
MODEL TRANSFORMATION USING ADAPTIVE SYSTEMS

G. Howells
Department of Electronics, University of Kent, Canterbury, U.K.

B. Bordbar
School of Computer Science, University of Birmingham, Birmingham, U.K.

D. H. Akehurst
Department of Electronics, University of Kent, Canterbury, U.K.

Keywords: Reverse engineering, Design recovery, Model transformation, Adaptive systems.

Abstract: The key research focus of this paper is the combination of advantages from rule based and adaptive systems
to produce a hybrid technique that is better able to handle transformations than either technique in its own
right. The target problem for the techniques we are developing of reverse engineering is a significant
problem when dealing with legacy systems but has great advantages over the significant costs of
maintaining or reengineering the old code. The significant novelty of the system is the application of
adaptive systems to the problem, these serve to reduce the complexity and quantities inherent in defining
transformations rules for each individual case. Current reverse engineering approaches fail due to the
difficulties of writing rules to recognize every possible pattern of code that maps to the higher level model.

1 INTRODUCTION

Since the publication of the seminal paper of
Chikosfsky and Cross (Chikosfsky and Cross 1990),
which sets the taxonomy of reverse engineering,
there has been very little change in the objectives of
design recovery. These objectives, which can be
classified into the following three main categories,
are still amongst the most formidable challenges of
software engineering:
• analysis of the system,
• synthesizing higher level abstraction to allow

better understanding, and
• capability to reuse the legacy system.

Currently, software engineering is going through
fundamental changes. Unlike more established
engineering disciplines, software engineers tend to
overlook the role of models. In recent years,
following the birth of model based approaches
(MDA 2005, Stahl and Volter 2006), models are
being promoted to first class citizens of the software
world. Modern software models are expressed in
well-established and highly accepted standard
languages such as the UML. Such models are not

only machine-readable, but also can be handled by
different tools (XMI 2005). Moreover, prevailing
model based approaches such as the MDA are
supported by a large number of available
commercial and academic model transformation
frameworks, for a list see (Planet MDE 2005).

However, there is a false sense of security that
advances of model based approaches will
effortlessly result in solving the problems of reverse
engineering. It is very naïve to assume that reverse
engineering is yet another model transformation
which transforms the code back into a UML model.
Akehurst et al (Akehurst 2007) highlight the
challenges of implementation of UML models in
Java. The correspondence between high level
abstraction and legacy code is often one-to-many,
i.e. the same abstract design may be created from
different snippets of legacy code. To revisit the
above example, in reverse engineering from Java to
a UML class diagram, multiple different snippets of
Java code implemented using various objects from
the Collection API, are, by-and-large, reverse-
engineered to the same sub-model comprising UML
classes connected via associations. Hence, a diverse
set of code snippets is reverse-engineered to a single

133
Howells G., Bordbar B. and Akehurst D. (2009).
MODEL TRANSFORMATION USING ADAPTIVE SYSTEMS.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 133-138
DOI: 10.5220/0002242601330138
Copyright c© SciTePress

pattern of design in the UML. Considering the
complexity and high number of variants of such
snippets of code, and their combination which may
add even further complexity, it is not possible to
recognise every possible pattern of code and define
suitable transformation rules. As a result, current
UML reverse engineering tools are often too
simplistic and provide poor high-level
representation, which is neither adequate nor
precise. It is widely accepted that this is the single
most important reason for the lack of en-masse
adoption of such techniques by the industry.

Nevertheless, the need for practical reverse
engineering systems is significant. By early 1990,
the need for reverse engineering and design recovery
was already acute. In recent years, the application of
Computer Aided Software Engineering (CASE)
techniques to reverse engineering has received
considerable attention. In particular, mass adoption
of standards, such as the UML, and advances in
CASE tool technology, such as model driven
approaches, have provided new opportunities to
address challenges of design recovery in legacy
systems. The mainstream idea is to recover a design
captured in a legacy system using UML based
languages. This will allow an understanding of the
core idea of the design by recreating a design
abstraction of the legacy system using a UML CASE
tool with minimal human intervention. However, in
practice, existing tools and methods are not capable
of conducting this process accurately. Conceptually,
the problem is that the process of reverse
engineering transcends a legacy piece of code to a
higher level of abstraction. In recent years, model
transformation techniques have evolved to such an
advance stage that it is both timely and
advantageous to address this significant problem.

