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Abstract: In this paper we propose a new, improved version of a Monte Carlo projective clustering algorithm – DOC. 
DOC was designed for general vector data and we extend it to deal with variable dimension significance and 
use it in web search snippets clustering. We discuss advantages and weaknesses of our approach with 
respect to known algorithms. 

1 INTRODUCTION 

Document or text clustering is a field of Information 
Retrieval (IR) (Manning, Raghavan, and Schütze, 
2008) that optimizes search in custom document 
collections as well as World Wide Web. There are 
collections of high-dimensional data (and texts are 
among them) that inherently tend to group in 
subspaces. It is common in IR to store texts as 
vectors of numbers indicating the presence or the 
number of terms (vector space model of IR). The 
dimensions of these vectors correspond to index 
terms (words or phrases) and subspaces shared by 
multiple texts may define a distinctive and 
interesting topic. Unfortunately, clustering suffers 
from the curse of dimensionality. This is the 
motivation behind using a projective clustering 
algorithm. 

We chose DOC, a scalable Monte Carlo method 
for clustering coordinate vectors introduced by 
Procopiuc (Procopiuc et al, 2002). It is linear in the 
number entities to be clustered and polynomial in 
dimension (the exponent can be changed to 
accommodate high-dimension data more easily). 
Subspaces recognized by DOC are perpendicular to 
the coordinate axes. In text clustering, information 
about dimension (word or phrase) significance is 
available. Thus, it made sense to extend the 
algorithm to include this data in cluster evaluation. 

One can observe that clustering of the results 
returned by search engines becomes prevailing in 
recent times. The goal of our research is to develop a 
more efficient clustering Web snippets. 

In Section 2 we give a short overview of the 
state-of-art algorithms for document clustering, 

particularly for cases in which documents are Web 
snippets. Then in Section 3 we introduce the basic 
DOC algorithm and present our variant – DocDOC 
with an application on Web snippets. We also 
discuss possibilities of its usage. Finally, we discuss 
its position among existing approaches and mention 
some other possibilities of its application. 

2 RELATED WORKS 

Today search engines return with a ranked list of 
search results also some contextual information, in 
the form of a Web page excerpt, the so called 
snippet. Web-snippet clustering is an innovative 
approach to help users in searching the Web. It 
consists of clustering the snippets returned by a 
(meta-) search engine into a hierarchy of folders 
which are labelled with a term. The term expresses 
latent semantics of the folder and of the 
corresponding Web pages contained in the folder. 
The folder labels vary from a bag of words to 
variable-length sentences. On the other hand, 
snippets are often hardly representative of the whole 
document content, and this may in some cases 
seriously worsen the quality of the clusters. 

Remind that search engine result summarizations 
is a subcategory of Web content mining. There are 
various approaches to snippets clustering in 
literature. Zamir and Etzioni presented the Suffix 
Tree Clustering (STC) algorithm (Zamir and Etzioni, 
1998). It uses suffix tree to identify groups of 
documents sharing a common phrase. These groups 
are merged if their overlap exceeds given threshold 
using a single link method. The phrase awareness of 
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this algorithm caused a positive jump in quality 
when compared to classical algorithms. However, it 
may suffer from the chaining effect of the single 
linkage in some cases and the cluster scoring is 
based on phrase length and cluster size only. 

In 2003, Maslowska introduced Hierarchical 
STC, which replaces single link merging with 
topological ordering of a directed cluster graph 
(Maslowska, 2003). The edges between base clusters 
are defined by inclusion ratio of respective base 
clusters and again, a threshold ratio is given. Fully 
overlapping base clusters are merged in advance. 
The result is a hierarchy, where those clusters that 
are not included by any other are on top. 

The Lingo algorithm (Osinski, Stefanowski, and 
Weiss, 2004) uses singular vector decomposition 
(SVD) to find correlating index term groups and 
selects best among them while preferring phrases. 
Phrases are discovered efficiently using a suffix 
array. Roughly said, found phrases are used to create 
cluster labels and documents are assigned to their 
best matching label. This approach (description-
first) concentrates on label quality which suffers in 
classical algorithms. It is designed for web snippet 
clustering where the time costly SVD does not show 
itself.  

