
FROM AN ABSTRACT OBJECT-ORIENTED DOMAIN MODEL
TO A META-MODEL FOR THE DOMAIN

Model Driven Development of a Manufacturing Execution System

Antoine Schlechter, Guy Simon and Fernand Feltz
Centre de Recherche Public Gabriel Lippmann, rue du Brill, Belvaux, Luxembourg

Keywords: MDE, Model Driven Engineering, MDSD, Model Driven Software Development, Meta-Modeling.

Abstract: Despite a broad agreement on the benefits of model driven approaches to software engineering, the use of
such techniques is still not very widespread. We think this is due to the appearing discouraging difficulty of
meta-modeling. This paper presents a new method to easily obtain a meta-model from an abstract object-
oriented domain model. The method is applied to the development of a Manufacturing Execution System.

1 INTRODUCTION

Since quite a while, model-driven approaches to
software engineering such as Model Driven Engi-
neering (MDE), Model Driven Software Develop-
ment (MDSD) or Model Driven Architecture
(MDA) have been advertised to be the solution to
the ever-increasing complexity in software devel-
opment. These techniques offer an easy way to do-
main-specific abstraction and to a high degree of
automation in the coding process. Abstraction and
automation lead to higher productivity, easier exten-
sibility and better quality of the software.

Although there are success stories about MDA,
MDSD and MDE, the adoption of such techniques in
industry is not yet very widespread. (Atkinson, C.,
Kühne, T., 2003) see the reasons in a still incom-
plete and not yet fully understood theoretical foun-
dation of MDE. Other research such as (Selic, B.,
2008) and (CHAMDE, 2008) investigated this issue
from a more practical point of view and identified
mainly two kinds of reasons. On the one hand we
find so called technical reasons like bad tool support,
missing tool documentation, insufficient interopera-
bility between tools, lack of user-friendliness, and
others. On the other hand, a lot of programmers
simply feel comfortable with their current proven
methods of software development. They often only
see the discomfort, the difficulty, the threats and
dangers but not the benefits in new technology. This
lack of awareness, education, and training is often
referred to as cultural problems.

Although not all of the tool requirements from
(Kent, S., 2002) are fully achieved, there are tool
chains such as EMF, GMF and oaw (Eclipse Project)
that provide most of the needed functions for MDE
at least for smaller-scale projects. In fact, (Thörn, C.,
Gustafsson, T., 2008) find in a survey among several
SMEs that the importance of tool support is “surpri-
singly low” when it comes to suggest improvements
to current practices, whereas “methodology”, “in-
creased awareness” and “training” are all mentioned
significantly more often.

We are convinced, that the most important ob-
stacle to the adoption of MDE is the appearing dis-
couraging difficulty of meta-modeling, that is due to
the lack of methods about how to address the speci-
fication of a meta-model or domain specific lan-
guage (DSL) at the center of each model-driven ap-
proach.

In fact, there are papers that present special me-
ta-models or domain specific languages (references
in van Deursen, A. et al., 2000). Besides, (Luoma, J.
et al., 2004), (Mernik, M. et al., 2005), (van Deur-
sen, A. et al., 2000) identify several high level pos-
sibilities to define a meta-model or a DSL. Unfortu-
nately, it remains unclear how to effectively bridge
the gap between the domain analysis and the explicit
definition of the meta-model or DSL.

In our approach, we build a first version of a me-
ta-model from a traditional object-oriented domain
model. As experienced object-oriented software de-
velopers should feel comfortable building domain
models following for instance the principles of Do-
main Driven Design (DDD)(Evans, E., 2004), meta-
modeling should become easier for them.

317Schlechter A., Simon G. and Feltz F. (2009).
FROM AN ABSTRACT OBJECT-ORIENTED DOMAIN MODEL TO A META-MODEL FOR THE DOMAIN - Model Driven Development of a Manufacturing
Execution System.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 317-320
DOI: 10.5220/0002252903170320
Copyright c© SciTePress

+updateState(in signal : string)
+updateVariables(in event : InputEvent)

#state : string
JobVariable

+inputDate : Date
InputEvent

+id : long
Entity

1 *

+jobNumber : int
+producedLots : int

ProductionJob
+cycles : int
+activePrints : int
+pieces : int

PiecesCounter

+activePrints : int
PrintsEvent

+cycles : int
CycleEvent11

Figure 1: UML Class diagram with an extract of the abstract domain model (upper part) and some concrete example sub-
classes for a simple MES (lower part).

We will present and illustrate our method using
the development of a Manufacturing Execution Sys-
tem (MES) as an example. First of all we introduce
the “ubiquitous language” (DDD) for MES, its re-
presentation as an object-oriented domain model and
the software system architecture (section 2). Based
on the architectural description we outline a model-
driven approach and explain its benefits (section 3).
The meta-model at the center of the approach will be
defined based on the object-oriented domain model
(section 4).

2 OBJECT-ORIENTED DOMAIN
MODEL

Manufacturing Execution Systems deal with the
collection, evaluation, analysis, interpretation and
visualization of data from production in order to
better control the production processes. The central
objects of interest in MES are jobs. A job produces a
product. Products have resource requirements used
to determine what resources should be assigned to a
job for the production of a given product. Jobs use
time on resources, have an internal state and may
contain several sets of values, so called variables, to
represent data from quality control and process mon-
itoring for instance. Input events may change the
state and the variables of jobs. The history of a job’s
state is stored in a series of slots. Of course, all these
objects may have attributes. Besides these domain
specific objects, there are simple persistent data enti-
ties.

