑
∈

⋅
comGv

vd b) = O(t⋅b) 

where dv represents the outdegree of v in Gcom. 

3.3.2 Comparison with Traditional 
Spanning Trees 

In fact, the method described in 3.3.1 can be 
established based on traditional spanning trees. 
However, the size of a core label will be increased to 
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O(t⋅β), where β is the number of the leaf nodes of 
the corresponding spanning tree and is in general 
much larger than b. 

To see this, consider the spanning tree shown in 
Fig. 1(b) once again, with which being used the 
combined graph will be slightly different from the 
one shown in Fig. 6(a). See Fig. 8(a) for illustration. 
Accordingly, the intervals associated with their 
nodes are also different. 

In Fig. 8(b), we show the core label (i.e., the set 
of interval sequences generated for the core). We 
note that the length of the longest interval sequence 
is 6 while that shown in Fig. 6(b) is 5. As 
demonstrated in Proposition 1, the length of the 
longest interval sequence is bounded by the number 
of leaf nodes in a spanning tree.  

 

 

 
Figure 8: A set of interval sequences and a spanning tree. 

3.3.3 Non-tree Labeling 

Based on the core label of G, we assign non-tree 
labels to nodes, which would enable us to answer 
reachability queries quickly. 

Find a general spanning tree T in G. Let v be a 
node in T. Consider the set of all the critical nodes in 
T[v], denoted Cv. We then denote by v- a critical 
node in Cv, which is closest to v. We further denote 
by v* the lowest ancestor of v (in T), which has a 
non-tree incoming edge. 

The following two lemmas are critical to our 
non-tree labeling method. 
 
Lemma 2. Any critical node in Cv appears in T[v-]. 
Proof. Assume that there exists a critical node u in 
Cv, which does not appear in T[v-]. Let u1, ..., uk be 
all the critical nodes in T[v-]. Consider the lowest 
common ancestor node of u, u1, ..., uk. It must be an 
ancestor node of v-, which is closer to v than v-, 
contradicting the fact that v- is the closest critical 
node (in T[v]) to v. 

 
Lemma 3. Let u be a node, which is not an ancestor 
of v in T; but v is reachable from u via some non-tree 
edges. Then, any way for u to reach v must be 
through v*. 

Proof. This can be seen from the fact that any 
node which reaches v via some non-tree edges is 
through v* to reach v. 

Let Vcore = {v1, ..., vg}. We store the core label of 
G as a list: s1 = L(v1), ..., sg = L(vg) (see Fig. 9(a) for 
illustration). Then, we define a function φ: Vcore 
→ {1, ..., g} such that for each v ∈ Vcore  φ(v) = i iff 
si = L(v).  

 
Definition 7 (Non-tree Labels). Let v be a node in 
G. The non-tree label of v is a pair <x, y>, where  

- x = i if v- exists and φ(v-) = i. If v- does not 
exists, let x be the special symbol “-”. 

- y = [a, b) if v* exists and labeled [a, b). If v* 
does not exist, let y be “-”. 

 
Example 3. Consider G and T shown in Fig. 1. The 
core label of G with respect to T is shown in Fig. 
9(a). The values of the corresponding φ-function are 
shown in Fig. 9(b).  

k [3, 4) 

 

 
Figure 9: Core label of G. 

 
Figure 10: Graph with non-tree labelling. 

Fig. 10 shows both the tree labels and the non-
tree labels. For instance, the non-tree label of node r 
is <5, -> because (1) r- = e; (2) φ(r-) = φ(e) = 5 (see 
Fig. 9(b)); and (3) r* does not exist. Similarly, the 
non-tree label of node b is <3, ->. Now we check the 
non-tree label of node d: <3, [4, 5)>. First, we note 
that d- is d itself. So φ(d-) = φ(d) = 3. Furthermore, 
e* is also itself. Therefore, the tree label of e* is the 
tree label of e itself.  

