
DETECTING REGULATORY VULNERABILITY
IN FUNCTIONAL REQUIREMENTS SPECIFICATIONS

Motoshi Saeki
Tokyo Institute of Technology, Ookayama 2-12-1-W8-83, Meguro, Tokyo 152-8552, Japan

Haruhiko Kaiya
Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan

Satoshi Hattori
Tokyo Institute of Technology, Ookayama 2-12-1-W8-83, Meguro, Tokyo 152-8552, Japan

Keywords: Requirements elicitation, Regulation, Model checking, Use case, Computational tree logic, Regulatory vul-
nerability.

Abstract: This paper proposes a technique to apply model checking in order to show the regulatory compliance of
requirements specifications written in use case models. We define three levels of regulatory vulnerability of a
requirements specification by the situation of its non-compliance with regulations. For automatic compliance
checking, the behavior of business processes and information systems are specified with use cases and they
are translated into finite state transition machines. By using model checker SMV, we formally verify if the
regulations that are represented with computational tree logic can be satisfied with the state machines.

1 INTRODUCTION

Information systems to support business processes us-
ing Internet have been developed and have come into
wide use recently. In this situation, more laws and
regulations related to information technology (simply,
regulations) are being made and maintained in order
to avoid the dishonest usage of information systems
by malicious users, and we should develop informa-
tion systems that are compliant with these regulations.
If we developed an information system that was not
compliant with the regulations, we could be punished
and its compensation could be claimed to us, as a
result we could take much financial and social dam-
age. Furthermore, if we would find that the informa-
tion system that is being developed was not compliant
with its related regulations, we have to re-do its devel-
opment and its development cost and efforts seriously
increase. It is significant to check if a functional re-
quirements specification of the information system to
be developed is compliant with regulations as early as
possible, in order to reduce its development cost. In
an earlier stage of development, we should verify that

a functional requirements specification of the infor-
mation system do not have anyvulnerability to regu-
lations. Vulnerability means the weak parts that can
be attacked so as to cause damages, and threats pro-
vide the damages by exploiting the vulnerability. In
this paper, we call vulnerability that results from reg-
ulationsregulatory vulnerability. For example, com-
pensation may be claimed and the financial damage of
paying its compensation may occur, if your informa-
tion system is not compliant with regulations. These
non-compliant parts of the information system are one
of regulatory vulnerability.

We propose the technique to detect formally reg-
ulatory vulnerability using a model checker just after
specifying functional requirements of an information
system. In (Saeki and Kaiya, 2008), in order to de-
tect the possibilities of non-compliance, its authors
have developed the technique to represent specifica-
tion statements and regulatory ones with case frames
of Fillmore’s case grammar and then to match these
case frames. However, it dealt with itemized assertive
sentences as specification statements only and it did
not consider behavioral aspects such as execution or-

105
Saeki M., Kaiya H. and Hattori S. (2009).
DETECTING REGULATORY VULNERABILITY IN FUNCTIONAL REQUIREMENTS SPECIFICATIONS.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 105-114
DOI: 10.5220/0002240001050114
Copyright c© SciTePress

der of actions in the system. In this paper, we model
the behavior of an information system with use case
modeling i.e. a use case diagram and use case descrip-
tions which express the behavior of use cases. A use
case model is translated into a finite state transition
machine. Regulatory statements are formally repre-
sented with temporal logical formulas and a model
checker verifies if these logical formulas are true in
the state transition machine or not. If the logical for-
mulas are true, we can judge the use case model to
be compliant with the regulations. If the formulas are
false, since the model checker outputs counterexam-
ples showing the use case behavior unsatisfying the
regulations, we can recognize where its regulatory
non-compliance exists.

The rest of the paper is organized as follows. Sec-
tion 2 presents how to represent regulatory statements
with branching time temporal logic (another name,
CTL: computational tree logic, and we use the abbre-
viation CTL below) and the typology of regulatory
vulnerability based on the structure of logical formu-
las. In particular, we adopt the new type of regula-
tory vulnerability to misuse cases. We explain the
overview of our detection process for regulatory vul-
nerability and illustrate its details together with sup-
porting tools in section 3. It includes the translation
of use cases into a state transition machine and the
terminology matching to retrieve the relevant regula-
tory statements to be verified. Section 4 shows the
regulatory vulnerability to misuse cases using an ex-
ample. Sections 5 and 6 are for related work and
concluding remarks respectively. The essential con-
tribution of this paper is the following three points: 1)
the representation of regulations with CTL so that we
can use a model checker, 2) the terminology match-
ing technique based on case frames and 3) the usage
of misuse cases to detect a specific type of regulatory
vulnerability.