Our proposal to address the Reverse Engineering
problem, is to consider analogies with situations
which are successfully addressed by adaptive
techniques. In order to allow such systems to react to
previously unencountered situations, it is typically
necessary to present the systems with pre-defined
typical examples characterising the nature of
generalised categories or classes which they are
required to recognise. The system may subsequently
be employed to allow it to deduce abstract properties
which may efficiently categorise previously unseen
examples. This research thus aims to integrate the
advantages of adaptive techniques with existing
rule-based technology in order to achieve major
productivity enhancements to the current Reverse
Engineering environments. Significantly, adaptive
systems offer the considerable advantage of being
able to generalise from a reduced set of examples

and hence potentially may be employed to alleviate
the requirement for an infeasibly large set of rules to
be defined which would otherwise be needed in non-
trivial Reverse Engineering problems. The
possibility of employing such systems to address
reverse engineering issues is explored in this paper.

The paper is organized as follow. Section 2
highlights the princliples of Model Driven
Development while Section 3 introduces the
challenges of reverse engineering of legacy systems
into the UML languages. Section 4 discusses
adaptive approaches and presents a sketch of our
method which applies adaptive techniques to model
transformation, the details of which are introduced
in Section 5. Finally, Section 6 concludes the paper
by considering the potential offered by the
techniques presented.

2 UML AND MODEL DRIVEN
DEVELOPMENT

Model Driven Development (Stahl and Volter 2006)
aims to promote the role of modeling in software
engineering. Model Driven Architecture (MDA) is a
flavor of MDD which is initiated by the Object
Management Group (MDA 05). MDA relies on
standards such as Meta Object Facility (MOF)
(www.omg.com) for describing metamodels.
Metamodels are high-level models from which
models of the system are instantiated. MOF can be
compared to EBNF, which is used for defining
programming languages grammar. As a result, MOF
is a blueprint from which MOF Compliant
metamodels are created.

Figure 1: An overview of MDA.

Figure. 1 depicts an outline of MDA and the process
of Model Transformation. A number of
Transformation Rules are used to define how various
elements of one metamodel (Source metamodel) are
mapped into the elements of another metamodel
(Destination metamodel). The process of Model
Transformation is carried out automatically via

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

134

software tools which are commonly referred to as
Model Transformation Frameworks. A typical
Model Transformation Framework requires three
inputs: Source metamodel, Destination metamodel
and Transformation Rules. For any instance of the
Source metamodel, the Transformation Rules are
executed to create an instance of the Destination
metamodel.

3 REVERSE ENGINEERING
TO UML LANGUAGES

Reverse engineering and design recovery in essence
involves bridging the gap between two modeling
paradigms. In particular, to reverse-engineer a piece
of legacy code to UML languages, the concepts of
the language must be described as corresponding
UML representations. However, it is not always
possible to identify the corresponding elements and
present the correct rule for transformation. For
example, (Akehurst 2006) describes the challenges
of describing UML association in Java, as Java
directly does not support the idea of associations.
Reverse-engineering of associations has been
addressed by various approaches. Barowski and
Cross (Barowski and Cross 2002) propose a method
investing Java classes to identify the associations
and dependencies between the classes. However, the
approach fails to identify detailed information such
as multiplicities. Other approaches for identifying
association multiplicity, aggregation and
composition is presented in (Gueheneuc and Albin-
Amiot, 2004), (Gogolla and Kollman 2000). Sutton
and Malenic (Sutton and Malenic 2005) describe
shortcomings of existing UML tools for reverse
engineering and present a method of design recovery
from C++. The situation is even more complex in
case of the languages that are not Object Oriented,
such as COBOL, which also requires dealing with
issue related to style of coding, such as the use of
GOTO (Zhang et al 2005).

4 AN ADAPTIVE APPROACH TO
MODEL TRANSFORMATION

Adaptive systems, often typified by Artificial Neural
Architectures or Genetic Algorithm based systems,
offer the ability to learn and generalize from a set of
known examples allowing them to recognize
previously unseen inputs based on their similarity of
characteristics with previously seen examples.

Although there are numerous variations of adaptive
systems (Haykin 1999, Michalewicz 1996), in
essence they operate by searching a large,
potentially multi-dimensional search space looking
for optimal solutions for a problem. Subsequent
examples presented to the system are then classified
according to their similarity with previous examples.
This novel proposal combines existing techniques in
rule based and adaptive systems to produce a hybrid
capable of addressing problems to which neither is
individually suited.