A more advanced algorithm is described in 
(Mecca, Raunich, and Pappalardo, 2007). Its main 
contribution is a novel strategy – called dynamic 
SVD clustering – to discover the optimal number of 
singular values to be used for clustering purposes. 
Authors apply the algorithm also on the full 
documents and justify the idea that clustering based 
on snippets has inherently lower quality than on full 
documents. The algorithm was used in the Noodles 
system - a clustering engine for Web and desktop 
searches. 

Very efficient online snippet clustering based on 
directed probability Graphs is described in (Li and 
Yao, 2006)  

Web-snippet clustering methods are usually 
classified in according to two dimensions: words vs. 
terms and flat vs. hierarchical (Ferragin and Gulli, 
2006). Four categories of approaches are 
distinguished: 
1. Word-Based and Flat Clustering 
2. Term-Based and Flat Clustering  
3. Word-Based and Hierarchical Clustering 
4. Term-Based and Hierarchical Clustering 
 
Our considerations concern rather the second 
category of methods. A lot of background material 
to clustering, including web snippets, can be found 
in (Húsek et al, 2007). 

3 DocDOC CLUSTERING 
ALGORITHM 

In this chapter we describe the original DOC 
algorithm and its variant appropriate for Web 
snippets. 

3.1 DOC Algorithm 

The DOC algorithm operates with projective clusters 
that additionally store information about bound 
dimensions (dimensions where all vectors are 
sufficiently near with respect to a pre-defined value). 
When looking for a cluster, it randomly guesses a 
combination of vectors, finds their bound 
dimensions, and returns all vectors that share bound 
dimensions with those randomly selected. Multiple 
guesses are made to ensure optimality of returned 
cluster with proven probability. A key feature of this 
algorithm is the use of special quality function that 
takes cluster size as well as bound dimensions into 
account. This function is called β-balanced. In other 
words, a β-balanced function is any function 

μ: R × R → R 
increasing in both parameters, that fulfils two 
conditions: 

1. μ(0, 0) = 0 
2. μ(βa, b + 1) = μ(a, b) 

for 0 ≤  β < 1 and any non-negative a and b. For 
example, the function defined as 

μ(a, b) = a(1/β)b 

is β-balanced. 
When applied to cluster size |C| and 

dimensionality |D| it returns the same quality as for 
smaller cluster with size β|C| and dimensionality 
increased by one (|D|+1). β specifies a trade-off 
between cluster size and dimension and is one of 
algorithm parameters. The other – α – sets minimal 
recognized relative cluster size. DOC algorithm is 
proven to return an optimal projective cluster (or an 
approximation of it) with probability at least 50%, if 
1/4n ≤ β < 1/2 (n denotes total number of 
dimensions) and 0 ≤ α < 1. For full detail see 
(Procopiuc et al, 2002). 

3.2 Adapting DOC to Text 

Here presented extension of DOC, called DocDOC, 
was introduced in (Ljubopytnov, 2006). When 
adapting DOC to web snippets, some obvious 
observations were done: 
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 In web search snippets, multiple term 
occurrences hardly influence term importance. 
Thus, term frequency (tf) was discarded (in 
contrast with widely used tf×idf metric), 
leaving only dimension bound weighing in 
play. This enables use of Boolean model with 
weights and efficient bit array representation. 

 Only shared presence of term defines bound 
dimension as association power of non-present 
terms is next to zero. This makes determining 
bound dimensions a matter of bitwise AND 
operation. 

 A change to the quality function that favours 
better weighed dimensions should be 
employed to make full use of significance 
estimates (idf, etc.). 

First two points are trivial but the third step 
requires further explanation. We mentioned that β 
parameter is the trade-off between cluster size and 
dimension. Having dimensions of different value, it 
is this trade-off that should be set individually for 
each dimension to determine projective cluster 
quality. If we have a good, preferred dimension, it 
should be more costly to throw away. Fewer objects 
are required to stay in the cluster to keep its quality 
if we try to bind this highly priced dimension. Thus, 
we see that for better weighed dimensions we want 
smaller β. 

