
EVALUATING A FRAMEWORK FOR THE DEVELOPMENT

AND DEPLOYMENT OF EVOLVING APPLICATIONS
AS A SOFTWARE MAINTENANCE TOOL

Georgios Voulalas and Georgios Evangelidis
Department of Applied Informatics, University of Macedonia, 156 Egnatia St., Thessaloniki, Greece

Keywords: Software Evolution, Runtime Evolution, Dynamic Applications, Runtime Compilation, Software

Maintenance, Java ClassLoader.

Abstract: In our previous research we have presented a framework for the development and deployment of web-based

applications. The framework enables the operation of multiple applications within a single installation and

supports runtime evolution by dynamically recompiling classes based on the source code that is retrieved

from the database. The feasibility of our solution has been successfully verified with the use of an

architectural prototype. Given the importance of the maintenance activities in the software lifecycle, in this

paper we are going to evaluate our framework as a software maintenance tool and position it in the domain

of software evolution with a use of a related taxonomy.

1 INTRODUCTION

It is impossible to produce systems of any size

which do not need to be changed. Once a software

system is put into use, new requirements emerge and

existing requirements change as the business

running that software changes. Parts of the software

may have to be modified to correct errors that are

found during its operation, and/or improve its

performance or other non-functional characteristics.
All of this means that, after delivery, software

systems evolve (Somerville, 2000).

A great part of the research in the area of

software evolution has been carried out by Lehman

and Belady (Lehman and Belady, 1985). Their

research resulted in a set of ‗laws‘ (Lehman‘s Laws)

concerning system change that are regarded as being

invariant and widely applicable. The proposed laws

were derived from measurements conducted upon

large software systems. The first two laws are the

most important. They state that evolution is required
in order to cope with the continuously changing

requirements but inevitably makes the system more

complex and degrades its structure.

In (Warren, 1998) three main types of software

change are identified:

 Software maintenance: Changes to the

software are made in response to errors or

changed requirements but the core structure of

the software is not modified.
 Architectural transformation: It involves

significant modifications to the architecture of

the software system.

 Software re-engineering: The system is

changed in order to become easier to

understand and evolve. System re-engineering

may involve some structural modifications but

does not usually involve major architectural

changes.

From the three types of software change listed

above, software maintenance is the most common.
Software maintenance is defined in IEEE Standard

1219 (IEEE, 1993) as: ―The modification of a

software product after delivery to correct faults, to

improve performance or other attributes, or to adapt

the product to a modified environment.‖ Note that

the term software evolution lacks a standard

definition and it is usually used as a preferable

substitute for maintenance. In practice, there isn‘t

always a clear distinction between these different

types of maintenance. It is difficult to find up-to-date

figures for the relative effort devoted to the different

types of maintenance. A rather old survey by Lientz
and Swanson (Lientz and Swanson, 1980)

discovered that about 65% of maintenance was

concerned with implementing new or modified

31

Voulalas G. and Evangelidis G. (2009).
EVALUATING A FRAMEWORK FOR THE DEVELOPMENT AND DEPLOYMENT OF EVOLVING APPLICATIONS AS A SOFTWARE MAINTENANCE
TOOL.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 31-38
Copyright c© SciTePress

requirements, 18% with changing the system to

adapt it to a new operating environment, and 17% to

correct system faults. Similar figures were reported

by Nosek and Palvia (Nosek and Palvia, 1990) ten
years later. Updating the system in order to cope

with new or changed requirements consumes most

of the maintenance effort. The costs of system

maintenance represent a large proportion of the

budget of most organisations that use software

systems. In the 1980s, Lientz and Swanson found

that large organisations devoted at least 50% of their

total programming effort to evolving existing

systems. McKee (McKee, 1984) found that the

amount of effort spent on maintenance is between

65% and 75% of total available effort.
Summarizing the above-mentioned findings we

can state that after the delivery of a software system

significant effort is inevitably devoted to the

implementation of new features, the modification of

existing features and the correction of bugs.