As has been stated, there is a false sense of
security that advances of model based approaches
will inevitably result in solving the problems of
reverse engineering. Moreover, large programs are
created from scattered code in different parts
(delocalised plans (Letovsky and Soloway 1986)),
exiting methods of program plan recognition based
using run-time information (Bojic and Velasevic
2000), slicing techniques (Walkinshaw 2005) and
static approaches (Tonella 2003) fail to cope with
sheer number of involving variations. To do an
accurate and correct transformation, it is crucial to
identify all such variations of code.

A fundamental concept in order to identify such
variants is the concept of the closeness between two
snippets of code or more generally between two
abstract models. Essentially, in order to evaluate a
candidate solution to a problem, adaptive systems
require an objective measure as to how close a
candidate solution lies to an ideal solution supplied
as part of a training example. It may be worth noting
at this point that all adaptive systems in our method
employ supervised learning strategies where a
number of training examples with known optimal
solutions is present. Further, a mechanism for
adapting such candidate solutions such that they
form an even closer approximation is required. In
conventional weighted artificial neural architectures
such as the Multi-Layer perceptron, closeness is
represented as a real number. Further, the weights
themselves are represented as real numbers and they
are adapted either upwards or downwards via a
learning rule such that the closeness (or error) value
is reduced. By repeated exposure to training
examples, the network adapts so as to allow a good
approximation to the desired results for the given
training patterns. The expectation is that, having
been exposed to the training patterns, subsequent
unseen patterns will be correctly classified (or
transformed) due to their implicit similarity to the
training patterns. A fundamental goal of our system
is thus to identify a suitable measure of closeness
between independent code segments as described
below.

MODEL TRANSFORMATION USING ADAPTIVE SYSTEMS

135

Artificial neural networks have been researched
extensively and offer a technology capable of
learning from its environment using relatively
simple distributed processing elements (neurons).
The technology depends on the employment of
learning or training algorithms capable of
modifying the weights associated with neural
connections to take into account properties
associated with a known sample presented to the
system (other neural models are available but this
description represents the most common approach.)
It is critically these weight values, which represent
the knowledge present within the system. This
concept is fundamental in capturing the inherently
concealed dependencies, such as subtle multiple
distinct instances of a particular programming
concept which are physically disjointly located.
Alternative approaches such as (Bojic and Velasevic
2000), (Walkinshaw 2005) or (Tonella 2003) do not
possess such capabilities, which is thus a significant
novelty of this approach.

For our purposes, the structure of such a network
will be generalised from that described above to
allow the weights and learning functions within the
network to model efficiently the component
concepts of the models under investigation. They
will be represented as multi-dimensional
components where the constituent model
components represent fundamental model concepts
from the source model of the transformation. The
system employed for our network is based on
Constructive Type Theory (CTT) (Howells and
Sirlantzis 2008, Sirlantzis et al 1999, Thompson
1991). This generalisation of the structure of the
neural architecture is a fundamental novel
component of the proposal and underlies its ability
to address the previously intractable problem of
reverse engineering.

Constructive Type Theory is a formal logic
based on the application of Constructive
mathematics. Constructive mathematics differs from
classical mathematics in that all mathematical proofs
produced must be based on a demonstration of how
to construct an example of the theorem or
proposition being asserted. In other words, proof by
contradiction is not allowed. As a result of this,
many paradoxes of Classical mathematics such as
Russell’s paradox are eliminated. A further
consequence of this approach is that a proof in
Constructive Type Theory is itself an algorithm
indicating how to construct an example of the
proposition being asserted. That proposition itself
may be considered a datatype definition or at a
higher level a formal specification of the algorithm
forming the proof. Constructive Type Theory thus

represents a merging of the worlds of formal
mathematics and software engineering and its
potential for the production of guaranteed bug-free,
provably correct software is enormous.

5 HYBRID TRANSFORMER

A key advantage allowing the proposed system to be
practically applicable is the combination of
advantages from rule based and adaptive systems to
produce a hybrid technique that is better able to
handle transformations than either technique in its
own right. The target problem for the techniques we
are developing of reverse engineering is a significant
problem when dealing with legacy systems but has
great advantages over the significant costs of
maintaining or reengineering the old code. The
significant novelty of the proposal is the application
of generalised adaptive systems to the problem,
which serves to reduce the complexity and quantities
inherent in defining transformations rules for each
individual case. Current reverse engineering
approaches fail due to the difficulties of writing
rules to recognise every possible pattern of code that
maps to the higher level model whereas our method
significantly reduces the complexity by employing
adaptive systems to model small variations in source
model components.

The two strands of the proposal, MDD rule
based transformations and adaptive systems,
complement each other as the rules constrain the
adaptive system allowing it to converge in a
computationally feasible manner and the adaptive
system serves to reduce the quantity of rules
required to identify all possible code patterns

Figure 2: The underlying Paradigm.