In the DocDOC algorithm, dimension weights 
are transformed to fit into the interval [1/4n; 1/2) as 
required for the β value in DOC and stored in a 
function 

β’: Dall → [1/4n; 1/2) 

where Dall is set of all dimensions. β’-balanced 
function is any function 

μ : R × P(Dall) → R 

increasing in both parameters (in case of second 
parameter, natural set ordering is assumed), that 
fulfils two conditions: 

1. μ(0,Ø) = 0 
2. μ(β’(i)a, D ∪ {i}) = μ(a, D)  

for 0 ≤ β < 1 and any non-negative a and D subset of 
Dall. For example, the function defined as 

μ‘(a, D) = a Πi ∈D1/ β’(i) 

is β’ balanced. 
Proof of correctness of this change is easy. The 

key is that we keep the β’ values in required range as 
they vary across dimensions. Once we ensure this, 
the proof works identically as for original DOC in 
(Procopiuc et al, 2002). 

 

Algorithm 1: DocDOC procedure. 

Procedure DocDOC(P, dim_score, α, β) 
1. r := log(2n)/ log(1/2β); 
2. m := (2/α)r ln 4; 
3. hash := Ø; 
4. best_quality := −1; 
5. for i := 1 to 2/α do  
    begin 
 Randomly select p ∈ P; 
 for j := 1 to m do  
 begin 

Randomly select X ⊆ P, |X| = r; 
D := {i| |qi − pi| ≤ w, ∀q ∈ X}; 
if D ∈ hash  
then quality = hash(D); 
else begin 
 C := Bp,D ∩ P; 
 quality := μ’(|C|,D,dim_score); 
 hash(D) := quality; 
     end 
if best_quality < quality  
then begin 
    best_quality := quality; 
    C* := C; 
    D* := D; 

      end 
     end 
    end 
6. return (C*,D*) 
 
DocDOC parameters remain the same, i.e. β is used 
to set the lower bound for β’ values (best dimension 
β). The DocDOC Procedure is described by 
Algorithm 1. 

3.3 Phrase Discovery 

Lingo makes use of phrases and evaluates them 
using SVD (correlation strength). STC sets the 
phrase score according to its length. Although such 
pre-processing introduces additional time cost, we 
decided to use a more thorough phrase evaluation 
scheme based on the LLR-test (Log Likelihood 
Ratio) described, e.g. in (Cox and Hinkley, 1974). 

We look at all bigrams and trigrams and we 
study the hypothesis of them being a random 
collocation (their word occurrences are 
independent). Using G-test, we determine the 
likelihood ratio of this hypothesis: 

G = Oi log(Oi/Ei), 
where Oi is observed event frequency and Ei is 
expected event frequency according to the 
hypothesis, i iterates over all possible events. For a 
bigram w1w2 we have a contingency table in Table 
1 describing a number of situations when w1 does or   
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Table 3: The best scored phrases for queries “salsa” and “clinton”. 

”salsa” (912) score ”clinton” (300) score 
salsa danc 18.84 clinton county 25.03 
salsa congres 14.09 bill clinton 23.03 
salsa recip 12.87 hillary clinton 21.82 
salsa festival 12.06 clinton presidential 19.66 
salsa lesson 11.71 new york 19.57 
danc salsa 10.58 clinton porti 18.23 
salsa verd 10.47 united stat 17.42 
danc 10.43 barack obama 17.03 
salsa music 10.43 clinton lead 16.39 
music 10.26 clinton say 16.39 
salsa class 9.85 clinton administration 16.39 
latin 9.82 whit hous 16.26 
salsa dancer 9.78 clinton hill 15.37 
salsa club 9.75 clinton memorial 14.37 
event 9.45 clinton jumped 14.16 
recip 9.23 rodham clinton 14.16 
salsa scen 8.99 clinton impeachment 14.16 
latin danc 8.82 clinton st 14.16 
cha cha 8.76 presidential rac 13.20 
san francisco 8.40 chamber of commerc 13.16 

 
does not precede w2 and w2 does or does not 
supersede w1.  

Table 1: Contingence table for a bigram w1w2. 

 w2 ¬w2 
w1 n11 n12 
¬w1 n21 n22 

 
If we know the bigram w1w2 occurrence 

frequency c12, the occurrences of words w1: c1, w2: 
c2, and the total bigram count B we can write the 
contingency table as it is on Table 2. 

Table 2: Improved contingence table for a bigram w1w2. 

 
 

 
 
For the independence hypothesis, expected event 
frequencies are 

*n nip pjmij B
=      

where nip = Σj nij and npj =Σi nij. We execute the G-
test on these values:  

log( / )G n n mij ij ij
ij

=∑  

The higher the value, the more the probability of 
bigram being not random co-occurrence but a 
phrase. 