In the traditional approach to software

maintenance, the programmer edits or extends the

source code of a software system, and re-compiles

(possibly incrementally) the changes into a new

executable system. The running software system has

to be restarted for the change to become effective.

However, in many cases it is not acceptable to
frequently shut down the system in order to perform

changes, therefore, it must be possible to modify it

while at runtime.

Runtime adaptations are supported by

programming languages, such as CLOS, Smalltalk,

and Self (Zdun, 2004). These dynamically typed

programming languages provide both a

programming environment and a program execution

environment, allowing one to influence the language

behaviour from within a program. Similar features

are provided by a number of scripting languages,
including Tcl, Python, Perl, and Ruby. Those

features are mostly used in an ad-hoc way and not as

a distinct evolution technique. Modern statically-

typed commercial programming languages such as

Java and C#, through various concepts such as

typing, encapsulation and polymorphism, encourage

programmers to write code that should be easier to

maintain and evolve (Evans, 2004). However, focus

is placed on the non runtime issues of reusing

program source code and trying to make it easier to

manipulate the codebase of a particular application.

Although it is possible to dynamically update both
Java and C# programs neither of these languages

directly address the issues of runtime evolution by

defining an evolution model.

Toward this need, in (Voulalas and Evangelidis,

2008a), (Voulalas and Evangelidis, 2007) and

(Voulalas and Evangelidis, 2008b) we introduced a

development and deployment framework that targets
to web-based business applications and supports

runtime adaptations. The framework takes

advantage of the options that the Java Programming

Language provides for the creation of dynamic

applications and operates as a runtime evolution

infrastructure. In this paper we evaluate this

framework and position it within the software

evolution domain. For this reason we use one of the

available taxonomies that are related to software

evolution.

The paper is further structured as follows. In
Section 2, we outline our framework. In Section 3,

we present the selected taxonomy, and in Section 4

we apply it in our framework. We discuss the main

conclusions in Section 5.

2 THE CORE CONCEPTS

OF OUR FRAMEWORK

2.1 Database Model

The framework is structured on the basis of a
universal database model (meta-model). As
presented in Figure 1, the database model is divided
into three regions.
 Region A holds the functional specifications

of the modelled application and includes the
following entities: Classes, Attributes,
Methods, Arguments, Associations and
Imports (class dependencies). For example,
the method definition consists of a name, a
return type, a set of arguments, and a body.
For each class the entire source code is stored
in the database.

 For each table of Region A a companion table
using ―_versions‖ as suffix is included in
Region A΄. This enables us to keep all
different versions of the modelled
applications.

 Region B holds data produced by the

applications and consists of the following

tables: Objects, AssociationInstances and

AttributeValues. Those tables are structured in

a way that is independent of the actual data

structure of the applications. Thus, changing

the database structure of a modelled

application (e.g. adding a new field in an
existing table or creating a new table) does not

affect Region B.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

32

Figure 1: The Database Model.

2.2 Development Process

The framework facilitates the development process

as follows:

 Since the Database tier is common for all

applications, generic methods for the

materialization and dematerialization of

objects are provided. The user does not have

to write SQL code and interfere at all with the

database layer.

 For the development of the Application tier

(i.e., business objects) the user should be

provided with a custom editor implementing a

moderated development environment. This

editor should enable the user to take advantage

EVALUATING A FRAMEWORK FOR THE DEVELOPMENT AND DEPLOYMENT OF EVOLVING
APPLICATIONS AS A SOFTWARE MAINTENANCE TOOL

33

of all pre-build mechanisms that are supported

by the framework.

 For the User Interface tier, a more flexible and

less moderated approach is proposed in order
for the user to be able to freely and creatively

implement the user interface of the

application.

2.3 Deployment

The framework operates as a deployment platform

that hosts multiple applications within a single

installation. There always exists one deployed

application, independently of the actual number of

running applications.