2 REGULATION

2.1 Representing Regulations

A typical example of regulations related to IT tech-
nology is Japanese Act on the Protection of Personal
Information (Cabinet Office, Government of Japan,
2003) that specifies the proper handling of personal
information such as names, addresses and telephone
numbers of persons in order to prevent from making
misuse of this information. For example, the Article
18, No. 1 of Act on the Protection of Personal Infor-
mation provides that

Article 18, No. 1 of Act on the Protection of
Personal Information:
When having acquired personal information,
an entity handling personal information must,
except in cases in which the Purpose of
Use has already been publicly announced,
promptly notify the person of the Purpose of
Use or publicly announce the Purpose of Use.

According to (Eckoff and Sundby, 1997), a regulatory
statement consists of 1) the descriptions of a situation
where the statement should be applied and 2) the de-
scriptions of obligation, prohibition, permission and
exemption of an entity’s acts under the specified sit-
uation. In the above example, we can consider that
“when having acquired personal information, except
in cases in which the Purpose of Use has already
been publicly announced” is a situation where this
act should be applied, while “notify” and “announce”
represent the acts of “the entity”. These acts are obli-
gations that the entity should perform.

The first thing that we should address is how to
deal with four modalities, obligation, prohibition, per-
mission and exemption using mathematical notation
such as formal logic. We use the temporal operators
of CTL to represent these modalities. Suppose that we
specify the behavior of an information system with a
finite state transition machine. Since state transitions
occur non-deterministically in it, there exist several
execution paths in the information system. When we
define the states as nodes and the transitions as edges,
we can get a tree calledcomputational treethat spec-
ifies these execution paths. The properties that hold
on the tree can be defined with CTL formulas. Sup-
pose that R is a logical formula. We use four types
of temporal operatorsAF, AG, EF andEG and their
intuitive meanings are as follows.AF R is trueiff R
is eventually true for every path,AG R is trueiff R is
always true for every path,EF R is trueiff there is a
path where R is eventually true, andEG R is trueiff
there is a path where R is always true.

The value of a proposition is either true or false
at a node. Let P and Q be propositions of a situation
and an act respectively. Q is true if the act is being
executed. By using the above four operators, we can
represent a regulatory statement with the modalities
as follows.

Obligation : P→ AF Q
Prohibition : P→ AG ¬Q
Permission : P→ EF Q
Exemption : P→ EG ¬Q

In the case of obligation, we should perform Q if the
situation P is true, whatever execution path we take.
Therefore Q should be eventually true for every path

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

106

outgoing from the node P. On the other hand, a reg-
ulatory statement of prohibition says that we are not
allowed to execute Q on any path.¬ Q should con-
tinuously be true on any node of every path outgoing
from P, i.e. Q is always false for every path. If there
exists a path where Q is eventually true, Q is permit-
ted to be executed. If there exists a path where Q is al-
ways false, we are exempted from executing Q. Note
that CTL has binary temporal operators based onun-
til and we can represent with these operators time in-
tervals such as the deadline when an obligation keeps
on holding. For simplicity, we will not refer to them
throughout this paper but we can deal with them in
the same way.

In the cases of permission and exemption, al-
though the regulatory statement is not true on an in-
formation system, we cannot say that it violates the
regulation. For example, if “P→ EF Q” (permission
of Q) is not true, there are no paths where Q can be ex-
ecuted. Even though the act Q ispermitted, we don’t
always need to execute Q and non-execution of Q is
not a regulatory violation. Thus we can have some
categories of the cases where logical formulas of reg-
ulations are not true. In the above example, we can
have two categories: regulatory violation and regula-
tory non-violation. The details of these categories will
be discussed as a typology of regulatory vulnerability
in the next sub section.