For trigrams, the situation is more complicated 
as there can be as much as four models of trigram 
words independence (one for mutual independence 
of all words in trigram and three for independence of 
one word on other two that correlate). Contingency 
table is three dimensional and sub-bigram 
frequencies are needed for its construction. 
Hypothesis with best (lowest) score is returned (it is 
nearest to reality). 

For longer n-grams, the complexity keeps 
growing. We settled with bigrams and trigrams only. 
If a frequent quadgram is present in the text, it’s first 
and second trigram will rank high and they will be 
associated together by DocDOC, but only in case, 
that there are no stoplist words at their boundaries. 
Otherwise, most high ranking phrases contain a stop 
word on its boundary, thus being quite useless (e.g., 
”lot of ”, ”in the”). 

Scores obtained by G-test tend to grow rapidly, 
so we logarithmized them to get a reasonable scale 
and combined with inverted document frequency. 

Tests presented here have been performed with a 
sample of 912 snippets obtained by Google for the 
query “salsa” and 300 snippets for the query 
“clinton”. The results are presented in Table 3. 

3.4 Optimizations 

Web snippets demonstrate strong regularities; 
dimension (word, phrase) combinations appear 

n11 n12        c12                c1 − c12 
  n21 n22  =     c2 − c12       B − c1 − c2 + c12  
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repetitively when trying to guess an optimal cluster. 
In contrast with original DOC, we use a hash 
structure to store previously calculated dimension 
qualities. That saves us a costly data scan per each 
cluster quality computation. Hash is indexed by used 
dimension combinations. 

The benefit of dimension caching may be worth 
over 50% of data scans for web snippets. It grows if 
the DocDOC procedure is called multiple times on 
the same data (i.e. to bump the optimality 
probability). The beauty of dimension cache is also 
that when sorted, it gives a ranked list of 
overlapping clusters that is identical to STC base 
clusters, only with 100% overlapping clusters 
merged. This is very important, since that makes 
DocDOC identical to STC with respect to the result 
achieved (when identical postprocessing is done, i.e. 
hierarchization). 

3.5 Usage and Output 

The DOC procedure returns one cluster at a time. 
There are three possibilities how to use it: 

 greedy – found clusters are removed from 
collection, this relies heavily on cluster quality 
estimation by the quality function, valuable 
information can be lost, must be run several 
times to increase the guaranteed 50%+ 
probability of returning an optimal 

 cluster (empirically, the algorithm returns good 
clusters all the time, but potentially destroying 
the optimal one), runs while there is enough 
data (with collection size percentage as 
threshold) and its running time may vary 
substantially. 

 overlapping – every found cluster is 
remembered in a list sorted by quality and the 
procedure is run few times. This improves 
result stability and speed, loses no information 
and can be dealt with as with merged STC 
base clusters, that is, merging and rescoring 
until no clusters overlap enough. 

Final task is creating cluster labels from (C, D) 
projective clusters. That is done by choosing all or 
best ranking dimensions (phrases, words) from D. 
As in HSTC, clusters can be topologically sorted to 
get a nice cluster hierarchy. 

4 COMPARISON 
OF ALGORITHMS 

We have made the following observations: 

 Clusters found by DOC are exactly those 
generated by STC, but merged in case of 100% 
overlap. 

 Suffix arrays are 5 times more efficient with 
respect to memory usage than suffix tree. 

 DocDOC has a potential for more flexible 
ranking than STC. 

 The quality function introduced in DocDOC 
defines different ordering of clusters than STC. 

 DocDOC is better parallelizable and scalable. 
 DocDOC  need less memory footprint than 
Lingo and maybe STC. 

 The quality function introduced in DocDOC 
defines different ordering of clusters than STC. 

5 CONCLUSIONS 

We proposed and implemented an improved version 
of the DOC algorithm used on Web snippets in our 
experiments. We have shown that it has a number of 
better properties than other algorithms of this 
category. 

Since discovering knowledge from and about 
Web is one of the basic abilities of an intelligent 
agent, an applicability of the algorithm can be found 
e.g. in semantic Web services. 

Although named DocDOC, the algorithm has far 
greater usability than just texts. If used on vector 
data (as opposed to the Boolean model, but keeping 
the dimension weight information), there are 
applications across various disciplines (i.e. 
medicine, data mining) that may benefit from this 
algorithm.  
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