The running application constitutes of generic
components and application-specific components

that are produced by the runtime compilation of the

application-specific source code. The generic

components operate as an abstraction layer that

allows application-specific classes and their

methods to be utilized.

2.4 Runtime Evolution & Versioning

Since source code is retrieved from the database and

compiled at runtime, we can deal with business logic

changes at deployment time without interrupting the

operation of the application.
What‘s more, we can anytime refer to a previous

version of an application and examine old data in its

real context (i.e., within the version of the

application that created this data) by retrieving the

corresponding data instances from the database,

without the need for maintaining additional

installations (one for each different application

version).

Finally, we can easily support a policy for the

management of active instances that allows existing

threads to continue to call old code, whereas new
threads to call new code.

2.5 Architectural Prototype

In order to verify the feasibility of our proposal, we

have developed the core functional and data

mechanisms. The underlying database schema

resides in MySQL. For the functional components,

Java was an obvious choice for us to consider since

it supports two features that are essential for the

implementation of our framework: reflection and

runtime compilation of source code.

2.5.1 Reflection

Using the Java reflection API included in the Java

Development Kit (JDK) version 1.1 or higher, a

programmer can obtain meta information about the

Java objects at runtime. That is, the programmer can

look inside a Java object at runtime and see what

variables it contains, what methods it supports, what

interfaces it implements, what classes it extends—

basically everything about the object that is known

at compile time. The Class class supports

getMethods, getMethod, getDeclaredMethods,

getDeclaredFields, getFields, and getField for user
code to call. User code can access the fields or the

methods of an object via field objects or method

objects. Similarly, the Java reflection API supports

method invocations and accessing of field values.

2.5.2 Runtime Compilation of Source Code

The javax.tools package, added to Java SE 6 as a

standard API for compiling Java source, enables the

addition of dynamic capabilities that extend static

applications (Biesack, 2007). It is an approved

extension of Java SE, which means it is a standard

API developed through the Java Community Process

(as JSR 199). The main benefit is that the developer

uses what he better knows: Java source, not

bytecodes. He can create correct Java classes by

generating valid Java source without needing to

worry about learning the more intricate rules of valid

bytecode or a new object model of classes, methods,
statements, and expressions.

3 SELECTING A TAXONOMY

Several taxonomies related to software evolution

exist (Lientz & Swanson, 1980), (Chapin & Hale,

2001), (Pukall & Kuhlemann, 2007). These

taxonomies can be used for evaluating frameworks,
tools and techniques within the domain of software

evolution. Most of them focus on the purpose of the

change. In order to evaluate our framework, we have

selected a taxonomy that focuses on technical

aspects and is based on the characterizing

mechanisms of change and the factors that influence

these mechanisms (Mens & Buckley, 2003). The

selected taxonomy is more comprehensive, in

comparison to the others, as it includes several

properties organized around four logical groups:

temporal properties, object of change, system

properties, and change support.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

34

3.1 Temporal Properties (when)

―The ‗when‘ question addresses temporal properties

such as when a change should be made, and which

mechanisms are needed to support this.‖ (Mens &

Buckley, 2003) (Table 1).

Table 1: Temporal Properties.

Dimension Supported types

Time of change Compile-time evolution

(alternatively called static
evolution): the traditional
approach to software
maintenance, where the
programmer edits the source

code and re-compiles the
changes into a new executable
system. The running software
system has to be shut down
and restarted for the change to
become effective.

 Runtime evolution (also

called dynamic evolution):
the software change occurs

during execution of the software.

The system evolves dynamically

for instance by hot-swapping

existing components or by

integrating newly developed

components without the need for

stopping the system.
 Load-time evolution: changes

are incorporated as software

elements that are loaded into
an executable system. It is
well-suited for adapting
statically compiled
components dynamically on
demand, so that they fit into a
particular deployment context.
Depending on whether load-

time coincides with runtime or
it coincides with a system‘s
start-up time, load-time
evolution is either dynamic or
static.