The underlying paradigm is exemplified by Figure 2.
A Hybrid Transformer is constructed which has at
its base a set of rules; on top of which the adaptive
system is trained to recognise patterns of code that
are ‘close’ to the patterns described in the rules.
After sufficient training the Hybrid Transformer will

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

136

receive the Input Code to produce the Output UML
model which reverse engineers the Input code.

The notion of closeness of two models is
fundamental to the operation of an adaptive system
in this context; however we cannot assign a simple
total ordering on all models due their diversity. We
rather incorporate a multi-dimensional notion of
closeness allowing freedoms of movement under the
governance of transformation constraints. The two
components of the hybrid system are now
introduced. In the next two subsections, the main
two strand of the approach rule based training and
adaptive system will be explained.

5.1 The Rule based Training

Reverse engineering and design recovery in essence
involves bridging the gap between two modelling
paradigms. For example, to reverse-engineer C++ to
the UML, the concepts of the C++ language must be
described as corresponding UML representations.
Currently, UML tools, as described in (Sutton et al
2005) for C++, often deal with the problem
superficially, resulting in inaccurate design recovery.
Such poor design recovery is due to absence of a
“bridge between C++ and the UML”. We wish to
emphasise that the problem is not exclusive to C++.
In case of Java, (Akehurst et al 2007), highlight
shortcomings of existing tools in code generation,
which are also not considered in reverse
engineering. In our opinion one major cause of such
shortcomings is the diverse style of coding adopted
by programmers. For example consider the Class
diagram shown in Figure 3.

UML tools and developers can implement this
diagram in a number of different ways in Java. For
example for the association which relates the two
class can be implemented as an ArrayList,
LinkedList, conventional Array, a Set, …
among others. This by-and-large depends on the
style of coding adopted by the developer of the tool
vendor. Using Rules, we capture such styles. For
example, one rule can be about reverse engineering
of a associations which are modelled as
ArrayLists and the other as LinkedLists. The
adaptive systems will pick up most suitable rules
after sufficient learning.

5.2 The Adaptive Sub-system

The rule based system is complemented by an
adaptive system which initially maps the lowest
level program constructs into more general, and
hence smaller number of, categories where a feasible
set of rules may be defined.

Figure 3: A simple class diagram.

The system utilises the multi-dimensional
Constructive Type Theory (CTT) logic based
adaptive artificial neural network which has been
developed by the authors. Each processing element
within the network is associated with a Judgement
playing the role of an activation function within
conventional networks. The Judgement is a higher
order implication type where the component domain
types mirror the range types of the weights
associated with each input to the processing element.
For example, a processing element with two inputs
would have a Judgement of type A→B→C where
the weights associated with the two inputs would be
of type X→A and Y→B respectively. The output of
the processing element will be of type C. Note that
no restriction is placed on the types A,B,C,X and Y
so as to allow them to model the components of the
languages under investigation..

The connections between the processing
elements have weights associated with them. It is
proposed that the weight values themselves will be
Judgements where a Judgement is defined to be a
logical proposition together with its proof. We will
identify the fundamental concepts within a model
and define sub-orderings for each concept. For
example, a simple product type such as an n-tuple
maybe sub-divided into its component types and a
closeness function defined as the sum of the
closeness values of the component types.

Our primary approach to the closeness problem
is a structural one in that the closeness value of a
complex structure is defined to be a function (a
simplistic example is the sum) of the closeness
values for the components of the structure.
Significantly, the closeness value itself may be a
multi-dimensional value, typically an array of real
valued numbers. For a number of primitive types, an
absolute value of closeness will be defined. Care
must be taken here to normalise the closeness values
for the primitive structures to ensure than any given
closeness value (e.g. the number 4) always carries
the same semantic weight and contributes equally to
each component of the closeness evaluation.

Two independent components of the system
require measures of closeness:-

1. Primarily, a closeness value is required for the
candidate outputs of the adaptive system so
that the output may be compared to the training
outputs for a given training pattern. For our
examples, the outputs consist of UML
diagrams and hence the closeness values will

MODEL TRANSFORMATION USING ADAPTIVE SYSTEMS

137

be a multi-dimensional vector based on the
structural components of UML

2. A closeness value will also be required for the
CTT component values which reside within the
adaptive system so that the network is able to
adapt in a logical fashion. Each Judgement will
be assigned a closeness value and during
adaptation mapped to a similar Judgement as
required by the error value of the network
represented as the closeness values between the
actual and required UML diagrams resulting
from the initial network.

