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Abstract: In this paper, we propose a supervision method which aims at determining pertinent indicators to optimize
predictive maintenance strategies. The supervision method, based on the AUto-adaptative and Dynamical
Clustering technique (AUDyC), consists in classifying in real time measured data into classes representative
of the operating modes of the process. This technique also allows the detection and the tracking of the slow
evolutions of the process modes. Based on the AUDyC technique, a method is proposed to estimate the
probabilities of the failure occurence of components in real time. This method is illustrated on the real case of
a temperature controller.

1 INTRODUCTION

Maintenance strategies consist in improving the
safety and the reliability of industrial processes, tak-
ing into account their characteristics and the cost of
maintenance plans (Grall et al., 2002). Amongst the
three principal types of maintenance strategies which
are proposed in the literature (Muller et al., 2004),i.e.
the corrective, the preventive and the predictive main-
tenance strategies, the predictive maintenance allows
the anticipation of failures and the optimal selection
of maintenance actions, by the estimation in real time
of the current state of the process components. This
strategy is generally based on supervision methods
and the estimation of the failure occurrence proba-
bilities of the components of the process. The ini-
tial selection of the components which are essential
to supervise, is performed by a dysfunctional anal-
ysis of the failure modes and their effects (FMEA:
Failure Mode and Effects Analysis). Then, the inter-
actions between each component are modelled by a
Fault Tree formalism (Lassagne, 2000), (Vesely et al.,
1981). Finally, the Fault Tree can be quantified by us-
ing the concept of Probability Functions by Episode
(PFE) which allow the association of a probability of
occurrence function to each component. In (Desinde
et al., 2006), the PFE of the components are supposed
to be knowna priori and resulted from factory tests of
feedback methods. We propose in this paper a super-
vision method allowing of determine the PFE in real

time. The supervision methods based on mathemat-
ical models of the process can not be used for com-
plex processes or when no physical model is avail-
able. In these cases, supervision approaches which
consist in extracting relevant and sensitive informa-
tions of the component state by using directly the
sensor signals, are more efficient. These supervision
methods gather Pattern Recognition (PR) techniques
which involve the state of a component by the analysis
of evolutive data. The PR techniques include for ex-
emple dynamic classification algorithms for evolutive
data defined in (Lurette and Lecoeuche, 2003), which
are dedicated to associate a state to one of the several
operating modes of the system. FMMC (Min-Max
Fuzzy Clustering) (Mouchawed and Billaudel, 2002)
or AUDyC (AUto-adaptive and Dynamical Cluster-
ing) techniques allow the detection and the tracking
of fast and slow evolutions of non-stationary data, and
the diagnosis of the current state of the process. AU-
DyC approach is specially adapted to the supervision
of slow evolutions or drifts due for exemple to age-
ing phenomenon (Lecoeuche et al., 2004). It allows
the classification of the observed data according to
classes which correspond to the operating modes of
the process,i.e. normal, current and default modes.
Estimation techniques of the distances between the
several classes have been proposed to quantify the
positioning of each classe. In this context, the main
difficulty is to estimate the probabilities of the fail-
ure occurrence of components according to the dy-
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namic data classification, and finally to provide indi-
cators allows the improvement of predictive mainte-
nance strategies.

In this paper, we consider processes characterised
by slow evolutions of their operating modes. We pro-
pose to use AUDyC technique to supervise the com-
ponents of the process, to estimate the probability of
occurrence of each component of the process. The
problematic addressed in this paper is detailled in the
section 2. The supervision method by AUDyC is pre-
sented in Section 3. In Section 4, we present the meth-
ods proposed to estimate the probability of the failure
occurrence of components of the process. Finally, the
proposed methods are applied to a temperature con-
troller.

