
SOFTWARE PRODUCT LINE TESTING
A Systematic Review

Beatriz Pérez Lamancha
Software Testing Centre (CES), School of Engineering

University of the Republic,Montevideo, Uruguay

Macario Polo Usaola, Mario Piattini Velthius
Alarcos Research Group, Information Systems and Technologies Department

University of Castilla-La Mancha, Ciudad Real, Spain

Keywords: Testing, Software product line, Systematic review.

Abstract: Software product lines constitute a new paradigm where industrial production techniques are adapted and ap-
plied to software development. Reuse and the maintenance of traceability between the different artefacts in the
line are fundamental requirements in this paradigm, articulating the best practices for software development in
an environment that is perfectly controlled by software engineering methods. This article presents a system-
atic review of the literature which deals with testing in software product lines. The objective is to analyse the
existing approaches to testing in software product lines, discussing the significant issues related to this area
of knowledge and providing an up-to-date state of the art which can serve as a basis for innovative research
activities. The paper also analyses how SPL research can contribute and dynamise the research in software
testing.

1 INTRODUCTION

A software product line (SPL) is a set of software-
intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particu-
lar market segment or mission and that are developed
from a common set of core assets in a prescribed way
(Clements and Northrop, 2002). In Europe, the term
product family (PF) or system family (SF) is used
to refer to an SPL (van der Linden, 2002). In soft-
ware engineering, SPL represents a recent develop-
ment paradigm, in which the reuse is proactive and
predictive and not opportunistic as with classic devel-
opment (in which, typically, the software is first con-
structed and encapsulated and then reuse is consid-
ered) (McGregor et al., 2002; Krueger, 2006). SPL
development requires the intensive use of models,
processes, automated support, etc., all with the goal
of having the SPL investment (which will be high)
and its corresponding products (which will be lower
than classic development) recompense the individual
development of each product. In SPL, the best prac-
tices and techniques in Software Engineering will be

articulated and applied. The research and state of the
art must be improved and integrated in this context.

Recently, Bertolino (Bertolino, 2007) presented a
general analysis of the state of the art in testing re-
search which serves as a roadmap for the most rel-
evant challenges. This work begins with some im-
portant past achievements, while its destination con-
sists of four identified goals which research tends, but
which remain unreachable. She calls these dreams.
The routes from achievements to dreams are paved
by outstanding research challenges. The four dreams
are: universal test theory, test-based modelling, 100
percent automatic testing and efficacy-maximized test
engineering. She also distinguishes the transversal
challenges that run through all four of the identified
dreams. One of them is testing within the emerging
development paradigm, in which the software prod-
uct line can be categorised.

This work presents a systematic review of the lit-
erature (Kitchenham, 2004) which deals with testing
in software product lines. Our objective is to analyse
the existing approaches to testing in software prod-
uct lines, discussing the significant issues related to

23
Pérez Lamancha B., Polo Usaola M. and Piattini Velthius M. (2009).
SOFTWARE PRODUCT LINE TESTING - A Systematic Review.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 23-30
DOI: 10.5220/0002248400230030
Copyright c© SciTePress



this area of knowledge and providing an up-to-date
state of the art that can serve as a basis for innovative
research activities. As mentioned earlier, SPL artic-
ulates and applies the best practises and techniques.
This work also analyses whether SPL can help to
achieve the challenges defined by Bertolino to reach
the four dreams in testing research.

The paper proceeds as follows: Section 2 presents
the steps followed to do the systematic review, show-
ing the inclusion and exclusion criteria. Section 3
categorises and summarises the primary studies found
following the systematic review. Section 4 studies the
way in which the studies found in software product
line testing help to achieve the testing challenges de-
fined by Bertolino. Finally, the conclusions are out-
lined and future work is described.

