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Abstract: In most cases modern distributed computer systems (computer clusters and MPP systems) have hierarchical 
organization and non-uniform communication channels between elementary machines (computer nodes, 
processors or processor cores). Execution time of parallel programs significantly depends on how they map 
to computer system (on what elementary machines parallel processes are assigned and what channels for 
inter-process communications are used). The general problem of mapping a parallel program into a 
distributed computer system is a well known NP-hard problem and several heuristics have been proposed to 
approximate its optimal solution. In this paper an algorithm for mapping parallel programs into hierarchical 
distributed computer systems based on task graph partitioning is proposed. The software tool for mapping 
MPI applications into multicore computer clusters is considered. The quality of this algorithm with the NAS 
Parallel Benchmarks is evaluated. 

1 INTRODUCTION 

A message passing model became widespread for 
development of parallel programs for distributed 
computer systems (CS; for example,  
MPI and PVM). In this model a parallel program 
can be presented by a task graph that defines a 
pattern of communications between 
parallel processes. 

Execution time of parallel programs significantly 
depends on how they map to CS, on what 
elementary machines (EM) parallel processes are 
assigned and what channels for inter-process 
communications are used. 

An objective of optimal mapping of parallel 
program into distributed CS is to minimize 
communications costs and load disbalance of EMs.  

For distributed CSs with static network structures 
(hypercube, 3D-torus or mesh) and SMP-clusters 
efficient algorithms for mapping parallel programs 
are developed (Ahmad, 1997), (Bokhari, 1981), 
(Lee, 1989), (Yau, 1993), (Yu, 2006), 
(Chen et al. 2006). 

Modern distributed CSs are multiarchitectural 
(Khoroshevsky, 2005, 2008). Depending on level of 
consideration of their functional structures, they can 
look both as MISD, and as SIMD, and as MIMD 

systems.  For such systems hierarchical organization 
and non-uniform communication channels between 
EMs are characteristic. 

A typical number of levels in modern distributed 
CSs is vary from 2 up 4 (for example, shared 
memory of processor cores, shared memory of 
processors, computer nodes interconnect, links 
between second stage switches in fat tree 
topology etc.). 

In most popular MPI libraries (MPICH2 and 
OpenMPI) realized the round robin and the linear 
algorithms of mapping parallel programs into CSs. 
This algorithms do not take into account hierarchical 
organization of modern distributed CSs. The round 
robin algorithm allocate parallel processes between 
N EMs in the follow order: first process allocated on 
first EM, second process on second EM, …, process 
N on EM N, process N + 1 on process 1 and etc. The 
linear algorithm allocates M processes between 
first M EMs. 

In this paper we consider the problem of optimal 
mapping parallel programs into hierarchical 
distributed CS (particularly multicore computer 
clusters). 

A heuristic algorithm of mapping parallel 
programs is proposed. A software tool for 
optimization of mapping MPI programs to multicore 
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computer clusters is developed. A results of natural 
experiments on mapping parallel MPI-programs 
from High-Performance LINPACK (HPL) and NAS 
Parallel Benchmarks into multicore computer cluster 
are presented. 

The rest of the paper is organized as follows: 
Section 2 describes some related works. Section 3 
gives a description of the problem, and Section 4 
describes the algorithm. Section 5 outlines and 
evaluates the experimental tests. Finally, we 
summarize our work in Section 6. 

2 RELATED WORK 

The problem of mapping parallel programs to CS 
has been well described. There have been many 
distinct categories of research, each having a 
different focus. A large part of the work (Kielmann 
et al. 1999), (Almasi et al. 2005), (Faraj et al. 2005) 
has concentrated on working with communication 
network topology graph only while still ignoring 
task graph structure. In the next category, 
researchers have worked on communication-
sensitive clustering while still ignoring any network 
topology considerations. The main objective here is 
the partitioning of task graph into balanced groups 
while reducing inter-partition communication (Lee, 
Kim & Park, 1990), (Lopez-Benitez, Djomehri & 
Biswas, 2001). The graph partitioning algorithm 
(Karypis, Kumar, 1999), (Hendrickson, Leland, 
1995) is widely used in the MPI performance 
optimization (Träff, 2002). It requires the task graph 
to describe the communication behavior of the 
program, which could be derived from trace or user 
input (Chen et al. 2006).  