Change history Completely un-versioned
systems: changes are applied

destructively so that new
versions of a component
override old ones.

 Systems that support
versioning statically: new and
old versions can physically
coexist at compile- or load-
time, but they are identified at
runtime and therefore cannot

be used simultaneously within
the same context.

Table 1: Temporal Properties (cont.).

Change history Fully versioned systems:
allow different versions of
one component to coexist
at runtime. This is
particularly important for

the dynamic evolution of
systems, since safe
updates of existing
components often require
that new clients of the
component use the new
version whereas existing
clients of the old

component continue to use
the old one.

Change frequency Continuously
 Periodically
 Arbitrary

3.2 Object of Change (where)

The second group in the selected taxonomy

addresses the ‗where‘ question. ―Where in the

software can changes be made, and which

supporting mechanisms are required?‖ (Mens &

Buckley, 2003) (Table 2).

Table 2: Object of Change.

Dimension Supported types

Artifact Artifacts that are subject to changes
can range from requirements through
architecture and design, to source

code, documentation and test suites.
They can also be a combination of
several or all of the above.

Impact Very local to system-wide changes.

3.3 System Properties (what)

―A logical grouping of factors that influence the

kinds of changes allowed as well as the mechanisms

needed to support these changes has to do with the

properties of the software system that is being

changed, as well as the underlying platform, and the

middleware in use.‖ (Mens & Buckley, 2003) (Table
3).

EVALUATING A FRAMEWORK FOR THE DEVELOPMENT AND DEPLOYMENT OF EVOLVING
APPLICATIONS AS A SOFTWARE MAINTENANCE TOOL

35

Table 3: System Properties.

Dimension Supported types

Availability For some software systems it is not

acceptable that their operation is
interrupted occasionally in order for
changes to be implemented by
modifying or extending the source
code.

Safety Static safety is provided if we
are able to ensure, at compile-
time, that the evolved system

will not behave erroneously at
runtime.

 Dynamic safety is provided if
there are built-in provisions for
preventing or restricting
undesired behaviour at runtime.

3.4 Change Support (how)

―During a software change, various support

mechanisms can be provided. These mechanisms

facilitate the analysis, management, control,
implementation and measurement of software

changes.‖ (Mens & Buckley, 2003) (Table 4).

Table 4: Change Support.

Dimension Supported types

Degree of
automation

 Manual
 Partially automated
 Automated

Degree of
formality

 Implemented in an ad-hoc way
 Based on an underlying

mathematical formalism

Change Type Structural changes: changes
that alter the structure of the
software. In many cases, these
changes will alter the software
behaviour as well. A
distinction can be made
between adding new elements
to the software, removing

elements from the software,
and modifying (e.g., renaming)
an existing element.

 Semantic changes: can either
be semantics-modifying (such
as refactoring) or semantics-
preserving (such as the
replacement of a ‗for loop‘ by

a ‗while loop‘).

4 APPLYING THE SELECTED

TAXONOMY

Having presented the core elements of the selected

taxonomy, we are going to apply the taxonomy to

our framework in order to evaluate its usability and

identify missing properties or properties that can be
improved. For each of the framework dimensions,

we describe the extent to which it is supported by

our framework. In Table 5, we summarize our

evaluation.

4.1 Temporal Properties (when)

Using this group of properties we will identify the

phase changes occur at, the frequency of changes

and the way the different software versions

(produced during evolution) are handled.

4.1.1 Time of Change

Technically our framework is based on Java‘s

ClassLoader architecture that is a prominent

example of load-time evolution mechanism.

However, since classes are loaded at runtime and

changes become effective without the need of
restarting the application, it is clear that our

framework supports runtime changes.