2 SYSTEMATIC REVIEW

A systematic literature review is a means of iden-
tifying, evaluating and interpreting all available re-
search relevant to a particular research question, topic
area or phenomenon of interest (Kitchenham, 2004).
We followed the guidelines defined by Kitchenham
(Kitchenham, 2004), the template defined by Biol-
chini et al. (Biolchini et al., 2005) and the procedure
defined by Pino et al. (Pino et al., 2007) for the pri-
mary studies selection (there are the individual studies
contributing to a systematic review, which is a form
of secondary study). The goal of this systematic re-
view is to identify experience reports and initiatives
carried out in Software Engineering related to testing
in software product lines. The question is: Which ini-
tiatives have been carried out to deal with testing in
the Software Product Lines? The keywords identified
and their synonyms are the following:

• Software Product Line: product line, software
product lines, product families, product family,
software family, system families

• Testing: test

With these keywords, the search string defined
was:
((”product line” OR ”software product lines” OR
”product families” OR ”product family” OR ”soft-
ware family” OR ”system families” )AND (”testing”
OR ”test”))

Only studies written in English were included.
The source search method was to research each of the
selected sources using web search engines. The se-
lected source list of electronic databases is:

• SCOPUS document database
(http://www.scopus.com),

• Science@Direct on the subject of Computer Sci-
ence (http://www.sciencedirect.com),

• Wiley InterScience on the subject of Computer
Science (http://www.interscience.wiley.com),

• IEEE Digital Library (http://www.computer.org)

• ACM Digital Library (http://portal.acm.org)

In addition to the source list, we hand-searched the
following projects and web pages:

• Engineering Software Architectures, Processes
and Platforms for System-Families - ESAPS
(http://www.esi.es/esaps/)

• From Concepts to Application in System-Family
Engineering - CAFE
(http://www.esi.es/Cafe)

• FAct-based Maturity through Institutionalisation
Lessons-learned and Involved Exploration of
System-family engineering - FAMILIES
(http://www.esi.es/Families)

• RITA - Environment for Testing Framework-
based Software Product Families
(http://www.cs.helsinki.fi/group/rita)

• Franhoufer IESE, PuLSE
(http://www.iese.fraunhofer.de/)

• Software Engineering Institute, Product Line Sys-
tems Program
(http://www.sei.cmu.edu/programs/pls)

The inclusion criterion was based on the review of
the title, abstracts and keywords of the articles iden-
tified in the search. All the studies related to the
research topic were selected except editorials, pref-
aces, article summaries and summaries of tutorials,
workshops, panels and poster sessions. The proce-
dures for the definition of the studies is the follow-
ing: the search strings must be executed in the se-
lected sources. To select an initial set of studies, the
abstract of everything obtained from web search en-
gines is read and evaluated according to the exclusion
and inclusion criteria. To refine this initial set of stud-
ies, their full text is read. The search strings were
adapted to the search engine for each source. Due to
the lack of standardisation between the electronic re-
sources, we had to implement the search strategy in-
dividually for each database. We applied the search
terms to the titles, abstracts and keywords of the ar-
ticles in the identified electronic databases. In some
database, we were not allowed to restrict the search to
those fields. In that case, we searched all the fields.

The results of the execution of the search strings in
each of the source databases is23primary studies. All
selected studies were assumed to be of high quality,
given that they were published in the selected sources.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

24



This means that the accepted publications have gone
through a strict review procedure which guarantees
their quality.

3 SOFTWARE PRODUCT LINE
TESTING

This section summarises the information extracted in
the systematic review and presents the state of the art
relating to testing in software product lines. The pri-
mary studies were categorised in:

• Unit Testing (UT)

• Integration Testing (IT)

• Functional Testing (FT)

• SPL Architecture Testing (AT)

• Embedded systems Testing (ET)

• Testing Process (TP)

• Testing effort in SPL (TE)

Once the primary studies were chosen, extraction
of the relevant information for the systematic review
was carried out. The extracted information is sum-
marised in Table 1 which shows - for each paper -
the category, how variability is dealt with, the testing
technique used, if there is a tool or prototype to sup-
port it, if an example is shown, if the proposal was
tested in an artificial setting and if the proposal was
tested in an industrial setting.