We continue to discuss how to represent a regula-
tory statement with a CTL formula, using as an ex-
ample the Article 18, No. 1 of Act on the Protection
of Personal Information, mentioned in the beginning
of this sub section. This article claims the obligation
of the acts “announce” or “notify”. The situation part
and the act one in a regulatory statement can be de-
scribed with logical combinations of case frames as
shown in (Saeki and Kaiya, 2008). The technique
of case frames was originated from Fillmore’s Case
Grammar to represent the semantics of natural lan-
guage sentences. A case frame consists of a verb and
semantic roles of the words that frequently co-occur
with the verb. These semantic roles are specific to a
verb and are calledcase. For example, the case frame
of the verb “get”, having the cases “actor”, “object”
and “source”, can be described as “get(actor, object,
source)”, where “get” denotes the acquisition of the
thing specified by the object case. The actor case rep-
resents the entity that performs the action of “get” and
that will own the thing as the result of the “get” action.
The source case denotes the entity from which the ac-
tor acquires the object. By filling these case slots with
the words actually appearing in a sentence, we can ob-
tain its semantic representation. In the example of the
sentence “an entity handling personal information ac-

quires from a member her personal information”, we
can use the case frame of “get” and have “get(entity
handling personal information, personal information,
member)” as its intermediate semantic representation.
Finally, we can represent the example statement of
Article 18, No.1 using case frames and CTL as fol-
lows;

get(x, Personalinformation, y)
∧ ¬ announce(x, Purposeof use)
∧ aggregation(y, Personalinformation)
∧ handle(x, Personalinformation, Purposeof use)

→ AF (notify(x, Purposeof use, y)
∨ announce(x, Purposeof use))

Note that the identifiers of lower case characters such
as “x” and “y” stand for variables, and we can fill
them with any words. In this sense, the formula can
be considered as a template.

2.2 Regulatory Vulnerability

We can classify regulatory vulnerability into the fol-
lowing categories using the four modalities of regula-
tions.

Type 1: The entity (an information system) may not
execute the acts that are made obligations by reg-
ulations, or the entity can execute the acts that are
prohibited by regulations.

Type 2: The entity cannot execute the acts that are
permitted by regulations, or the entity is obligated
to execute the acts that are exempted by regula-
tions

Type 3: The misuse cases (wrong or malicious us-
ages) of the entity are permitted by or made obli-
gations by regulations.

The regulatory vulnerability of type 1 is a regula-
tory violation and this type of vulnerability is a seri-
ous problem. On the other hand, the vulnerability of
type 2 is not a regulatory violation, as mentioned in
section 2.1. However, if the information system will
not have the function to execute the act permitted by a
regulation, it may have a disadvantage to competitors’
products having this function in the market. More-
over, there is a possibility that its users may accuse
it of inconvenience because they cannot use the func-
tion. Type 3 is not also a regulatory violation. This
type may be considered as the weakness of the regu-
lations and therefore they should be improved. Since,
however, it takes much longer time to improve them
and enforce their improved version officially, rather
we select a way of redesigning the underlying busi-
ness process from technical and/or management as-
pects so as to mitigate these misuse cases. The risk of

DETECTING REGULATORY VULNERABILITY IN FUNCTIONAL REQUIREMENTS SPECIFICATIONS

107

type 1 is the highest in the regulatory vulnerability of
three types.

3 DETECTION TECHNIQUE

3.1 Overview

Figure 1 shows the process of detecting regulatory
vulnerability in an information system. The behav-
ior of the information system is specified with use
case modeling. The description of a use case con-
sists of pre condition, normal flow, post condition and
alternate flow, and they are written with simple natu-
ral language sentences. These descriptions are trans-
lated into a finite state transition machine. In our ap-
proach, we also translate regulatory statements into
CTLs as shown in section 2.1, and verify if the CTLs
are true on the state transition machine by using a
model checker. If the model checker finds that the
CTLs are false, it produces the examples where the
CTLs are false, i.e. the counterexamples. We can ex-
plore the counterexamples and identify which parts of
the use case descriptions may cause the detected vul-
nerability.

The reason why we adopt use case modeling is
that it includes natural language descriptions in ad-
dition to its popularity. However, the words, terms
and phrases (terms, hereafter) appearing in regula-
tory statements are different from the terms in the use
case descriptions, but they may have the same mean-
ing. We need a task for identify the terms having the
same meaning and unify them into a single expres-
sion. “Terminology matching” is for matching the
terms appearing in the CTLs to those in the state tran-
sition machines by using synonym dictionaries such
as WordNet. The supporting technique for this task
will be illustrated in section 3.4.

p
→

AF q

Functional Requirements Regulations

Finite State
Machine

CTL Template

Terminology Matching
+

Model Checking

Checking results

Figure 1: Overview of a Detection Flow.

