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Abstract: The Linear Scale Invariant Systems are introduced for both integer and fractional orders. They are defined 
by the generalized Euler-Cauchy differential equation. It is shown how to compute the impulse responses 
corresponding to the two regions of convergence of the transfer function. This is obtained by using the 
Mellin transform. The quantum fractional derivatives are used because they are suitable for dealing with this 
kind of systems. 

1 INTRODUCTION 

Braccini and Gambardella (1986) introduced the 
concept of “form-invariant” filters. These are 
systems such that a scaling of the input gives rise to 
a scaling of the output. This is important in detection 
and estimation of signals with unknown size 
requiring some type of pre-processing: for example 
edge sharpening in image processing or in radar 
signals. However in their attempt to define such 
systems, they did not give any formulation in terms 
of a differential equation. The Linear Scale Invariant 
Systems (LSIS) were really introduced by Yazici 
and Kashyap (1997) for analysis and modelling 1/f 
phenomena and in general the self-similar processes, 
namely the scale stationary processes. Their 
approach was based on an integer order Euler-
Cauchy differential equation. However, they solved 
only a particular case corresponding to the all pole 
case. To insert a fractional behaviour, they proposed 
the concept of pseudo-impulse response. Here we 
avoid this procedure by presenting a fractional 
derivative based general formulation of the LSIS. 
We assume that the fractional LSIS is described by 
the general Euler-Cauchy differential equation  

∑
i=0

N
  ai t

αi.y(αi)(t)  = ∑
i=0

M
  bi . t

βi.y(βi)(t)   
 

(1) 

This equation is difficult to solve for any values for 
N or M and any derivative orders. However, when 
the derivative orders have the format 

αi = α+i    i=0, 1, 2, …, N 

and  

βi = β+i    i=0, 1, 2, …, N 

we obtain a simpler equation 

∑
i=0

N
  ai t

α+i.y(α+i)(t)  = ∑
i=0

M
  bi . t

β+i x(β+i)(t)  
 

(2) 

that we can solve with the help of the Mellin 
transform and using the fractional quantum 
derivative (Ortigueira, 2007, 2008). As we will 
show, the above equation allows us to obtain two 
transfer functions. Each of them has two terms that 
lead to two inverse functions. The impulse response 
is obtained by using the multiplicative convolution 
defined by (Bertran et al, 2000):  

 f(t)٧g(t) = ⌡⌠
0

∞ 
  f(t/u)g(u)

du
u   

 
(3) 

 
 

Before going into the solution of equation (2), 
we are going to obtain the solution of the integer 
order equation corresponding to put α=β=0 in (2). 
Then we will solve equation (2) for any α and β. 
This will be done in section 1. Other interesting 
results will be introduced in section 3. Finally we 
will present some conclusions. 
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2 THE EULER-CAUCHY 
EQUATION 

2.1 The Integer Order Case 

Consider a linear system represented by the 
differential equation 

 

∑
i=0

N
  ai t

i.y(i)(t)  = ∑
i=0

M
  bi . t

i x(i)(t)  

 

(4) 

where x(t) is the input, y(t) the output, and N and M 
are positive integers (M≤N). Usually aN is chosen to 
be 1. We will assume that this equation is valid for 
every t∈R+. Applying the Mellin transform to both 
sides of (3) we obtain (Gerardi, 1959;Bertran et al, 
2000) 

∑
i=0

N
  ai (-1)i(s)i Y(s) = ∑

i=0

M
  bi . (-1)i (s)i X(s),

  

 

(5) 

from where we obtain a transfer function 

H(s) = 
Y(s)
X(s) =  

∑
i=0

M
 bi (-1)i (s)i

∑
i=0

N
 ai (-1)i (s)i

   

 

(6) 

In this expression we need to transform both 
numerator and denominator into polynomials in the 
variable s. To do it we use the well known relation 
(Abramowitz and Stegun, 1972 ) 

(x)k = ∑
i=0

k
  (-1)k-i s(k,i) xi   

 
(7) 

where s( , ) represent the Stirling numbers of first 
kind that verify the recursion 

s(n+1,m) = s(n,m-1) – ns(n,m)  (8) 

for 1 ≤ m ≤ n and with  
s(n,0) = δn and s(n,1) = (-1)n-1(n-1)! 