4.1.2 Change History

The database model upon which our platform is

based, incorporates a simple data versioning
technique (inspired by the Jboss Envers project) that

allows us to keep all different versions of the

modelled applications. What‘s more, it enables the

identification of the objects that have been produced

from a specific version of an application and the

identification of the version that should be invoked

in order for a specific object to be processed. In

other words, multiple versions of the same

application can co-exist at runtime level. Thus, our

framework provides a fully versioned environment.

4.1.3 Change Frequency

Our framework does not impose any restriction

related to the frequency of changes. The frequency

of changes is arbitrary, since changes are triggered

by the users.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

36

4.2 Object of Change (where)

This group of properties will help us define the

subject of changes and the granularity of supported

changes.

4.2.1 Artifact

Our platform supports changes directly (and only) to

source code.

4.2.2 Impact

Changes can range from local to system-wide.

4.3 System Properties (what)

We will examine the following two attributes: the

availability of the deployed systems while

maintenance takes place and the runtime safety.

4.3.1 Availability

Our framework can successfully support the

evolution of software systems without interrupting

their operation. In other words, in ensures high

availability of the deployed applications throughout
their lifecycle.

4.3.2 Safety

Since source code can be changed in an arbitrary

way and classes are recompiled and loaded just

before the execution of a method, it is quite difficult
to prevent undesired functionality at runtime level.

However, we should work on mechanisms that will

restrict the runtime errors. One such method could

be the provision of a test platform that will run in

parallel with the main deployment platform and will

allow new versions to be tested by the developers

before becoming available to the end-users. Since

the proposed platform already supports the parallel

deployment of different versions of the same

application, the implementation of a test platform

will mainly require the distinction between

production and test versions.

4.4 Change Support (how)

This group of properties will help us identify the

supported degree of automation in the implementa-

tion of changes and the covered types of changes.

4.4.1 Degree of Automation

Our platform is a semi-automated tool. Taking as a

basis the 3-tier architecture that is the most

outstanding architectural paradigm, changes are

implemented as follows:

 The Database tier is generic for all

applications. The developer does not write

SQL code, neither for the creation of the

database, nor for the manipulation of data. A

structured API that includes generic methods

for inserting / updating / deleting objects,

along with methods for retrieving objects
using multiple filters is provided, facilitating

the user during the development process.

Changes in the database structure of an

application result in data changes in the

underlying meta-model and are transparently

and automatically handled by the API.

 In the final prototype of the platform, the

development of the Application tier should be

supported by an editor supporting a list of

custom features, such as code generation and

auto-complete features. Thus, initial

implementation and changes in the application
tier should be implemented in a semi-

automated manner.

 For the User Interface tier, we have selected a

more flexible and less moderated approach.

The developer should be able to freely

implement the user interface of the

application. Changes in the user interface

could be only manually supported.

4.4.2 Degree of Formality

Our platform has no underlying mathematical

foundation. It is very interesting to try to identify

parts of the development process that could be

formalized. The interaction of the functional layer

with the database layer and the way changes in one

level are propagated to the other seems to be such a

domain.

4.4.3 Change Type

Our platform puts no constraints on the types of
change that can be made to the software system. It
can be a semantics-preserving or semantics-
changing change. It can be an addition, subtraction,
or alteration at functional or database level.
However it doesn‘t support all types of changes with
the same degree of automation.

EVALUATING A FRAMEWORK FOR THE DEVELOPMENT AND DEPLOYMENT OF EVOLVING
APPLICATIONS AS A SOFTWARE MAINTENANCE TOOL

37

Table 5: Evaluation of our platform based on the selected
taxonomy.

Group Dimension Support

Temporal
Properties

Time of change Runtime

Change history Fully versioned

Frequency Arbitrary

Object of
Change

Artifact Source code

Impact Global changes

System

Properties

Availability No down-time

Safety Low

Change

Support

Automaton Semi-automatic

Formality No

Change type Any

5 CONCLUSIONS & FURTHER

RESEARCH

By applying the taxonomy on the development and
deployment platform that we have presented in our
previous research efforts we are now able to
evaluate it as a software maintenance mechanism
and identify its strengths, along with its weaknesses.
The most important strengths are:
 Our platform is a run-time change support

mechanism since deployed platforms do not
need to be restarted in order for changes to
become effective. This is very important
feature for systems that undertake frequent
changes and / or for systems that are business
critical and require high availability.