2 PROBLEMATIC

Considering processes subjected to slow drifts of their
current mode towards default modes, we propose a
method which aims at determining indicators like
probabilities of the failure occurrence of components.
These indicators can be used to optimize predictive
maintenance plans. The first step of maintenance
strategy consists in a FMEA of the process to de-
termine the corresponding Fault Tree, to specify the
elementary component and the interactions between
each component. The FMEA of the process leads also
to the determination of components which are neces-
sary to be supervised. The Fault Tree is quantified
by using Probability Functions by Episode (PFE) (see
Figure 1), wherePFE(Ex) which denotes the PFE of
the eventEx is expressed by relation (1). The PFE of
events associated to elementary components,i.e. E1
to E4, are used to compute the PFE of others events,
E5 andE6.

E1

E2

E3

E4

E5

E6
t
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PFE(E2)
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PFE(E4)
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Figure 1: Fault Tree and PFE associated to components.

PFE(E j) = ((p
E j
1 , t1), · · · ,(pE j

n , tn)) (1)

∀ ti p
E j
i = pE j (ti), wherepE j (ti) is the failure occur-

rence probability of the eventE j of the componentj
at timeti .

The components which have to be monotored be-
ing known, it is necessary to select the variables
which are characteristics of the component state.
Three states are considered: normal, current and de-
fault modes. The goals of the dynamic data classifica-
tion technique is to classify the measured data accord-
ing to normal, current or default classes in real time.
The estimation of characteristics of the current class
leads to the detection and the tracking of drifts. The
normal and default classes are knowna priori, and are
represented in the data representation space (seeFig-
ure 2). The slow drift of an operating mode has for
effect of gradual change of the data from the normal
class to the default class. The goal is to characterize in
term of PFE the drift of an operating mode from the
normal mode to the default mode. For that, we use
AUDyC technique as modelling technique and esti-
mation techniques of the distances between classes, as
Euclidean and Kullback-Leibler distances. The AU-
DyC technique and the estimation methods of the dis-
tances are presented in the next section.tances are presented in the next section.
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Figure 2: Slow drift operating.

3 CURRENT CLASS
MODELLING BY AUDYC
TECHNIQUE

The supervision method based on the AUDyC
technique aims at monitoring each component of the
process and at determining their mode. An operating
mode is represented by a Gaussian classC j

k which is

characterized by a centerM j
k and a matrix of covari-

anceΩ j
k. These parameters are estimated in real time

according to the observed data contained into the ob-
servation vector which is denotedXi = [xi

1,x
i
2, · · · ,xi

d]
in the d space dimensions. The AUDyC algorithm
consists in updating the class parameters recursively
on a sliding window of widthNf en taking into account

the cardinality of the classC j
k, i.e. Card(C j

k). The
steps of the algorithm, detailed in (Lecoeuche et al.,

DYNAMICAL CLUSTERING TECHNIQUE TO ESTIMATE THE PROBABILITY OF THE FAILURE OCCURRENCE
OF PROCESS SUBJECTED TO SLOW DEGRADATION

361



2004), are presented thereafter:

• If Card(C j
k)=nb ¡Nf en: Add information

M j
k(t) = M j

k(t −1)+
1

nb+1
(X(t)−M j

k(t −1))

Ω j
k(t) =

nb−1
nb

Ω j
k(t −1)+

1
nb+1

(X(t)−M j
k(t −1))⊤(X(t)−M j

k(t −1))

(2)

• If nb ≥ Nf en: Add and remove information

M j
k(t) = M j

k(t −1)+
1

Nf en
(δX+− δX−)

Ω j
k(t) = Ω j

k(t −1)+

∆X




1
Nf en

1
Nf en(Nf en−1)

1
Nf en(Nf en−1) − (Nf en+1)

Nf en(Nf en−1)


∆X⊤ (3)

where:




δX+ = Xnew−M j
k(t −1),

δX− = Xold −M j
k(t −1),

∆X = [δX+ δX−].
(4)

with M j
k(t) andΩ j

k(t) respectively center and covari-

ance matrix of the classC j
k at timet, Nf en the width

of the sliding window,Xnew= X(t), Xold the old data
in the set affected toC j

k.
Then, the distances between the normal, current

and default classes can be computed according to the
center and the covariance matrix of each class. The
Euclidean distance corresponds to the distance be-
tween the center of two classes:

dEu = (M j
1−M j

2)
⊤(M j

1−M j
2) (5)

whereM j
1 andM j

2 are the centers of the classesC j
1 and

C j
2 respectively.