With some manipulation, we obtain: 
 

∑
i=0

N
  ai (-1)i (x)i = ∑

i=0

N
  ∑

k=i

N
  ak (-1)ks(k,i) xi  

 =  ∑
i=0

N
   Ai x

i  

 
 
 

(9) 

with the Ai coefficients given by 

Ai = ∑
i=k

N
  ak (-1)ks(k,i)  

 
(10) 

or in a matricial format 

A = S.a (11) 

where  

A = [A0 A1 … … AN]T  (12) 

S=[ s(i,j), i,j=0,1, …,N]  (13) 
 

and 

a = [a0 a1 … … aN]T (14) 

With this formulation, the transfer function is given 
by: 

H(s) = 

∑
i=0

M
 B i s

i

∑
i=0

N
 Ai s

i

      M≤N 

 

 
 
 

(15) 

that is the quotient of two polynomials in s. In 
general H(s) has the following partial fraction 
decomposition 
 

 H(s) = 
BM 
AN

 + ∑
i=1

N
 ∑
j=1

mi
 

aij

(s-pi)j
 

 
(16) 
 

The constant term only exists when M=N and its 
inversion gives a delta at t=1: 

 M-1[
BM 
AN

] = 
BM 
AN

δ(t-1) 

 

 
(17) 

For inversion of a given partial fraction, we must fix 
the region of convergence Re(s) > Re(pi) or  Re(s) < 
Re(pi)  similar to identical situation found in the 
usual shift invariant systems with the Laplace 
transform. Let us assume that the poles are simple. 
Accordingly to each region of convergence we have 
(Bertran et al, 2000) respectively  

M -1[
1

(s-p)] = u(1-t).t-p 

 
(18) 

and 

M -1[
1

(s-p)] =u(t-1).t-p (19) 

ON THE LINEAR SCALE FRACTIONAL SYSTEMS - An Application of the Fractional Quantum Derivative

197



 

By successive derivation in order to p we obtain the 
solution for higher order poles 

M -1[
1

(s-p)k] = u(1-t).
(-1)k-1[log(t)]k-1 

(k-1)! t-p    
 

(20) 

and 

M -1[
1

(s-p)k] =u(t-1). (-1)k-1[log(t)]k-1 

(k-1)! t-p   
 

(21) 

We conclude that the response corresponding to an 
input  δ(t-1) is given by: 

h(t)=
BM 
AN

δ(t-1)+ ∑
i=1

N
 ∑
k=1

mi
 aik. 

(-1)k-1[log(t)]k-1 

(k-1)! t-pi w(t) 
 

(22) 

where w(t) is equal to u(1-t) or to u(t-1), in 
agreement with the region of convergence adopted 
to invert (15). To compute the output to any function 
x(t) we only have to use the multiplicative 
convolution. 
 We must call the attention to the fact the 
point of application of the impulse is t=1 and not 
t=0, as it is the case of the shift-invariant systems. 

2.2 The Fractional Quantum 
Derivative 

To consider a more general case we must introduce 
the notion of fractional quantum derivative. This 
was not needed in the previous section because in 
the integer order case we only have one Mellin 
transform for tKf(K)(t). This is not the situation in the 
fractional case. In fact we have two fractional 
derivatives given by {see appendix}: 

Dαq f(t) = lim
q→1

∑
j=0

∞
  ⎣
⎡
⎦
⎤α

 j q (-1)j qj(j+1)/2 q-jα f(qjt) 

(1 − q)α tα  

 
 

(23) 

and 

Dαq-1f(t) = lim
q→1

∑
j=0

∞
  ⎣
⎡
⎦
⎤α

 j q (-1)j qj(j-1)/2 f(q-jt) 

(1 − q-1)α tα  

 
 

(24) 
 
 

These derivatives have the same Mellin transform in 
the integer order case, but in the general their Mellin 
transforms are given by: 

            M [Dαq f(t) ] = 
Γ(1 − s + α)
Γ(1 − s)  F(s-α)  

 
(25) 

valid for Re(s) < min(0,α)+1, in the first case and by  

M [Dαq-1f(t) ] = (-1)α. 
Γ(s)

Γ(s − α) F(s-α) 
 

(26) 

valid for Re(s) > max(0,α), in the second case. It is 
interesting that the first corresponds to the anti-
causal case when working in the Laplace transform 
context, while the second corresponds to the causal 
one. 