A huge interest in SPL testing level is seen in the
papers found. In particular, functional testing and
variability testing with UML models and use cases
are the most popular topics. Several proposals ex-
ist for test automation but they are generally proto-
types. Overall, there are very few experiments or case
studies documented that put theoretical proposals into
practise. The studies relating to testing processes in
SPL are guidelines, but there is no testing process de-
fined for SPL. In particular, topics like testing plan-
ning, effort and management are not included in the
existing literature.

In the following, a state of the art summary of soft-
ware product lines is presented, organised by the cat-
egories defined above.

3.1 Unit Testing

There are no specific techniques for unit testing, only
recommendations which have not been tested in arti-
ficial or industrial environments. McGregor (McGre-
gor, 2001) defines unit-test plans, test cases and re-
ports that become part of the documentation that ac-

companies a core asset. The software units must be
tested when the core assets are created.

3.2 Integration Testing

For integration testing McGregor (McGregor, 2001)
proposes two techniques that can be used to mitigate
the problem of testing the integration of all possible
combinations of all variations. Combinatorial test de-
signs can be used to greatly reduce the number of
combinations that need to be tested, while the other
technique is to perform integration testing incremen-
tally, in which case the number of combinations that
must be covered is much smaller. The RITA Tool,
presented in (Tevanlinna, 2004), is a prototype which
supports integration testing of product families and
frameworks. RITA works with the commonality and
variability in product families and the polymorphism
in framework based software. In (Kauppinen et al.,
2004), two criteria for framework-based product fam-
ilies are defined based on traditional structural cover-
ages.

3.3 Functional Testing

The largest number of works were found for func-
tional testing. Several authors define techniques for
test case derivation in SPL, most of them from use
cases modified to represent variability in the line.
This is the case with Bertolino et al. (Bertolino
et al., 2004), McGregor (McGregor, 2001), Nebut et
al. (Nebut et al., 2004), Olimpiew el al.(Olimpiew and
Gomaa, 2005) and Reuys et al. (Reuys et al., 2005).
Only the last work was applied in an industrial envi-
ronment.

Bertolino et al. (Bertolino et al., 2004) adapt
the use cases to SPL (PLUCs - Product Line Use
Cases) in which the variations are described explicitly
with tags. The test cases are derived manually using
the Category Partition method. This methodology is
called PLUTO (Product Line Use Case Test Optimi-
sation). Nebut et al. (Nebut et al., 2004) have a very
similar proposal, they propose associating contracts to
the SPL use cases to express the dependencies adding
UML tagged values and the pre and post conditions
are UML notes expressed in first-order logic. They
present a tool to automate the test case derivation.

McGregor (McGregor, 2001) creates generic test
cases from the use-case scenarios and then specific
test cases are derived for the product. The variabil-
ity combination is resolved with the orthogonal arrays
technique.

Olimpiew el al. (Olimpiew and Gomaa, 2005) cre-
ate test models from use cases. They first create activ-

SOFTWARE PRODUCT LINE TESTING - A Systematic Review

25



ity diagrams from the use cases, then create decision
tables from the activity diagrams and finally, create
test templates from the decision tables and from the
path in the activity diagram. Test data is generated to
satisfy the execution conditions of each test template.

Reuys et al. (Reuys et al., 2005) obtain the test
cases from the use cases, using activity diagrams to
define all the use case scenarios. Test case scenarios
are specified in sequence diagrams without specifying
concrete test data. Later, they are refined to include
detailed test inputs, expected results, additional infor-
mation and test scripts relevant to this scenario. This
technique is called ScenTED (Scenario based TEst
case Derivation) and has been applied in a case study
at Siemens AG Medical Solutions HS IM. They also
present a tool to support this method.