The Kullback-Leibler distance corresponds to the dis-
tance between two classes taking into account their
shape,i.e. the covariance matrices, (Kullback and
Leibler, 1951). In the general case (Anguita and Her-
nando, 2004), the distance between the classesC j

1 and

C j
2 is expressed by:

dkl(C
j
1,C

j
2)=

1
2
(M j

1−M j
2)

⊤(Ω−1
1 +Ω−1

2 )(M j
1−M j

2)

+
1
2

trace(Ω−1
1 Ω2+Ω1Ω−1

2 )−d. (6)

whered is the dimension of the data representation
space,Ω1 = Ω j

1 andΩ2 = Ω j
1 are the covariance ma-

trices of the classesC j
1 andC j

2. The second term of
dkl, i.e. trace( ), is specifically impacted by the shape
and the orientation of the classes.
Finally, the distances between the several modes are
used to estimate the probabilities of the failure occur-
rence of each component, as detailed in the next sec-
tion.

4 ESTIMATION OF FAILURE
OCCURRENCE
PROBABILITIES

The probability of the failure occurrence, denoted
pE j (t), is defined as thePFE of an elementary com-
ponent, and is considered as an indicator of the dete-
rioration of this component. It is estimated according
to the distance covered by the current class towards
the default class,α(t), due to slow drifts:

pE j (t) = 1−α(t) (7)

with:

α(t) =
distance(C j

p,C
j
e(t))

distance(C j
n,C

j
p)

(8)

whereC j
n, C j

p, and C j
e are the normal, default and

current classes. The distance between two classes
is computed according to the Euclidean (5) or the
Kullback-Leibler (6) methods. It is assumed that
0≤ α(t)≤ 1.

• Estimation of pE j (t) based on Euclidean Dis-
tance

The percentage of distanceαEu(t) which is estimated
according to the Euclidean distance (5), is used to de-

termine the probabilityp
E j
Eu(t) according to the rela-

tion (7). The example shown in Figure 3 is considered
to illustrate this method. Three classes for component
j are represented: normalC j

n, currentC j
e, and default

C j
p classes characterized by(M j

n, Ω j
n), (M

j
e, Ω j

e), and
(M j

p, Ω j
p), respectively.

The percentage of distanceαEu(t) at each timet is
given by:

αEu(t) =
dEu(M

j
p,M

′ j
e (t))

dEu(M
j
n,M

j
p)

(9)

where the distancesdEu are expressed by relation (5),
andM′ j

e is the orthogonal projection of the centerM j
e

on the segment[M j
n M j

p]. The distancedEu(M
j
n,M

j
p) =
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Figure 3: Evolution of a class from the normal class to theFigure 3: Evolution of a class from the normal class to the
default class.

D j is constant (10). The distancedEu(M
j
n,M

′ j
e (t)) =

x j is determined according to relation (11) from the
triangle formed by the centers of the classes (seeFig-
ure 3). It is assumed that the current class can only
evolve towards the default class. Consequently, the
angleβ is always include between− π

2 < β < π
2 , and

the orthogonal projection of the centerM j
e is always

included in the segment[M j
n M j

p].

D j =

√
(M j

n−M j
p)⊤(M

j
n−M j

p) (10)

x j(t) =
1
2

[
D j +

y2
j (t)−z2

j (t)

D j

]
(11)

with:

y j(t) =
√
(M j

n−M j
e(t))⊤(M

j
n−M j

e(t)) (12)

zj(t) =
√
(M j

p−M j
e(t))⊤(M

j
p−M j

e(t)) (13)

(14)

• Estimation of pE j (t) based on Kullback-Leibler
Distance

The Kullback-Leibler distance is used to estimate the
percentage of distanceαKl (t) and then to determine

the probabilityp
E j
Kl (t), according to the relation (7).