3.2 Example

In this subsection, we explain an example that will be
used throughout this section and the next one. The
example is an on-line shop for documents like IEEE
Digital Library, and Figure 2 depicts its use case di-
agram and the use case description of “Retrieve doc-
uments”. A user retrieves documents in the database
of the shop. If she can find a document necessary
for her, she buys it from the shop. The user first cre-
ates her account (Create an account) and then logs in
her account (Login). She inputs retrieval information
to the system (Retrieve documents) to get the neces-
sary documents. If the documents are found, the sys-
tem shows her their abstracts (3rd action of Normal
Flow in Retrieve documents). She reads the shown
abstracts, and buys the documents by inputting her
credit card information if the abstracts are what she
wants (Buy documents).

Note that the use case “Distribute documents” is a
misuse one that threatens the achievement of the aim
of “Buy documents”, and its details will be explained
in section 4. Ignore it in this section.

3.3 Translating to FSMs

We use the model checker SMV (NuSMV, 2007), be-
cause it can deal with CTLs. In SMV, a system to be
checked is represented as a set of concurrent sequen-
tial processes and each process is defined as a non-
deterministic finite state transition machine (FSM).
In a FSM, state transitions are defined as changes of
values of explicitly declared state variables. SMV
has two types of process models: one is called syn-
chronous model where state values are synchronously
changed over all of the processes and another is called
asynchronous model where state values are changed
one by one at each process. Since actions of use cases
are asynchronously performed, we adopt an asyn-
chronous model in this paper and a use case model
is transformed into asynchronous FSMs.

Each use case is translated into a FSM. In our
translation technique, we have only one global state
variable that store the current state. We consider an
action currently executed in a use case as a current
state in the whole system, and the global variable
holds the name of the currently executed action. If
this action finishes and the next action starts being ex-
ecuted, the name of the next action is assigned to the
variable. As for pre and post conditions in a use case,
by assigning the name of the condition to the vari-
able, we represent the state where it comes to be true.
Suppose that a use case consists of a pre condition,
a normal flow A1, A2, ..., An (where A1, ..., An are

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

108

Retrieve documents
Actor: User
Pre condition
The user is logged in.

Normal flow
1. The user sends the key information

to retrieve the documents.
2. The system retrieves the documents.
3. The user gets an abstract of

the retrieved document.
Post condition
The user gets the abstract.

Figure 2: On-line Document Shop.

sequentially executed in this order) and a post condi-
tion. Its translation is a FSM whose state transitions
occur as the sequence of pre condition⇒ A1 ⇒ A2,
...,⇒ An ⇒ post condition, as shown in Figure 3.

MODULE use_case(state)
ASSIGN

next(state) :=
case

state = pre condition : A1;
state = A1 : A2 ;
state = A2 : ...
state = An : post condition ;
1 : state ;

esac;
FAIRNESS running

pre conditionpre condition

A1A1

A2A2

AnAn

post conditionpost condition

...

Figure 3: Translating a Use Case Description to a FSM.

The left part of the figure shows the description of
a FSM for SMV, and it has only one global variable
named “state”. The expression “next(state)” denotes
the value of “state” at the next state. A case block
(case· · · esac) sets the value of the next state accord-
ing to the current value. The values before and after
the colon (:) expresses the current value and the next
one respectively. For example, if the current value is
“pre condition”, the next value is set to “A1” after a
transition. The final action “An” is executed and then
the “post condition” comes to be true. The bottom
line of the case block includes “1” before the colon
and it means “otherwise”. If the current state is nei-
ther “pre condition”, “A1”, “A2”, ..., “An” nor “post
condition”, the value of the state is not changed. Fi-
nally, we can get the translation of the use case model
by combining the FSMs of use cases as asynchronous
concurrent processes.

Note that we don’t intend to propose a new tech-
nique to translate use cases into a state transition ma-

chine. In fact, more elaborated translation techniques
can be found in (Whittle and Jayaraman, 2006; Nebut
et al., 2006) and they may be used. The purpose of
this sub section is just to show that a use case model
can be transformed into a FSM of SMV.

3.4 Terminology Matching

The goal of terminology matching task is 1) retriev-
ing the regulatory statements relevant to a use case
description by unifying terms of the regulatory state-
ments to the terms of the use case description, and
2) generating the CTL formulas in SMV-acceptable
form from the unified formulas of the regulatory state-
ments.