2.3 The Fractional Order Equation 

Consider now a linear system represented by the 
fractional differential equation 
 

∑
i=0

N
  ai t

α+i.y(α+i)(t)  = ∑
i=0

M
  bi . t

β+i x(β+i)(t)  
 

(27) 

where α and β are real numbers. With the Mellin 
transform we obtain two different transfer functions 
depending on the derivative we use, (23) or (24). 
From (23) we have: 

H(s) = 

∑
i=0

M
 bi (-1)i (s+β)i

∑
i=0

N
 ai (-1)i (s+α)i

 .
Γ(1-s-α)
Γ(1-s)  

Γ(1-s)
Γ(1-s-β)  

 
 
 

(28) 

Proceeding as in 2.1 we have 

 H(s) = 

∑
i=0

M
 B i (s+β)i

∑
i=0

N
 Ai (s+α)i

 .
Γ(1-s-α)
Γ(1-s-β)  

 
 
 

(29) 

So, the transfer function in (29) has two parts; the 
first is similar to (25) aside a translation on the pole 
and zero positions. Its inverse has the format: 
 

h(t)=BM 
AN

δ(t-1)+tα ∑
i=1

N
 ∑
k=1

mi
 Cik.

(-1)k-1[log(t)]k-1 

(k-1)! t-pi u(t-1) (30) 

where the pi, i=1,2, …, N are the poles. We must 
remark that it does not depend explicitly on β. The 
second factor in (29) leads to a new convolutional 
factor needed to compute the complete solution of 
(27). So, we have to compute the inverse Mellin 
transform of 

ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

198



 

 Ha(s) =.
Γ(1-s-α)
Γ(1-s-β)  

(31) 

To do it we can always choose an integration path 
on the left of all the poles. Computing this integral, 
we obtain: 

 ha(t) = 
1

Γ(α-β)t
β( )t - 1 α-β-1u(t-1) (32) 

So, the impulse response corresponding to (29) is the 
convolution of (30) and (32).  By simplicity, assume 
that all the poles are simple. In this case, the impulse 
response is given by: 

h(t) = 
BM 
AN

1
Γ(α-β)t

β( )t - 1 α-β-1u(t-1) +  

        + tα ∑
i=1

N
 Ci.

Γ(1-pi)
Γ( α-β-pi+1) t

-pi u(t-1) 

 
 

(33) 

Choosing the other region of convergence we have 

  H(s) = 

∑
i=0

M
 B i (s+β)i

∑
i=0

N
 Ai (s+α)i

 .(-1)β-α Γ(s+β)
Γ( s+α)  

 
 

(34) 

The first factor has as inverse the expression: 

h(t) = 
BM 
AN

δ(t-1) +  

+ tα ∑
i=1

N
 ∑
k=1

mi
 Cik.

(-1)k[log(t)]k-1 

(k-1)! t-pi u(1-t) 

 

(35) 

For the second we proceed as before. Now the 
integration path is in the right half complex plane. 
We obtain 

 ha(t) = -  
1

Γ(α-β)t
β( )t - 1 α-β-1u(1-t) (36) 

To compute the final impulse response we only have 
to convolve the two expressions as we did in the 
other case. We obtain, for the simple pole case  

 h(t) = - 
BM 
AN

1
Γ(α-β)t

β( )t - 1 α-β-1u(1-t) - 

tα ∑
i=1

N
 Ci.

Γ(β-α+pi)
Γ (pi) 

t-piu(1-t) 

 

(37) 

It is interesting to verify that (33) and (37) behavior 
like the usual anti-causal and causal systems.  When 
Re(pi) < 0, (30) increases without bound while (35) 
decreases. If Re(pi)  > 0, we verify the reverse 

situation. This means that we can use the well 
known Routh-Hurwitz test to study the stability of 
LSIS. 

2.4 Particular Cases 

2.4.1 α = β 

If α=β, the second terms in (29) and (34) is equal to 
1, implying that the complete impulse response is 
given by (30) and (35).  

2.4.2 α = 0 and β ≠ 0 

This case is very interesting since it is similar to the 
situation treated by Yazici and Kashyap. With α=0, 
(30) and (35) do not depend explicitly on β and they 
are similar to the integer order case. The dependence 
on β appears only in the second therm.  

2.4.3 α ≠ 0 and β = 0 

This situation is more involved, since both terms of 
the impulse response depend on α. We can obtain 
the general impulse response by putting β=0 into 
(30), (32), (35), and (36). 