The percentage of distanceαKl (t) at each timet is
given by:

αkl(t) =
dkl(C

j
p,C

j
e(t))

dkl(C
j
n,C

j
p)

(15)

where the distancesdkl are expressed by relation (6).
The Kullback-Leibler distance between the classC j

n
and the classC j

p is constant.
The percentage of distanceαKl (t) is computed

only when the current classC j
e evolves towards the

default classC j
p. A criterion Td

c is defined to verify
this condition (16). Thus,αKl (t) is computed if and
only if the criterionTd

c is strictly negative.




Td
c =

1
Nf en−1

Nf en

∑
t=2

sign(∆t),

∆(t) = dkl(C
j
p,C

j
e(t))−dkl(C

j
p,C

j
e(t −1))

(16)

• Interpretation of pE j (t) Computed According
to Euclidean and Kullback-Liebler Distances

The probabilitiesp
E j
Eu(t) and p

E j
Kl (t) are computed

according to the Euclidean or Kullback-Liebler dis-
tancesαEu(t) and αKl (t). To interprete and verify
the pertinence of these indicators and thus the pro-
posed methods, a scenario which consists in four cur-
rent classesC j

1 toC j
4 which evolve to the normal class

C j
n towards the default classC j

p, is considered and de-
picted in Figure 4. The classesC j

1, C j
2 andC j

3 have the
same centers but their matrices of covariance are dif-
ferent. The classC j

4 is characterized by different cen-

ter and covariance matrice. The probabilitiesp
E j
Eu(t)

andp
E j
Kl (t) are computed for the four classes. The re-

sults are given in Table 1.

Table 1: Probabilities computed for the classes.

C j
1 C j

2 C j
3 C j

4

p
E j
Eu 0,50 0,50 0,50 0,56

p
E j
Kl 0,36 0,50 0,46 0,46

The Euclidean distance leads to the estimation of a
same pourcentagep

E j
Eu for classesC j

1, C j
2 andC j

3, and

to a pourcentage more important for the classC j
4. In-

deed, the center of the classC j
4 is nearest to the default

class than the others classesC j
p. This distance is eas-

ily interpretable but it does not take into account the
shape and the orientation of the classes.

The Kullback-Liebler distance leads to the estima-
tion of pourcentagesp

E j
Kl different for the classesC j

1,

C j
2 andC j

3. Although, the covariance matrix of the

classC j
1 is smaller than the covariance matrix of the

classC j
3, the difference between the obtained pour-

centages seems to be too important, and these indica-
tors are not directly interpretable as the probabilities
of the failure occurrence. Moreover, the pourcentages

p
E j
Kl of the classesC j

3 andC j
4 are identical although

the classC j
4 is nearest of the default class (seeFigure

4). Finally, the Kullback-Liebler distance allows to
take into account the shape and the orientation of the
classes, but it is not directly usable for the estimation
of the probabilities of the failure occurrence.

• New Estimation Method of pE j (t)

A new estimation method of the probabilitypE j (t) is
proposed to provide pertinent indicators which take
into account in priority the position of the classes,
but also, the remoteness, enlarging and rotation of
these classes. It consists in a weigthed combination of

p
E j
Eu(t) computed according to Euclidean distance and
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Figure 4: Scenario of evolution of classes from a normal
class towards a default class.

pε which is computed according to the second term
of the Kullback-Leibler distance (6). The probability
pE j (t) is expressed as:

pE j (t) = p
E j
Eu(t)+λ pε (17)

whereλ (0< λ < 1) is a weight coefficient. The pa-
rameterpε is function of the covariances matrices of
the normal, default and current classes:

pε =
T1

T1+T2

T1 = trace(ΩeΩ−1
p +Ω−1

e Ωp)

T2 = trace(ΩpΩ−1
n +Ω−1

p Ωn)

(18)

The coefficientλ is tuned in order to take into
account the covariance matrices in the estimation
of pE j (t) without however obtaining too important
differences between the distances from the classes.
In Table 2, we presente the occurrence probabilities
computed by relation (17) according toλ = 1/10.

Table 2: Failure occurrence probabilities.