Suppose that a use case has the sentence “The user
sends his personal information to the system”. We can
get a case frame “send(User, Personalinformation,
System)” as its semantic representation after parsing
the sentence. In this example, the verb “get” in the
case frame of Article 18, No.1 is semantically the
same as “send” but the flow of the object (personal
information) of this act is reverse to “send”. We have
a dictionary of case frames, and it includes informa-
tion on synonym verbs and their case slots. It also has
the rules of replacing a verb and its case slot values,
keeping the same meaning. For example, a rule says
that the frame “get(actor:x, object:y, source:z)” can be
replaced with “send(actor:z, object:y, target:z)”. Af-
ter this replacement, we fill the variables “x” and “y”
with “System” and “User” respectively so as to match
with the example sentence the resulting case frame
(the situation part of the Article 18, No.1). From the
context of the use case descriptions, since it is obvious
that the system (“x”) handles with personal informa-
tion and that the user (“y”) has personal information,
we can omit the predicates “handle” and “aggregate”.

DETECTING REGULATORY VULNERABILITY IN FUNCTIONAL REQUIREMENTS SPECIFICATIONS

109

Figure 4: Supporting a Terminology Matching Task.

Finally we have the following CTL as the result of
this Terminology Matching task.

state= “send(User, Personalinformation, System)”
→ AF (state= “notify(System, Purposeof use, User)”

∨ state= “announce(System, Purposeof use)”)

The above is just the CTL formula to be checked if
the use case has regulatory vulnerability or not, and
an input to a model checker.

Since Terminology Matching task deals with the
semantics of sentences, we cannot fully automate
it. However, we have a computerized tool to sup-
port this task, based on the technique in (Saeki and
Kaiya, 2008). The tool has the following functions;
1) analyzing use case descriptions and extracting their
case structures, 2) having a dictionary of case frames
of regulatory statements, 3) retrieving the regulatory
statements which can be matched to case frames of
use case descriptions, and 4) generating the CTL for-
mula of regulatory statements by unifying the terms
and simplifying it. Figure 4 shows a screen shot of
our tool. The tool suggests a pair of use case de-
scriptions and the related regulatory statements after
matching their case frames. This matching process
uses Japanese-English translation dictionary and syn-

onym ones. We have extracted case frames from the
Articles 15 - 36 of Act on the Protection of Personal
Information and stored them in a dictionary before-
hand. The tool checks if the verb phrases appearing
in the use case descriptions can be matched to these
case frames. As a result, the left and right areas of
the window of Figure 4 show the sentence “The user
sends his personal information to the system” of the
use case “Create an account” and the Article 18 No.1
respectively, because they can be matched. Some in-
formation helpful to produce the input CTL formula
is displayed in the other area of the window, e.g. situ-
ations and acts to be considered during producing the
formula.

3.5 Model Checking

The model checker of SMV is called NuSMV. Since
NuSMV checks if a formula is true at the initial state
of a FSM, we attach the operator AG in the head of
the formula that was obtained in the Term Matching
task.

The NuSMV shows that the CTL of Article 18
No.1 is false, and we can recognize that our exam-
ple has a regulatory violation. Since the verified CTL

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

110

is an obligation, this violation is the regulatory vul-
nerability of type 1. The counterexample that the
NuSMV outputs suggests the instance of execution
paths where the CTL comes to be false. According to
it, as shown in Figure 5, we can recognize that the fol-
lowing scenario caused the regulatory violation. After
executing the use case Create an account, Login is ex-
ecuted and then its login is successful. After that, the
Logout use case is immediately executed. Login and
logout are iterated as a loop. This path does not satisfy
the CTL of Article 18 No.1 specifying the obligation
of the action “notify” or “announce”.

Figure 6 illustrates the verification example men-
tioned above. Note that we used abbreviated lit-
eral forms instead of string data types to represent
the values of “state” variable for brevity and the
ability of NuSMV. For example, we used the lit-
erals sendpersonalinfo and notifypurpose in the
NuSMV tool instead of the strings “send(User,
Personalinformation, System)” and “notify(System,
Purposeof use, User)” respectively. The figure in-
cludes two windows; one is the verification result and
another is a counterexample. The rear window shows
that the CTL of Article 18 No.1 is false (the CTL
numbered with 0 in the Property tab), and we can rec-
ognize that our example has a regulatory violation.
The counterexample is shown in the front window of
the figure. According to it, after executing the use
case Create an account (step 21: issueID, which de-
notes “3. The system issues login ID and password
to the user” in Figure 5), Login is executed (steps 24-
30: input ID, denoting “1. The user inputs login ID
and password to the system” in Figure 5) and then its
login is successful (step 31: loggedin, the post con-
dition of the Login use case). After that, the Logout
use case is immediately executed (step 32: exit). Lo-
gin and logout are iterated as a loop (step 23→ 33→
23).