In this paper we developed a heuristic algorithm 
for mapping parallel programs into hierarchical 
distributed CSs. The algorithm for working at both a 
task graph and the information about communication 
network hierarchy.  

3 THE MAPPING PROBLEM 

Let’s hierarchical distributed CS has N 
homogeneous elementary machines and a 
communication network with hierarchical 
organization. Such a communication network can be 
described by a tree with L levels. Each level of 
system is formed by own type of functional modules 
(for example, telecommunication racks, computer 
nodes, processors etc.) which interconnected via 

communication channels of current level. In Figure 
1 an example of hierarchical CS, three nodes 
computer cluster, is shown. 

For CS description following denotations are 
accepted: nl – is a number of elements placed at 
level l ∈ {1, 2, …, L}; nlk – is a number of children 
of element k ∈ {1, 2, …, nl} at level l; g(l, k1, k2) – is 
a number of the element level, which is the lowest 
common ancestor for elements k1, k2 ∈ {1, 2, …, nl}; 
bl – is a bandwidth of communication channels at 
level l ([ lb ] = bit/sec.); Clk – is a set of elementary 
machines belonging to the descendants of element k 
at level l; clk = |Clk|; C11 = C; C = {1, 2, …, N}. 

 
Figure 1: Cluster: 3 nodes 2 x AMD Opteron 275 
(N = 12; L = 3; n23 = 2; C23 = {9, 10, 11, 12}; 
g(3, 3, 4) = 2; z(1, 7) = 1). 

A message-passing parallel program is 
represented by a weight undirected task graph 
G = (V, E). The vertices V = {1, 2, …, M} 
correspond to parallel processes and the edges 
E ⊂ V×V represent communications between the 
processes. Weight dij of edge (i, j) ∈ E is a number 
of bytes transmitted between processes  i and j 
during program execution ([dij] = bytes). We assume 
that M ≤ N.  

3.1 Estimation of Parallel Program 
Execution Time 

Formally, the problem of optimal mapping of 
parallel program into distributed hierarchical CS is 
to find injective function f: V → C, which maps 
parallel processes to EMs. It is required to find xij:  
 

X = {xij : I ∈ V, j ∈ C},  
⎩
⎨
⎧ =

=
else.0

;)( if,1 jif
xij  

 

We use the expected execution time t  of parallel 
program as an optimization criterion. The execution 
time t of parallel program is defined as maximum 
from its processes execution times. 

The execution time ti of parallel process I ∈ V 
includes a time of computations and a time of 
communications with adjacent processes. We take 
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into account the communication costs only due to 
the homogeneity of EMs. Then 
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where t(i, j, p, q) = dij / bz(p, q) is a time of 
communications between processes i, j ∈ V, which 
are allocated to EMs p and q, correspondingly (p, q 
∈ C). The function z(p, q) sets up a correspondence 
between machines p  and q, and the number of 
communication network level through which they 
interact. In Figure 1 function z(1, 7) = 1, because the 
processor cores 1 and 7 belong to different computer 
nodes which interact via InfiniBand network. 

3.2 Optimization Problem 

Let’s formulate the problem of optimal mapping of 
parallel program into hierarchical distributed CS 
with the injectivity of the function f taken into 
account: 
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The constraints (2), (4) ensure that each process 
allocated on one EM, constraints (3) guarantee that 
each EM execute one process. 

4 THE MAPPING ALGORITHM 

The problem (1) – (4) is a discrete optimization 
problem. The heuristic algorithm TMMGP (Task 
Map Multilevel Graph Partitioning) for solving the 
problem is developed. The algorithm based on 
multilevel procedure of k-way graph partitioning. 
Let’s formulate the last problem. 
 