 
Proposition 4. Assume that u and v are two nodes in 
G, labeled ([a1, b1), <x1, y1>) and ([a2, b2), <x2, y2>), 
respectively. Node v is reachable from u iff one of 
the following conditions holds: 

(i) [a2, b2) is subsumed by [a1, b1), or 

<-, [11, 12)> 
[11, 12)

<2, -> 

<1, [9, 10)> 

<-, [2, 4)>
[2, 4)

[1, 5) 
<3, -> 

[0, 12) 
<7, ->

[9, 10) 

[8, 10) 

[7, 8)[4, 5)

[6, 9)

[5, 9) 
<5, -> 
<5, -> 

j 

h

i 

g f

e 

r 

d

k

c

b

a 

[3, 4)

[10, 12)

<-, [3, 4)>
<3, [4, 5)> <4, [7, 8)>

<6, ->

s1 = L(i) =
s2 = L(g) =
s3 = L(d) =
s4 = L(f) =
s5 = L(e) =
s6 = L(h) =
s7 = L(a) =

[9, 10)[11, 12) 
[2, 4)[8, 10)[11, 12) 
[3, 4)[4, 5) 
[3, 4)[4, 5)[7, 8) 
[2, 4)[4, 5)[6, 9)[11, 12) 
[3, 4)[4, 5)[7, 8)[9, 10)[10, 12) 
[0, 12) 

(b) (a)

φ(i) 
φ(g) 
φ(d) 
φ(f) 
φ(e) 
φ(h) 
φ(a) 

= 1 
= 2 
= 3 
= 4 
= 5 
= 6 
= 7 

j 
i 
c 
g 
d 
f 
e 
h 
 
a 

[11, 12) 
[9, 10)[10, 11) 
[2, 4) 
[2, 4)[8, 11) 
[3, 4)[4, 5) 
[3, 4)[4, 5)[7, 8) 
[2, 4)[4, 5)[6, 11) 
[3, 4)[4, 5)[7, 8)[9, 10)[10, 11)[11,
12) 
[0, 12) 

(b) 

[0, 12) 

[10, 11)[9, 10) 

[11, 12) 
h 

[8, 11) 

[7, 8) [4, 5)  

a

e [6,11) 

[3, 4) 
j i 

g f d 

k 

c [2, 4) 

(a) 

GENERAL SPANNING TREES AND CORE LABELING

97



 

 

(ii) There exists an interval [a, b) in such that [a2, 
b2) is subsumed by [a, b). 

Proof. The proposition can be derived from the 
following two facts: 

(1) v is reachable from u by tree edges iff [a2, b2) 
is subsumed by [a1, b1). 

(2) In terms of Lemma 6, v is reachable from u 
via non-tree edges iff v- exists and its interval 
sequence contains an interval [a, b) which 
subsumes [a2, b2). Furthermore, in terms of 
Lemma 7, [a, b) subsumes [a2, b2) iff v* 
exists and its interval is subsumed by [a, b). 

Now we consider node c and e in the graph 
shown in Fig. 10. To check whether node c (labeled 
[2, 4), <-, [2, 4)>) is a descendant of node e (labeled 
([6, 9), <5, ->), we will first check whether 2 ∈ [6, 
9). Since 2 ∉ [6, 9), we will check whether there is 
an interval in L(e) = [2, 4)[4, 5)[6, 9)[11, 12) (note 
that φ(e) = 5), which subsumes [2, 4). Since [2, 4) in 
L(e) subsumes [2, 4), we know that node c is 
reachable from node e.  

Finally, we notice that each interval sequence in 
the core table of G contains only the intervals not on 
the same path in T and they are also increasingly 
ordered. Therefore, to check a given interval is 
subsumed by an interval in L(v) for some node v, we 
need only O(log|L(v)|) time. But |L(v)| is bounded by 
b, so we require only O(logb) time for reachability 
checking.  
 
Proposition 5. Let v and u be two nodes in G. It 
needs O(logb) time to check whether u is reachable 
from v via non-tree edges or vice versa. 
Proof. See the above analysis. 

4 CONCLUSIONS 

In this paper, a new approach is proposed to 
compress transitive closure. Its main idea is to 
recognize a subset of nodes in G and assign them 
labels in such a way that the reachability via non-
tree edges can be determined by checking such 
labels only. This is achieved by finding a general 
spanning tree with the least number of leaf nodes, 
based on which a core label can be established. 
Using this method, the labeling can be done in O(n + 
e + t⋅b) time, where t is the number of non-tree edges 
(edges that do not appear in the general spanning 
tree T of G) and b is the number of the leaf nodes of 
T. It can be proven that b equals G’s width, defined 
to be the size of a largest node subset U of G such 
that for every pair of nodes u, v ∈ U, there does not 

exist a path from u to v or from v to u. The space and 
time complexities are bounded by O(n + t⋅b) and 
O(logb), respectively. 
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