Login
　Actor: User
　Pre condition
　the user is not logged in.

　 Normal flow
　　1. The user inputs login ID
　　　　 and password to the system.
　Post condition
　The user is logged in.

Logout
Actor: User
Pre condition
the user is logged in.

Normal flow
　　1. The user exits.
Post condition

The user is not logged in.

Create an account
Actor: User
Pre condition

　　There are no accounts yet.
Normal flow

　1. The user sends his personal
　　　　information to the system.
　2. The system checks the validity
　　　 of the personal information.
　3. The system issues login ID and
　　　　 password to the user.
Post condition
The user gets an account and

　　 the user is not logged in yet.

Figure 5: A Counterexample.

By investigating the counterexamples, we can
identify where regulatory vulnerability is in the use
case descriptions and what parts we should correct.
In this example, we can find that there is regulatory
vulnerability in either Create an account, Login or Lo-
gout and that we can resolve it by inserting the obli-
gation act “notify(System, Purposeof use, User)” to
either of them. We add this act to the use case Create
an account.

4 USING MISUSE CASES

Let’s move to regulatory vulnerability of type 3. We
add one or more misuse cases to a normal use case
model compliant with a regulation and check if the
regulation has ability to legally prevent the execution
of the added misuse cases. If it has no ability, the use
case model includes regulatory vulnerability of type
3 for the regulation. Figure 7 shows the cases of the
results of checking. Suppose that a normal use case
model U is compliant with the regulation p as shown
in the case (a) of the figure. Under this case, we add a
misuse case MU and get the case (b), i.e. a false value
as a result of checking. The case (b) asserts that the
regulation p can legally prevent the execution of MU,
because adding MU causes the regulatory violation.
On the other hand, the case (c) may be problematic.
Its detail including case (d) will be explained below
using the example.

Our example shown in Figure 2 contains a mis-
use case “Distribute documents”. When a user of the
on-line document shop wants the full texts of the re-
trieved documents, she should buy them. There is an-
other alternative to get the full text without any fee
by asking its author to send it to her. The use case
“Distribute documents” specifies this behavior and it
threatens the achievement of “Buy documents”. Its
description is shown as follows.

Distribute documents
Actor: User, Author
Pre condition
The user gets the abstract.
Normal flow
1.The user asks for the author

to send the document.
2.The author sends the document to the user.
3.The user gets the full text of the document.
Post condition
The user gets the document.

After executing “Retrieve documents” and getting
the abstract of the document that she wants, she exe-
cutes “Distribute documents”. She first asks its author
to send its full text to her, and the author sends the full
text to her. As a result, she can get the full text of the

DETECTING REGULATORY VULNERABILITY IN FUNCTIONAL REQUIREMENTS SPECIFICATIONS

111

Figure 6: Verification Example with NuSMV.

document free of charge and this use case obviously
prevents the aim of the on-line document shop, i.e.
earning money by “Buy documents”.

Suppose that a regulation related to copyright pre-
scribes the following;

By request, an entity can send the contribu-
tions produced by the entity itself to a third
party acting in good faith.

This statement, denoting a permission, can be trans-
formed to a logical combination of case frames as fol-
lows.

request(x, y, z)∧ produce(z,y)→ EF send(z,y,x)
where “x”, “y” and “z” are a person who wants the
document, the document and the author of the doc-
ument respectively. Through terminology matching
process, we replace “request(x,y,z)” with “ask(x,y,z)”
using the synonym dictionary because the first sen-
tence of the use case description includes the verb
“ask”, and get the following formula to be checked.