4.1 Graph Partitioning Problem 

The k-way graph partitioning problem is defined as 
follows: given a graph G’ = (V’, E’) with V ′ = {1, 2, 
…, n}, partition V’ into k disjoint subsets  

kVVV ′′′ ,,, 21 K  such that ∅=′∩∩′∩′ kVVV ...21 , 
VVVV k ′=′∪∪′∪′ ...21  and the maximal sum of the 

edge-weights incident to any subset is minimized. 
Let  
 

},,:),{(),( jiVvVuEvujiE ji ≠′∈′∈′∈=′  
 

denote a set of edges whose incident vertices belong 
to subsets iV ′  and jV ′ . The function 

c(u, v, i, j) = w(u, v)W(i, j)  
 

is an edge-weight which incident to different 
subsets; ),( vuw  is a weight of the edge (u, v) ∈ E’, 
W(i, j) is an additional weight for edges incident to 
subsets i and j.  

The formal problem statement of optimal  k-way 
graph partitioning with constraints for iV ′  taken into 
account is presented below. 
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4.2 The Mapping Algorithm 

The mapping algorithm TMMGP consists of the 
following steps.  

1) For the task graph G = (V, E) is solved the 
problem (5) – (9) – the graph is partitioned into 
k = [(M – 1) / cL1] + 1 disjoint subsets kVVV ′′′ ,...,, 21  
with values: s = cL1, c(u, v, i, j) = duv / bg(L, i, j) (see 
Section 3). 

2) The mapping f : V → C is built as follows. 
The processes from subset iV ′  is allocated to EMs 
from set CLi. 

The multilevel heuristic algorithms for graph 
partitioning (Hendrickson, Leland, 1995), (Karypis, 
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Kumar, 1999) became widely spread in practice. 
Such algorithms allow us to find approximate 
solutions for problem (5) – (9) in an acceptable time. 

In this paper at step 1 we used the multilevel 
graph partitioning algorithm introduced in (Karypis, 
Kumar, 1999). The complexity of the algorithm is 
O(|E|log2k).  

In Figure 2 a pseudocode of the TMMGP 
algorithm is shown. 

 
Input: a task graph G = (V, E); a CS description: 

   N, L, nl, nlk, C, Clk, clk; M’. 
Output: mapping x[j, c], x[j, c] = 1 if process j 

allocated to  EM c, and x[j, c] = 0 
otherwise. 

1 k  ← [(M – 1) / cL1] + 1 
2 s  ← cL1 
3 M ← log2(M / M’) + 1  
4 for i ← 1 to m do 
5     Gi ← CoarseGraph(Gi – 1) 
6 end for 
7 Pm  ← RecursiveBisection(Gm, k, s) 
8 for i ← m to 1 do 
9     Pi – 1 ← ProjectPartition(Gi – 1, Pi) 
10     Pi – 1 ← RefinePartition(Gi – 1, Pi – 1) 
11 end for 
12 for j ← 1 to M  do  
13     c ← Dequeue(C[P0, j]) 
14     x[j, c] ← 1 
15 end for 

Figure 2: A pseudocode of the TMMGP algorithm. 

In the lines 4 – 6 a sequence of smaller graphs 
G1, G2, …, Gm is built. The function CoarseGraph 
coarse the graph Gi to smaller graph Gi + 1 by 
stochastic algorithm Heavy Edge Matching 
(Karypis, Kumar, 1998), |Vi +1| ≈ |Vi | / 2, G0 = G. The 
function RecursiveBisection realize the recursive 
bisection algorithm LND (Schloegel et. al., 2003) of 
small graph Gm into k subsets with constrain 

sVi ≤′ || .The function ProjectPartition map the 
partition Pi of the graph Gi to the graph Gi – 1. The 
function RefinePartition implements the FM 
heuristic algorithm of partition refinement (Fiduccia, 
Mattheyses, 1982). In the line 13 C[k] is a queue of 
EMs from CLk set and P0,j is a number of subset of 
partition P0 which process j belong to. 

The parameter M’ is a number of vertices in 
graph Gm. The value of M’ chooses such that 
recursive bisection implements fast (usually on 
practice M’ ≤ 10⋅k). 

A computational complexity of the TMMGP 
algorithm is O(|E|log2k + M). 

The example of task graph mapping into 
computer cluster by the TMMGP algorithm is shown 
in Figure 3. 

1V ′

2V ′

3V ′

 
Figure 3: Example of mapping task graph by TMMGP 
algorithm (N = 16; L = 3; M = 12; b1 = 2 GBps; b2= 6 
GBps; b3 = 8 GBps). 