Related to test case derivation from sequence di-
agrams, Nebut et al. (Nebut et al., 2003) propose a
method supported by a toolset, in which behavioural
test patterns (behTP) are obtained from high-level se-
quences which are used to automatically generate test
cases specific to each product. Each behTP represents
a high-level view of some scenarios which the system
under test may engage in. Another work by Kang et
al. (Kang et al., 2007) extends sequence diagram no-
tation to represent variability in use case scenarios.
From a test architecture defined using the Orthogo-
nal Variability Model (OVM)(Pohl et al., 2005) and
sequence diagrams, test scenarios are derived. The
Orthogonal Variability Model (OVM) is also used by
Cohen et al. (Cohen et al., 2006) to define a cover-
age test model for SPL which takes into account the
coverage of variability combinations.

Two works propose to define testing meta-models.
Dueñas et al. (Dueñas et al., 2004) define a meta-
model to represent the variability in scenarios and test
cases and use state transition diagrams to model the
test case behaviour. The variability is defined by an
algebraic expression. Baerisch (Baerisch, 2007) de-
fines two models to represent SUTs and the tests ex-
ecuted on the SUTs: test models, which express the
intention of the test, represent the domain-specific re-
quirements that are verified by the test and system
models which describe the SUT and must include in-
formation about the features and interfaces that are
relevant for the definition and the execution of tests.

For functional testing automation, Ardis et al.
(Ardis et al., 2000) present a case study at Bell Labs.
There three test strategies suitable for general use in
product line testing automation based on a design for
testability were developed. They require an architec-
ture that minimises the cost of both the generation and
the testing of each family member.

For legacy systems, Geppert et al. (Geppert et al.,

2004) obtained a family of generic test cases by gen-
eralising existing (or new) test cases driven by the
parameters of variation of the commonality analysis.
They use a decision tree to generate the specific test
cases.

An interesting result is the controlled experiment
described by Denger et al. (Denger and Kolb, 2006)
to investigate the effectiveness and efficiency of code
inspection and functional testing by detecting differ-
ent defect types in the common and variable parts of
reusable code components in the context of product
line development. They conclude that code inspec-
tions and functional testing find different types of de-
fects with different effectiveness and efficiency. The
results indicate that standard techniques are not suffi-
cient to address variant-specific defects.

3.4 SPL Architecture Testing

To improve the testability, Kolb et al. (Kolb and
Muthig, 2006) propose designing the product line ar-
chitecture in such a way that it supports the testing
of the reusable product line components and the dif-
ferent products, considering testing in the architecture
design phase.

3.5 Embedded System Testing

The works found for testing in embedded systems
are generally specific to a particular domain and have
been tested in artificial environments or industries.
Kim et al. (Kim et al., 2006) present a tool that sup-
ports the development of SPL for embedded systems
of control, using FORM (Feature-Oriented Reuse
Method) and using simulation for testing. Kishi et
al. (Kishi and Noda, 2006) apply formal verification
techniques (model checking) to verify the design of
embedded systems in SPL. They use Gomaa et al.’s
proposal to represent the variability in UML mod-
els and present a tool that supports this approach.
Pesonen et al. (Pesonen et al., 2006) use aspects
to implement specialisations at the core assets level
in embedded systems for smoke testing the devices.
They present experiment results with the Symbian
OS. Trew (Trew, 2005) presents an analysis of the
causes of the problems reported in a Philips television
SPL and defines a set of rules to use from this.

3.6 Testing Process

With respect to the testing process, there is no de-
fined and proven methodology. The existing propos-
als are guidelines for testing activities. For McGregor
(McGregor, 2001), testing in the context of a product

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

26



Table 1: Primary studies summary.