3 THE EIGENFUNCTIONS 
AND FREQUENCY RESPONSE 

Consider relation (3) and assume that one of the 
functions is the impulse response of the system (1) 
and the other is a power function t-σ, σ∈C.   It is not 
hard to show that  

 h(t)٧t-σ = H(σ).t-σ (38) 

Leading us to conclude that the power function is the 
eigenfunction of the LSIS. In particular we can 
write: 

 h(t)٧t-jν = H(ν).t-jν (39) 

and H(ν) will be the frequency response of the 
system, considering that our “cisoids” have the 
format 

  c(t) = e-jνlog(t) (40) 

that verify: 
 c(t) = c(at) (41) 

provided that  
 a = e2π/ν (42) 

defining the scale periodicity. These results show 
that the output of a LSIS to a cisoid is a cisoid. For a  
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cosine signal, as input, the output y(t) is given by 

y(t) = |H(ν)|.cos[2πνlog(t)+ϕ(ν)] (43) 

where ϕ(ν) is the phase spectrum of the system. 

4 CONCLUSIONS 

In this paper, we introduced the general formulation 
of the linear scale invariant systems through the 
fractional Euler-Cauchy equation. To solve this 
equation we used the fractional quantum derivative 
concept and the help of the Mellin transform. As in 
the linear time invariant systems we obtained two 
solutions corresponding to the use of two different 
regions of convergence.  We presented other 
interesting features of the LSIS, namely the 
frequency response. We made also a brief study of 
the stability. 
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APPENDIX - QUANTUM 
DERIVATIVE FORMULATIONS 

• Incremental Ratio Formulation 

The normal way of introducing the notion of 
derivative is by means of the limit of an incremental 
ratio that in the forward case reads 

 Dhf(t) = lim
h→0

f(t) – f(t-h)
h   (a.1) 

By repeated application, this definition leads to the 
derivative of any integer order that can be 
generalized to any real or complex order by the well 
known forward Grünwald-Letnikov fractional 
derivative (Ortigueira, 2006):  

Dα
hf(z)  = lim

h→0+
 

∑
k = 0

∞
 (-1)

k
 ⎝
⎛
⎠
⎞α

k  f(z - kh)

h
α  

 
 

(a.2) 

An alternative derivative valid only for t>0 or t<0 is 
the so-called quantum derivative (Kac and Cheug, 
2002). Let Δq be the following incremental ratio: 

 Δqf(t) = 
f(t) – f(qt)

(1 − q)t   
(a.3) 

where q is a positive real number less than 1 and f(t) 
is assumed to be a causal type signal. The 
corresponding derivative is obtained by computing 
the limit as q goes to 1 

 Dqf(t) = lim
q→1

f(t) – f(qt)
(1 − q)t   (a.4) 
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This derivative uses values of the variable below t. 
We can introduce another one that uses values above 
t. It is defined by 

 Dq-1 f(t) = lim
q→1

f(q-1t) – f(t)
( q-1 − 1)t   

(a.5) 

The repeated application of (a.3) followed by the 
limit computation leads to the Nth order derivative 
(Ash et al, 2002;Koornwinder, 1999):  

 D
N
q f(t)  = 

lim
q→1

∑
j=0

N
  ⎣⎡ ⎦⎤

N
 j q (-1)j qj(j+1)/2 q-jN f(qjt) 

(1 − q)N tN  

 
 

(a.6) 

where we introduced the q-binomial coefficients   

 ⎣
⎡
⎦
⎤α

i q =  
[α]q!

[i]q![α-i]q!  
 

(a.7) 

with [α]q  given by 

 [α]q = 
1 − qα

1 − q  (a.8) 

Using the q-binomial theorem (Kac and Cheug, 
2002), the Mellin transform, and the Pochhamer 
symbol we conclude that: 

M ⎣
⎢
⎡

⎦
⎥
⎤

 lim
q→1

∑
j=0

N
  ⎣⎡ ⎦⎤

N
 j q (-1)j qj(j+1)/2 q-jN f(qjt) 

(1 − q)N tN

 
= (1-s)N F(s − N)  

 

= 
Γ(1 − s + N)
Γ(1 − s)  F(s-N)  

(a.9) 

The previous results are readily generalised for the 
case of a real order, α, (Ortigueira,2007; 
Ortigueira,2008) leading to a Grunwald-Letnikov 
like fractional quantum derivative: 

 Dαq f(t) = 

lim
q→1

∑
j=0

∞
  ⎣
⎡
⎦
⎤α

 j q (-1)j qj(j+1)/2 q-jα f(qjt) 

(1 − q)α tα  

 
 
 

(a.10) 

that is similar to the one proposed by Salam (1966).  