5 EXPERIMENTS 

The software tool MPITaskMap for optimization of 
mapping MPI programs into multicore computer 
clusters is created. 

5.1 Mapping Tools 

The MPITaskMap tool consists of the following 
three components (see Figure 4): 

1) OTFStat is the tool for analyzing traces of 
MPI programs in Open Trace Format (OTF) 
(Knüpfer et al. 2006) and building task graphs. 

2) CommPerf is the tool for benchmarking 
performance of communication channels between 
processor cores of computer cluster.  

3) MPITaskMap is the tool for mapping MPI 
programs into processor cores. This component gets 
MPI program’s task graph and system description as 
an input and builds a script for launching the 
program with optimized mapping. 

All components are implemented in ANSI C for 
GNU/Linux operation system. 
 

 
Figure 4: Process of the mapping MPI applications. 
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5.2 Experiment Organization 

We used MPI programs from packages NAS Parallel 
Benchmarks (NPB) and HPL in our experiments. 
The structures of task graphs of HPL, Conjugate 
Gradient (CG) and NPB Multigrid (MG) 
benchmarks are shown in Figure 5, 6 and 7, 
correspondingly. All graphs are built by OTFStat 
tool. 

Computers clusters of the following 
configurations are used in experiments:  

– cluster Xeon16: 4 nodes (2 x Intel Xeon 5150) 
interconnected via Gigabit/Fast Ethernet networks; 

– cluster Opteron10: 5 nodes (2 x AMD Opteron 
248) interconnected via Gigabit/Fast Ethernet 
networks. 

 
Figure 5: HPL benchmark task graph (16 processes, 
PMAP=0, BCAST=5). 

 
Figure 6: NPB Conjugate Gradient task graph (16 
processes, CLASS B). 

 
Figure 7: NPB Multigrid task graph (16 processes, 
CLASS B). 

5.3 Results 

The execution times of MPI benchmarks with 
mapping into cluster Xeon16 by round robin 
algorithm (T(XRR), default algorithm of mpiexec 
tool) and by TMMGP algorithm (T(XTMMGP)) are 
presented in Table 1. 

The communication network of Xeon16 consists 
of two levels. The first level is a Gigabit / Fast 
Ethernet network between nodes, the second level is 
a shared memory of processors inside nodes.  

The working time of algorithm TMMGP on Intel 
Core 2 Duo 2.13GHz processor did not exceed 
5⋅10 3 sec. for all benchmarks. 

As we can see from results, the quality of 
mapping significantly depends on a task graph 
structure. The optimization of mapping of parallel 
programs with non-uniform task graphs (for 
example, NPB CG or HPL) can considerably reduce 
its execution time. 

Table 1: Experimental results. 

Cluster 
interconnect 

T(XRR), 
sec. 

T(XTMMGP), 
sec. 

T(XRR) / 
T(XTMMGP) 

High Performance Linpack 
Fast 
Ethernet 1108,69 911,81 1,22 

Gigabit 
Ethernet 263,15 231,72 1,14 

NPB Conjugate Gradient 
Fast 
Ethernet 726,02 400,36 1,81 

Gigabit 
Ethernet 97,56 42,05 2,32 

NPB Multigrid 
Fast 
Ethernet 23,94 23,90 1,00 

Gigabit 
Ethernet 4,06 4,03 1,00 

 
It is necessary to notice, what a facilities on 
optimization of mapping parallel programs with full 
task graphs (for example, NPB Multigrid) 
sufficiently limited. Also, the quality of mapping 
depends on difference in performance of 
communication channels on several levels. 

6 CONCLUSIONS 

In this paper the problem of optimal mapping 
parallel MPI programs into multicore computer 
clusters is considered.  The heuristic algorithm 
TMMGP of mapping parallel programs is proposed. 
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The algorithm working with both the task graph and 
the information about communication network 
hierarchy. Software tool for optimization of mapping 
MPI programs is developed. Examples of mapping 
parallel programs from NAS Parallel Benchmarks 
are presented. 

The feature work is to integrate the mapping 
algorithm into resource management systems. 
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