P
ap

er

C
at

eg
or

y

V
ar

ia
bi

lit
y

Te
ch

ni
qu

e

To
ol

E
xa

m
pl

e

A
rt

ifi
ci

al
se

tt
in

g

In
du

st
ri

al
se

tt
in

g

(Ajila and Dumitrescu, 2007) TE Change in SPL NO NO NO YES
(Ardis et al., 2000) FT Scenarios, Drivers NO YES NO YES
(Baerisch, 2007) FT System metamodel Testing metamodel NO NO NO NO
(Bertolino et al., 2004) FT Use Cases Category Partition NO YES NO NO
(Clements and Northrop,
2007)

FT NO YES NO NO

(Cohen et al., 2006) FT Orthogonal Var.
Model

Coverage and adequacy
metrics

NO YES NO NO

(Denger and Kolb, 2006) FT Inspections, functional
testing

NO NO YES NO

(Dueñas et al., 2004) FT Classes Testing metamodel,
state chart

NO NO NO NO

(Geppert et al., 2004) FT Legacy systems Decision tree NO YES NO YES
(Kang et al., 2007) FT,TA Sequence diag. OVM in Architecture,

Sequence diag.
NO YES NO NO

(Kauppinen et al., 2004) IT Coverage metrics NO YES NO NO
(Kim et al., 2006) ET FORM Simulation YES YES NO NO
(Kishi and Noda, 2006) ET UML models Model checking YES NO YES NO
(Kolb and Muthig, 2006) AT SW Architecture testability model NO NO NO NO
(McGregor, 2001) FT, IT,

UT, TP
Use Cases Combinatory design

testing
NO YES NO NO

(Nebut et al., 2003) FT Use Cases, Se-
quence diag.

Sequence diag. YES NO YES NO

(Nebut et al., 2004) FT Use Cases Use Cases YES NO YES NO
(Olimpiew and Gomaa,
2005)

FT Use Cases, Activ-
ity diag.

Decision tables NO NO NO YES

(Pesonen et al., 2006) ET Aspects Smoke test NO YES NO YES
(Pohl and Metzger, 2006) FT, TP Use Cases Activity diag. NO NO NO NO
(Reuys et al., 2005) FT Use Cases, Activ-

ity diag.
Sequence diag. YES YES NO YES

(Tevanlinna, 2004) IT YES NO NO NO
(Trew, 2005) ET NO YES NO YES

line includes testing the core assets, the product spe-
cific software and their interactions. Pohl et al. (Pohl
and Metzger, 2006) outline six essential principles for
SPL system testing that should be taken into account
when developing test techniques for SPL engineering.
These principles are:

(1) Preserve variability in domain test artefacts,
(2) Test commonalities in domain engineering, (3)
Use reference applications to determine defects in fre-
quently used variants, (4) Test commonalities based
on a reference application, (5) Test correct variabil-
ity bindings and (6) Reuse application test artefacts
across different applications. The SEIs Framework
(Clements and Northrop, 2007) proposes a separate
framework for testing in SPL, defining the following
guidelines for this testing: Structure the set of test-
ing processes to test each artefact as early as possible,

structure test artefacts to accommodate the product
line variation, maintain the test artefacts, structure the
testing software for traceability from the test code it-
self to the code being tested, reuse product line assets
for system integration testing and automate regression
testing.

3.7 Testing Effort

Ajila et al. (Ajila and Dumitrescu, 2007) make a study
of the changes in the product line architecture of a
large telecommunications equipment supplier. They
conclude that code size is not a good predictor of
testing effort at either product or product line levels
and that testing effort does not seem to depend on the
product’s target market.

SOFTWARE PRODUCT LINE TESTING - A Systematic Review

27



4 SOFTWARE TESTING
RESEARCH AND SPL

Bertolino(Bertolino, 2007) presents the achieve-
ments, challenges and dreams in testing research.
The software product lines can be categorised in the
transversal challenge: testing within the emerging de-
velopment paradigms. Below, the challenges are de-
scribed.

• Explicit test hypotheses: Make explicit the test
practise behind the selection of every finite test
set, by which a sample is taken as the representa-
tive of several possible executions

• Test effectiveness: Provide analytical, statistical,
or empirical evidence of the effectiveness of the
test-selection criteria in revealing faults, in order
to understand the classes of faults for which the
criteria are useful.