In (a.10) the fractional q-binomial coefficients are 
given by 

 ⎣
⎡
⎦
⎤α

 j q = 
[ ]1 − qα

j
q

[j]q
 

 
(a.11) 

The Mellin transform of (a.10) reads 

M [Dαq f(t) ] = 
Γ(1 − s + α)
Γ(1 − s)  F(s-α)  (a.12) 

valid for Re(s) < min(0,α)+1. This relation allows us 
to obtain an integral representation of the fractional 
quantum derivative, as we will see later. As referred 
before, in (a.10) we are using values of the variable 
less than t. In the following we will consider the 
other case. The repeated application of (a.5) leads to 
the Nth order derivative: 

 DN
q-1f(t)  = 

lim
q→1

∑
j=0

N
  ⎣⎡ ⎦⎤

N
 j q (-1)j qj(j-1)/2 f(q-jt) 

(1 − q-1)N tN  

 
 

(a.13) 

The Mellin transform gives: 

 M [DN
q-1f(t) ] = (1-s)NF(s-N) (a.14) 

that coincides with (a.9) as expected. To generalize 
the above results for any order, we substitute α for N 
in the above expressions. We have from (a.10): 

 Dαq-1f(t)  = 

lim
q→1

∑
j=0

∞
  ⎣
⎡
⎦
⎤α

 j q (-1)j qj(j-1)/2 f(q-jt) 

(1 − q-1)α tα  

 
 

(a.15) 

and finally 

M [Dαq-1f(t) ] = (-1)α. 
Γ(s)

Γ(s − α) F(s-α) (a.16) 

 
valid for Re(s) > max(0,α). Remark the difference 
relatively to (a.12) mainly in the region of 
convergence. 

• Integral Formulations 

The two Mellin transforms in (a.12) and (a.16) lead 
to different integral representation of fractional 
derivatives by computing the corresponding inverse  
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functions.  

The inverse hb(t) of 
Γ(s)

Γ(s − α)  is obtained from 

(Andrews et al,1999): 

 
Γ(s)Γ(-α)
Γ(s − α)  = ⌡⌠

0

1

 τs-1 (1- τ)-α-1dτ  

 
(a.17) 

Provided that Re(s)>0 and Re(α)<0. This leads 
immediately to  

 hb(t) =  
(-1)α

Γ(-α)( )1 - t -α-1u(1-t) (a.18) 

u(t) is the Heaviside unit step. A similar procedure 

to obtain the inverse ha(t) of 
Γ(1 − s + α)
Γ(1 − s)  gives 

Γ(1 − s + α)Γ(-α)
Γ(1 − s)  = 

⌡⌠
0

1

 τ1-s+α (1- τ)-α-1dτ  

 

(a.19) 

With a variable change inside the integral, we 
obtain: 

   ha(t) = 
1

Γ(-α)( )t - 1 -α-1u(t-1) (a.20) 

To compute in integral formulations of the 
derivatives corresponding to (a.12) and (a.16) we 
remark that the inverse Mellin transform of F(s-α) is 
given by: 

 M -1[F(s-α)] = t-αf(t) (a.21) 

and use the convolution (3). With (a.12) and (a.16) 
we obtain the following integral formulations, valid 
for Re(α) < 0. 

Dαb f(t) = − 
t-α

Γ(-α) .⌡⌠
0

1
  f(t/τ) (1 − τ-1)-α-1dτ 

 
(a.22) 

and 

Dαa f(t) = 
t-α

Γ(-α) ⌡⌠
1

∞
  f(t/τ) (τ-1 − 1)-α-1 dτ 

 
(a.23) 

signals. Although we obtained these results for α<0, 
they remain valid for other values of α, since 
Γ(s)

Γ(s − α)  and 
Γ(1 − s + α)
Γ(1 − s)  are analytic in the regions 

of convergence and we can fix an integration path 
independent of α. This can be confirmed by 
expanding (a.22) and (a.23) and transforming each 
term of the series. 
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