AG (state=“ask(User, Document, Author)”
→ EF state=“send(Author,Document,User)”)

NuSMV returns the value true and it means that

our on-line document shop together with the misuse
case is compliant with the regulation. That is to say,
the regulation cannot legally prevent the execution of
the misuse case “Distribute documents” and this is
the case (c) shown in Figure 7. Although this case
includes the possibility of type 3 vulnerability, there
may be the possibility that the regulation p can be
thoroughly irrelevant to MU, e.g. the acts of the reg-
ulation p are not included in MU at all. To investigate
the relevance of p to MU, we should check if the ex-
ecution paths compliant with p include the situations
and the acts of p. We negate p and obtain counterex-
amples from the model checker. If a counterexample
includes the situations and the acts of p, p is relevant
to MU and permits the execution of MU, i.e. a regu-
latory vulnerability of type 3. However, NuSMV out-
puts many useless counterexamples where the situa-
tion is false only. In fact, it outputs many counterex-
amples that do not include state=“ask(User, Docu-
ment, Author)”. To filter out these useless counterex-
amples, we negate the act part of the CTL and get
the counterexamples where the situation holds. The
counterexamples of AG (s→ ¬ a) make EF (s∧ a) 1

1
¬ AG (s→ ¬ a)= EF (s∧ a)

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

112

U

p

Use Case
Regulation

true

U

p

Use Case
Regulation

false

MU

Misuse
Case

(b) p is useful for preventing from MU(a) Compliant with p

true

(c) p has no effects on preventing MU

false

(d) Vulnerability on MU for p (= s → a)

U

p

Use Case
Regulation

MU

Misuse
Case

U

s →￢a

Use Case
negating
act of
Regulation

MU

Misuse
Case

counterexample

MU

s (situation
of p)

Figure 7: Computation Tree and Modality of Regulations.

true, and we can get the execution paths where both
the situation s is true and the act a is executed. This is
shown in the case (d) of Figure 7.

In our example, we negate the act part of the CTL
of the regulation and input it to NuSMV in order to
obtain counterexamples. The input formula is as fol-
lows:

AG (state=“ask(User, Document, Author)”
→¬EF state=“send(Author,Document,User)”)

If the obtained counterexamples have the execu-
tion paths where the misuse case is included, the
regulation permits the execution of the misuse case
and there is a regulatory vulnerability of type 3.

NuSMV has produced a counterexample where
the action “send(Author,Document,User)” in the mis-
use case is executed after the execution of “Retrieve
documents”. That is to say, the regulation permits the
execution of this misuse case. It is not a regulatory
violation, but an undesirable case because the misuse
case can be performed and as a result causes financial
damages to the shop. To avoid it, we can consider two
alternatives: one is to modify the related regulations
and another is to change this underlying business pro-
cess. As the example of the second alternative, i.e.
changing the business process, we can take the way
of getting a fee from an author when she registers her
contributions to this shop. It could mitigate financial
damage to the on-line shop. Note that it is just an
example and that we can take the other ways to mit-
igate the financial damage of the shop. Detection of
type 3 vulnerability is significant to evolve a business
process and an information system incrementally into
more robust one.

5 RELATED WORK

The research topics related to regulatory compliance
in requirements engineering area being actively fo-
cused on. The state of the art of this area and some
achievements can be found in (Otto and Anton, 2007).
We can find many approaches to represent regula-
tions with formal expressions (REMO2V, 2006; RE-
MOD, 2008; RELAW, 2008), and many of them used
classical logic as formal representations of regula-
tions. For example, Hassan et al. used logical for-
mula to represent regulatory statements and enterprise
requirements, and Alloy analyzer to check the con-
sistency between them (Hassan and Logrippo, 2008).
Although they benefited from powerful and well-
established theorem provers and model checkers, an
issue on the treatment of the modalities of regulatory
statements still remains. Furthermore, they did not
consider the classification of regulatory vulnerability,
in particular, the detection of type 3 vulnerability. An-
alyzing regulatory compliance of misuse cases leads
to the elicitation of a class of non-functional require-
ments such as security, safety, reliability etc. Deontic
logic is one of the alternatives to represent the modali-
ties of obligation and prohibition more intuitively and
comprehensively (Jones and Sergot, 2004). However,
its theorem prover or model checker has been less es-
tablished yet rather than CTL (Dinesh et al., 2008;
Castero and Maibaum, 2008). There are some stud-
ies on applying goal-oriented analysis to regulations
in order to identify the rationales of and the depen-
dencies among regulatory statements. (Darimont and
Lemoine, 2006). Although their aim does not have
the same direction as ours, we can consider deeper
analysis by checking regulatory compliance from the
viewpoints of rationales of regulations and require-
ments specifications.