• Empirical body of evidence: Produce an empirical
body of knowledge which is the basis for building
and evolving the theory for testing.

• Compositional testing: Understand how we can
reuse the test results observed in the unit testing,
and what conclusions can be inferred about the
system resulting from the composition, and which
additional test cases must be run on the integra-
tion.

• Model-based testing: How can we combine dif-
ferent styles of modelling, and the need for ways
to combine model-based criteria with other ap-
proaches.

• Anti-model-based testing: Parallel to model-
based testing, several efforts are being devoted to
novel forms of testing which lay directly on the
analysis of program executions.

• Test oracles: Find more efficient methods for re-
alising and automating oracles.

• Test input generation: Automatic generation of
test inputs.

• Domain-specific test approaches: Extend domain
specific approaches to the testing stage, and in
particular to find domain-specific methods and
tools to push test automation.

• On-line testing: Monitoring a system’s behaviour
in real life operation, using dynamic analysis and
self-test techniques.

• Controlling evolution: Strategies to scale up re-
gression testing to large composite systems.

• Leveraging user population and resources: Aug-
ment in-house quality assurance activities by us-
ing data dynamically collected from the field.

• Testing patterns: Patterns offer well-proven solu-
tions to recurring problems, making explicit the
successful procedures, which is highly desirable.

• Understanding the costs of testing: Incorporate
estimation functions of the cost/effectiveness ra-
tio of available test techniques.

Table 2 enumerates the challenges in testing
to achieve the dreams as defined by Bertolino
(Bertolino, 2007) and the challenges to enriching the
state of art in testing. The table was completed with
the studies found in the systematic review presented
here and several challenges are addressed today in
SPL testing. Especially, model based testing and test
input generation seem to be fundamental for testing in
SPL. Unfortunately, other challenges are not covered
for SPL today. The state of the art in SPL testing is
still not mature, mainly in test oracle definition and
testing management topics, like testing effort or test-
ing costs in the SPL context and in general, there is a
lack of empirical results in the existent works.

5 CONCLUSIONS

This paper has presented an analysis of the current
state of the art in software product lines testing, link-
ing them with recent research in software testing. In
general, SPL in Software Engineering is a young dis-
cipline, but a very promising one, proving that most
of the results and benefits obtained from SPL can
be extrapolated to other methodologies or develop-
ment paradigms. In the case of testing, Bertolino
(Bertolino, 2007) has pointed out a transversal chal-
lenge to the development of testing techniques and
their reuse from emerging paradigms, as product lines
may well be. Among the other research lines iden-
tified by this author is a tendency towards the use of
models for the design of systems and the derivation of
test cases from them, which had also been noted as a
necessity by Harrold (Harrold, 2000) nearly a decade
ago. Another critical research line for SPL is test au-
tomation and re-execution.

In our case, we are implementing a model-driven
development approach to the design of an experimen-
tal software product line as a basis to automate the
generation of test cases using model-based testing
techniques adapted to software product lines. In the
proposal, we are interested in the automated deriva-
tion of test cases from design models using QVT
transformations (OMG, 2008), all while paying spe-
cial consideration to the reuse of the definition of the
oracle, which is the most costly in the test case gener-
ation (Bertolino, 2007; Baresi and Young, 2001).

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

28



Table 2: Software product line testing studies according tothe dreams and challenges of testing.