 Our platform is a fully versioned change
support mechanism since it supports the
runtime coexistence of multiple versions of
the deployed applications (within a single
installation of the platform).

 Our platform should be considered as a semi-
automated change support tool as it will
support the developer in the implementation
of changes at the database and application (in
a future version) level.

On the other hand, the most important weakness
is that since source code can be changed in an
arbitrary way and classes are recompiled and loaded
just before the execution of a method, the deployed
applications seem to be vulnerable to runtime
errors. In order to limit the possibility of unwanted
runtime scenarios we should elaborate on auxiliary
mechanisms at two-levels: (a) at implementation
level in order to assist the developer, (b) at test-level
in order new versions to be thoroughly tested before
there are delivered to end-users.

REFERENCES

Biesack, D., 2007. Create dynamic applications with
javax.tools. http://www.ibm.com/developerworks/

java/library/j-jcomp/index.html
Chapin, N., Hale, J., Khan, K., Ramil, J., Than, W.-G.,

2001. Types of software evolution and software
maintenance. Journal of software maintenance and
evolution, pages 3–30.

Evans, H., 2004. DRASTIC and GRUMPS: design and
implementation of two runtime evolution frameworks.
IEE Proceedings - Software 151(2): 30—48.

IEEE, 1993. IEEE Std. 1219: Standard for Software
Maintenance. Los Alamitos CA., USA. IEEE
Computer Society Press.

Lehman, M.M., Belady, L.A., 1985. Program Evolution –
Process of Software Change. Acad. Press, London.

Lientz, B. P., Swanson, E. B., 1980. Software maintenance
management: a study of the maintenance of computer
application software in 487 data processing
organizations. Addison-Wesley.

McKee, J., 1984. Maintenance as a function of design.
Proceedings of the AFIPS National Computer
Conference, 187—193.

Mens, T., Buckley, J., Zenger, M., Rashid, A., 2003.
Towards a taxonomy of software evolution. In Proc.
2nd International Workshop on Unanticipated
Software Evolution, Warsaw, Poland.

Nosek, J., Palvia, P., 1980. Software maintenance

management: changes in the last decade. Journal of
Software Maintenance: Research and Practice 2 (3),
157—174.

Pukall, M., Kuhlemann, M., 2007. Characteristics of
Runtime Program Evolution. RAM-SE, 51—58.

Sommerville, I., 2000. Software Engineering. 6th Edition.
Addison-Wesley.

Voulalas, G., Evangelidis, G., 2007. A framework for the

development and deployment of evolving applications:
The domain model. In 2nd International Conference
on Software and Data Technologies (ICSOFT),
Barcelona, Spain.

Voulalas, G., Evangelidis, G., 2008. Introducing a
Change-Resistant Framework for the Development
and Deployment of Evolving Applications. In Filipe,
J., Shishkov, B., and Helfert, M., editors,

Communications in Computer and Information
Science, Volume 10, 293–306. Springer Berlin
Heidelberg.

Voulalas, G., Evangelidis, G., 2008. Developing and
deploying dynamic applications: An architectural
prototype. In 3rd International Conference on
Software and Data Technologies (ICSOFT), Porto,
Portugal.

Warren, H., 1988. Sharing the Wealth: Accumulating and

Sharing Lessons Learned in Empirical Software
Engineering Research. Empirical Software
Engineering 3(1), 7—8.

Zdun, U., 2004. Supporting incremental and experimental
software evolution by runtime method
transformations. Sci. Comput. Program, 52, 131—163.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

38