DETECTING REGULATORY VULNERABILITY IN FUNCTIONAL REQUIREMENTS SPECIFICATIONS

113

6 CONCLUSIONS AND FUTURE
WORK

This paper presents the technique to detect regulatory
non-compliance of an information system by using a
model checking. In addition, we classified regulatory
non-compliance as regulatory vulnerability into three
categories and emphasized type 3 vulnerability. The
future work can be listed up as follows.

1. Elaborating the automated technique to translate
use case models including alternate action flows
into SMV FSMs. In addition, we also consider the
other types of descriptions such as UML Activity
Diagram and are developing its translation tool.

2. Elaborating the supporting tool and its assessment
by case studies, in particular NuSMV is not so
powerful to retrieve and manage counterexam-
ples. The functions on manipulating counterex-
amples are significant to resolve regulatory vul-
nerability and the methodology how to find from
the counterexamples the solutions to mitigate reg-
ulatory vulnerability should be developed.

3. Developing a supporting technique for the pro-
cesses to translate correctly regulatory statements
into CTL formulas. In addition, since regulatory
documents include meta level descriptions such
as application priority of the statements, the tech-
nique to model them should be more elaborated.

4. Considering how to deal with scalability problems
on the techniques of model checking.

5. Dealing with non-functional requirements such as
security.

6. Combining tightly our approach to requirements
elicitation methods such as goal-oriented analysis
and scenario analysis,

7. Developing the technique to manage and improve
the requirements that have the potentials of regu-
latory non-compliance,

8. Developing metrics of measuring compliance,
in fact three types of regulatory vulnerability
can be considered as strength degrees of non-
compliance.

REFERENCES

Cabinet Office, Government of Japan (2003). Act
on the protection of personal information.
http://www5.cao.go.jp/seikatsu/kojin/foreign/act.pdf.

Castero, P. and Maibaum, T. (2008). A Tableaux System for
Deontic Action Logic. InLecture Notes in Computer
Science (DEON2008), volume 5076, pages 34–48.

Darimont, R. and Lemoine, M. (2006). Goal Oriented Anal-
ysis of Regulations. InREMO2V, CAiSE2006 Work-
shop, pages 838–844.

Dinesh, N., Joshi, A., Lee, I., and Sokolsky, O. (2008). Rea-
soning about Conditions and Exceptions to Laws in
Regulatory Conformance Checking. InLecture Notes
in Computer Science (DEON2008), volume 5076,
pages 110–124.

Eckoff, T. and Sundby, N. (1997).RECHTSSYSTEME.

Hassan, W. and Logrippo, L. (2008). Requirements and
Compliance in Legal Systems: a Logic Approach. In
Requirements Engineering and Law (RELAW 2008),
pages 40–44.

Jones, A. and Sergot, M. (2004). Deontic Logic in the Rep-
resentation of Law: Towards a Methodology.Aritifi-
cial Intelligence and Law, 1(1):45–64.

Nebut, C., Fleurey, F., Traon, Y., and Jezequel, J.-M. (2006).
Automatic Test Generation: A Use Case Driven Ap-
proach. IEEE Transaction on Software Engineering,
32(3):140–155.

NuSMV (2007). Nusmv: A new symbolic model checker.
http://nusmv.fbk.eu/.

Otto, P. and Anton, A. (2007). Addressing Legal Require-
ments in Requirements Engineering. InProc. of 15th
IEEE International Requirements Engineering Con-
ference, pages 5–14.

RELAW (2008). 1st international workshop
on requirements engineering and law.
http://www.csc2.ncsu.edu/workshops/relaw/.

REMO2V (2006). International Workshop on Regula-
tions Modelling and Their Validation and Verification
(REMO2V), CAiSE2006 Workshop. http://lacl.univ-
paris12.fr//REMO2V/.

REMOD (2008). Interdisciplinary workshop: Regula-
tions modelling and deployment. http://lacl.univ-
paris12.fr/REMOD08/.

Saeki, M. and Kaiya, H. (2008). Supporting the elicitation
of requirements compliant with regulations. InLec-
ture Notes in Computer Science (CAiSE’2008), vol-
ume 5074, pages 228–242.

Whittle, J. and Jayaraman, P. (2006). Generating Hierarchi-
cal State Machines from Use Case Charts. InProc.
of 14th IEEE Requirements Engineering Conference
(RE2006), pages 19–28.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

114