Dream: Universal test theory
Explicit test hypotheses Test effectiveness Compositional testing Empirical body of evidence
(Kolb and Muthig, 2006),
(Ardis et al., 2000)

(Denger and Kolb, 2006) (McGregor, 2001), (Gep-
pert et al., 2004)

(Reuys et al., 2005),
(Denger and Kolb, 2006)

Dream: Test-based modeling
Test oracles Model-based testing Anti-model-based testing

(McGregor, 2001),(Nebut et al., 2003),(Nebut
et al., 2004),(Bertolino et al., 2004), (Kang et al.,
2007),(Olimpiew and Gomaa, 2005),(Dueñas et al., 2004),
(Reuys et al., 2005),(White and Schmidt, 2006), (Baerisch,
2007)

Dream: 100 percent automatic testing
On-line Testing Test input generation Domain-specific test ap-

proaches
(Kishi and Noda, 2006) (Nebut et al., 2003),(Nebut et al., 2004), (Reuys et al.,

2005),(Ardis et al., 2000),(Tevanlinna, 2004), (Dueñas
et al., 2004)

(Pesonen et al., 2006),
(Kim et al., 2006),(Kishi
and Noda, 2006),(Trew,
2005)

Dream: Efficacy-maximized test engineering
Understanding the costs of
testing

Controlling evolution Leveraging user population
and resources

Testing patterns

(Ajila and Dumitrescu,
2007),(Cohen et al., 2006)

ACKNOWLEDGEMENTS

This research is financed by the projects: PRALIN
(PAC08-0121-1374) and MECCA (PII2I09-
00758394),”Cons. de Ciencia y Tecnol. de la
Junta de Comunidades de Castilla-La Mancha”.

REFERENCES

Ajila, S. and Dumitrescu, R. (2007). Experimental use of
code delta, code churn, and rate of change to under-
stand software product line evolution.The Journal of
Systems and Software, 80(1):74–91.

Ardis, M., Daley, N., Hoffman, D., Siy, H., and Weiss, D.
(2000). Software product lines: a case study.Software
Practice and Experience, 30(7):825–847.

Baerisch, S. (2007). Model-driven test-case construction.
Foundations of Software Engineering, pages 587–590.

Bertolino, A. (2007). Software testing research: Achieve-
ments, challenges, dreams. InInternation Conference
on Software Engineering, pages 85–103. IEEE Com-
puter Society.

Bertolino, A., Gnesi, S., and di Pisa, A. (2004). Pluto: A test
methodology for product families.Software Product-
family Engineering: 5th International Workshop, PFE
2003, Siena, Italy, November 4-6, 2003: Revised Pa-
pers.

Biolchini, J., Mian, P., Natali, A., and Travassos, G. (2005).
Systematic review in software engineering.Sys-
tem Engineering and Computer Science Department
COPPE/UFRJ, Technical Report ES, 679(05).

Clements, P. and Northrop, L. (2007). A framework for
software product line practice, version 5.0.

Clements, P. C. and Northrop, L. M. (2002). Salion, inc.:
A software product line case study. Technical Report
CMU/SEI-2002-TR-038.

Cohen, M., Dwyer, M., and Shi, J. (2006). Coverage and
adequacy in software product line testing.Proceed-
ings of the ISSTA 2006 workshop on Role of software
architecture for testing and analysis, pages 53–63.

Denger, C. and Kolb, R. (2006). Testing and inspecting
reusable product line components: first empirical re-
sults. Proceedings of the 2006 ACM/IEEE interna-
tional symposium on International symposium on em-
pirical software engineering, pages 184–193.

Dueñas, J., Mellado, J., Cern, J., Arciniegas, J., Ruiz, J., and
Capilla, R. (2004). Model driven testing in product
family context. Technical Report ISSN 1381 - 3625,
University of Twente.

Geppert, B., Li, J., RoBler, F., and Weiss, D. (2004). To-
wards generating acceptance tests for product lines.
Software Reuse: 8th International Conference, ICSR
2004, Madrid, Spain, July 5-9, 2004: Proceedings.

Kang, S., Lee, J., Kim, M., and Lee, W. (2007). To-
wards a formal framework for product line test de-
velopment. Computer and Information Technology,
2007. CIT 2007. 7th IEEE International Conference
on, pages 921–926.