C j
1 C j

2 C j
3 C j

4
pE j (t) 0,53 0,55 0,54 0,60

If the value ofλ is too small, the shape of the class
is not taken into account, and that leads at consid-
ering only the Euclidean distance. If the value ofλ
is too big, the shape of the class has too much influ-
ence on the estimation ofpE j (t), and that leads to the
same problem of interpretation than the distance of
Kullback-Leibler. The proposed method is applied on
a real scenario in the next section.

5 APPLICATION

A temperature controller is a process which is used to
control the temperature of a client system. It is com-
posed of an electric heater, a pump, a heat exchanger
and a filter (seeFigure 5). The components of this

heater exchanger

Filter

Pump
client
system

expansion
tanksensor

coldwater

Figure 5: Thermo-regulator components.

process are subject to failures related to slow degra-
dations due to scaling and fouling essentially. If these
failures are not taken into account early enough, they
can cause the stop of the process.

The first step is the FMEA of the temperature con-
troller which allows the determination of the Fault
Tree of the process (seeFigure 6). The Fault Tree
is composed of three basic events associated to each
component and a top event which correspond to the
no temperature control. The basic events are:

• Failure of the heater(E1)

• Failure of the exchanger(E2)

• Failure of the filter(E3)

the top event is:

• No temperature control(E4)

E1 E2 E3

E4

Figure 6: Fault Tree of the temperature controller.

The temperature controller is equipped by sensors
located at the input and output of each component.
These sensors measure the pressure of the fluid. An
observation vector is done byX1 = (x1,x2,x3)

⊤ where
the three indicators are determined according to the
measurements:

x1 =
Pinput heater−Pout put heater

∆Ppump
(19)

x2 =
Pinput exchanger−Pout put exchanger

∆Ppump
(20)

x3 =
Pinput f ilter−Pout put pump

∆Ppump
(21)

wherex1, x2, x3 are indicators to monitor the heater,
the exchanger and the filter respectivelly.

The AUDyC technique allows the monitoring of
elementary components of the temperature controller.
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The estimation method of the occurrence probabili-
ties, with a weight coefficient tuned asλ = 1/20,λ =
1/50, is used to estimate in real time thepE j (t) j=1,2,3
(17) of each elementary component, and finally the
PFE of top event (E4) by propagation the basic
events.

where the eventsE1, E2 andE3 are independents.
Thus, thePFE of the eventE4 is expressed as:

PFE(E4) = ((pE4(t1), t1), · · · ,(pE4(tn), tn)) (22)

In the real scenario considered, the components of the
temperature controller are subjected to drifts as de-
picted in Figure 7. ThePFE(E4) determined accord-
ing to the relation (22) are displayed in Figure 8. On
this real scenario,the tuneλ = 1/20 leads to a too im-
portant influence ofpε, whereasλ = 1/50 presents a
good compromise. La figure 8.a montre l’influence de
la forme de la classe alors que la figure 8.b l’influence
de la forme de la classe est moins important.
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6 CONCLUSIONS

The supervision method proposed in this paper al-
lows the estimation of the probability of failure occur-
rence of processes in real time. The dynamic cluster-
ing method is used to track the evolution of operating
modes of processes by determining the characteristics
of each class (center and covariance matrix).

The center and the covariance matrix being
adapted by AUDyC, the Euclidean distance and trace
of the covariance matrices are used to estimate the
probability of the failure occurrence. The Euclidean
distance does not allow to take into account the shape

and the orientation of the class, and the Kullback-
Leibler distance, are not easily interpretable. Then,
a new method which is based on the weight combi-
nation between the probabilities estimated with the
Euclidean distance and with the trace of the covari-
ance matrices, is proposed and illustrated on real case.
In futur works, we will propose a prognosis strategy
based on this method to forecast the occurrence prob-
ability of events, and a step to tune the weight coef-
ficients of the proposed method. The goal is to de-
termine indicators to improve the predictive mainte-
nance of processes. This will be implemented for pre-
dictive maintenance of the temperature controller and
of measure the apport of the proposed methods.
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