This methodology is feasible due to the restriction
on the adaptive system inherent in the
multidimensional closeness measurement.

6 CONCLUSIONS

A hybrid system for addressing the significant
practical problems of Model Transformation for
difficult problem domains such as Reverse
Engineering is proposed which combines the
advantages of rule-based and adaptive techniques for
Model Transformation in such a way that the
advantages of both techniques are retained whilst
alleviating the disadvantages inherent within both
techniques.

ACKNOWLEDGEMENTS

This research was supported at the Department of
Electronics at University of Kent though the
European Union ERDF Interreg IIIA initiative under
the MODEASY grant.

REFERENCES

E. J. Chikofsky and J. Cross, "Reverse Engineering and
Design Recovery: A Taxonomy," IEEE Software, vol.
7, pp. 13-17, 1990.

MDA, "Model Driven Architecture, Object Management
Group, www.omg.org/mda/," 2005.

T. Stahl and M. Volter, Model Driven Software Develop-
ment; Technology engineering management: Wiley, 2006

XMI, "XML Metadata Interchange (XMI), v2.1, available
at www.omg.org," 2005.

Planetmde, "Planet MDE, www.planetmde.org," 2005.
D. H. Akehurst, W. G. J. Howells, and K. D. McDonald-

Maier, "Implementing Associations: UML2.0 to Java
5," Journal of Software and Systems Modeling, March,
2007.

L. A. Barowski and J. H. Cross, " Extraction and Use of

 Class Dependency Information in Java," presented at
Ninth Working Conference on Reverse Engineering
(WCRE'02), 2002.

Y.-G. Gueheneuc and H. Albin-Amiot, "Recovering
binary class relationships: putting icing on the UML
cake," presented at 19th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, 2004.

M. Gogolla and R. Kollman, "Re-Documentation of Java
with UML Class Diagrams," presented at 7th
Reengineering Forum, , 2000.

A. Sutton and J. I. Maletic, "Mappings for Accurately
Reverse Engineering UML Class Models from C++,"
presented at 12th Working Conference on Reverse
Engineering (WCRE 2005), 2005.

J. Pu, Z. Zhang, Y. Xu, and H. Yang, "Reusing legacy
COBOL code with UML collaboration diagrams via a
Wide Spectrum Language," presented at IEEE
International Conference on Information Reuse and
Integration, IRI, 2005.

S.Haykin, "Neural Networks, A Comprehensive
Foundation" Prentice Hall 1999.

Z. Michalewicz, "Genetic Algorithms + Data Structures =
Evolution Programs. 3rd ed". Springer-Verlag, Berlin
Heidelberg New York (1996)

G. Howells, K.Sirlantzis Improving Robotic System
Robustness via a Generalised Formal Artificial Neural
System. In symposium on Learning and Adaptive
Behaviour in Robotic Systems (LAB-RS 2008)

S. Letovsky and E. Soloway, "Delocalized Plans and
Program Comprehension," IEEE Software, vol. 3, pp.
41-49, 1986.

D. Bojic and D. Velasevic, "Reverse engineering of use
case realisations in UML," presented at ACM
Symposium on Applied Computing (SAC’00), 2000

N. Walkinshaw, M. Roper, and M. Wood, "Understanding
Object-Oriented Source Code from the Behavioral
Perspective," presented at 13th IEEE International
Workshop on Program Comprehension (IWPC'05), 2005

P. Tonella and A. Potrich, "Reverse engineering of the
interaction diagrams from C++ code," presented at
International Conference on Software Maintenance
(ICSM’03).

K. Sirlantzis, G. Howells, and S. Paschalakis, "A
functional neural network prototype for
multidimensional data analysis," Image Processing
and Its Applications, 1999. Seventh International
Conference on (Conf. Publ. No. 465), vol. 1, 1999.

S. Thompson, Type theory and functional programming:
Addison-Wesley Wokingham, England, 1991.

A. F. R. Rahman, W. G. J. Howells, and M. C. Fairhurst,
"A multiexpert framework for character recognition: a
novel application of Clifford networks," Neural
Networks, IEEE Transactions on, vol. 12, 2001.

A. Sutton and J. I. Maletic, "Mappings for Accurately
Reverse Engineering UML Class Models from C++,"
presented at 12th Working Conference on Reverse
Engineering (WCRE 2005), 2005.

L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg, "VOC: A
methodology for the translation validation for
optimizing compilers," Journal of Universal Computer
Science, vol. 9, pp. 223-247, 2003.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

138