Kauppinen, R., Taina, J., and Tevanlinna, A. (2004). Hook
and template coverage criteria for testing framework-
based software product families.Proceedings of
the International Workshop on Software Product Line
Testing, pages 7–12.

SOFTWARE PRODUCT LINE TESTING - A Systematic Review

29



Kim, K., Kim, H., Ahn, M., Seo, M., Chang, Y., and Kang,
K. (2006). Asadal: a tool system for co-development
of software and test environment based on product line
engineering. International Conference on Software
Engineering, pages 783–786.

Kishi, T. and Noda, N. (2006). Formal verification and
software product lines.Communications of the ACM,
49(12):73–77.

Kitchenham, B. (2004). Procedures for performing system-
atic reviews.Keele University, UK, Technical Report
TR/SE-0401-ISSN, pages 1353–7776.

Kolb, R. and Muthig, D. (2006). Making testing prod-
uct lines more efficient by improving the testability
of product line architectures.Proceedings of the IS-
STA 2006 workshop on Role of software architecture
for testing and analysis, pages 22–27.

Krueger, C. (2006). The emerging practice of software
product line development.Military Embedded Sys-
tems, (2nd semester):34–36.

McGregor, J. (2001). Testing a Software Product Line.
Carnegie Mellon University, Software Engineering In-
stitute.

McGregor, J., Northrop, L., Jarrad, S., and K, K. P. (2002).
Initiating software product lines. IEEE Software,
19(4):24–27.

Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J., and
de Beaulieu, C. (2004). A requirement-based ap-
proach to test product families.Software Product-
family Engineering: 5th International Workshop, PFE
2003, Siena, Italy, November 4-6, 2003: Revised Pa-
pers.

Nebut, C., Pickin, S., Le Traon, Y., and Jezequel, J.
(2003). Automated requirements-based generation of
test cases for product families.Automated Software
Engineering, 2003. Proceedings. 18th IEEE Interna-
tional Conference on, pages 263–266.

Olimpiew, E. and Gomaa, H. (2005). Model-based testing
for applications derived from software product lines.
Proceedings of the 2005 workshop on Advances in
model-based testing, pages 1–7.

OMG (2008). Meta object facility (mof) 2.0
query/view/transformation, v1.0. Technical Re-
port formal/2008-04-03.

Pesonen, J., Katara, M., and Mikkonen, T. (2006).
Production-testing of embedded systems with as-
pects.LECTURE NOTES IN COMPUTER SCIENCE,
3875:90.

Pino, F., Garcia, F., and Piattini, M. (2007). Software pro-
cess improvement in small and medium software en-
terprises: A systematic review.Software Quality Jour-
nal.

Pohl, K., Bckle, G., and van der Linden, F. (2005).Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer.

Pohl, K. and Metzger, A. (2006). Software product line
testing.Communications of the ACM, 49(12):78–81.

Reuys, A., Kamsties, E., Pohl, K., and Reis, S. (2005).
Model-based system testing of software product fam-
ilies. Pastor, O.; Falcao e Cunha, J.(Eds.): Advanced

Information Systems Engineering, CAiSE, pages 519–
534.

Tevanlinna, A. (2004). Product family testing with rita.
Proceedings of the Eleventh Nordic Workshop on Pro-
gramming and Software Development Tools and Tech-
niques (NWPER’2004), pages 251–265.

Trew, T. (2005). Enabling the smooth integration of core
assets: Defining and packaging architectural rules for
a family of embedded products.LECTURE NOTES
IN COMPUTER SCIENCE, 3714:137.

van der Linden, F. (2002). Software product families in
europe: the esaps and cafe projects.Software, IEEE,
19(4):41–49. TY - JOUR.

White, J. and Schmidt, D. (2006). Fireant: A tool for
reducing enterprise product line architecture deploy-
ment, configuration, and testing costs.Engineering
of Computer Based Systems, 2006. ECBS 2006. 13th
Annual IEEE International Symposium and Workshop
on, pages 507–508.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

30