For the sake of simplicity, we will not go into de-
tail for all of these aspects. An extract from the ab-
stract domain model for MES containing only enti-
ties, jobs, variables and input events is depicted at
the top of Figure 1. For the implementation of a con-

crete MES, these abstract classes have to be specia-
lized.

As an example, we assume that there is only one
kind of job called ProductionJob that contains exact-
ly one variable PiecesCounter used to count the pro-
duced pieces. In order to calculate the produced
pieces, we need to know the number of currently
active prints in a mold (=pieces produced per cycle).
Additionally, we need input events to change the
number of active prints (PrintsEvent) and to enter a
number of cycles (CycleEvent). The respective
classes are represented at the bottom of Figure 1.

As manufacturing execution systems are typi-
cally installed between already existing IT-Systems
at the customer’s factory, the attributes of these con-
crete subclasses should be defined to be compatible
with the data from the existing systems. In order to
keep the implementation of the interfaces between
the MES and the surrounding software as simple as
possible, we propose a layered architecture with a
service layer as an outer layer. The services coordi-
nate the access to domain objects in persistent sto-
rage via a data mapper with the necessary calls to
services and object methods from the domain model
(Patterns from Fowler, 2003).

The service layer provides services for the crea-
tion and retrieval of jobs and input events respec-
tively (Figure 2). The definitions of these services
contain quite a lot of redundancy when compared to
the class diagram in Figure 1. They follow very
strict and simple patterns depending on the abstract
super-class, the name and attributes of the classes
and possible relations between classes. At every
modification we need to keep them consistent with
the data structures, which makes their implementa-
tion and maintenance a time-consuming, repetitive
and error-prone task. In fact, most of these services
can completely be generated with a little more in-
formation than provided by a standard UML class
diagram.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

318

ProductionJob createProductionJob(int jobNumber, int producedLots)
ProductionJob getProductionJobByJobNumber(int jobNumber)
Collection<ProductionJob> getProductionJobsByState(String state)
void createPrintsEventForProductionJobByJobNumber(int jobNumber, int prints)
Collection<PrintsEvent> getPrintsEventsByProductionJobJobNumber(int jobNumber, Interval p)

Figure 2: Some services offered by the JobManager and the InputEventManager in the service layer.

3 DOMAIN SPECIFIC MODEL

Universal modeling languages like the UML are
well suited to describe a given software solution.
Often, the models are simply abstract representations
of the code of an application, thus usually leaving
out functional details or spreading these details over
a lot of different types of models. Domain specific
modeling languages are designed to capture the es-
sence of a domain and the respective models are
abstractions of the real world problem to be solved.
From such models, we can generate all the abstract
models of a solution. In addition, it is often possible
to generate some functional details or even a com-
plete application. For illustration, we will now
present a possible domain specific model for our
example MES-System.

ProductionJob
jobNumber: Integer
producedLots: Integer

PiecesCounter
cycles: Integer
activePrints: Integer
pieces: Integer

«custom»
-update

«overwrite»Prints
activePrints: Integer

Cycle
cycles: Integer

Figure 3: Extract from an MES model corresponding to
the object model in the lower part of Figure 1.

In order to distinguish between the different class
hierarchies in Figure 1, we model the subclasses
using different representations. In Figure subclasses
of the InputEvent class are drawn as green rounded
rectangles, and subclasses of the Job class are mod-
eled as blue rectangles containing a white rectangle
for each owned subclass of the Variable class. The
attributes of the classes are modeled just like in
UML within the class representing shapes.

Additionally, the new model contains relations
between input events and variables that indicate if
and how an event updates a variable. In our exam-
ple, the Cycle event will update the PiecesCounter
variable in a custom way that is manually specified
in the generated code. The Prints event will over-

write the activePrints attribute of the PiecesCounter
variable with the value of its attribute.

It should be clear, that the domain model in the
lower part of Figure 1 and the services in Figure 2
can be generated consistently from this new model.
Besides, the update relations can be used to generate
the major part of the updateVariables() method of
the ProductionJob class together with the needed
supporting methods within the different input events.

Moreover, this new model contains less technical
and more domain specific details. Due to its intuitive
meaning, it is easier to read and understand for do-
main experts.

4 FROM A DOMAIN MODEL TO
A META-MODEL

After the presentation of a possible domain specific
model and its advantages, we need to formally de-
fine the corresponding meta-model.

As a first step, we basically just take the classes
of our abstract object oriented domain model in the
upper part of Figure 1 and put them as meta-classes
in the meta-model in Figure. This leaves us with the
meta-classes JobClass, VariableClass, InputE-
ventClass and EntityClass in our meta-model. In-
stances of these meta-classes represent subclasses of
the domain classes Job, Variable, InputEvent and
Entity. For instance, the blue rectangle representing
the ProductionJob in Figure is an instance of the
meta-class JobClass.

All these instances have a name (e.g. “Produc-
tionJob”) and may have attributes (e.g. jobNumber).
To capture these commonalities, we introduce the
super-(meta)class AbstractEntityClass. It has a
string-type attribute name to take the names and may
be associated to several PropertyClasses that
represent the attributes. For instance, ProductionJob
is an instance of JobClass, that is an AbstractEnti-
tyClass with name=”ProductionJob”. Its attribute
jobNumber with type “Integer” is an instance of
PropertyClass with name=“jobNumber” and
type=PropertyType::-Integer.

The additional attributes unique and searchable
of PropertyClass indicate whether an attribute of a

FROM AN ABSTRACT OBJECT-ORIENTED DOMAIN MODEL TO A META-MODEL FOR THE DOMAIN - Model
Driven Development of a Manufacturing Execution System

319

domain object can be used as an identifier for this
domain object and whether it can be used to lookup
and retrieve instances of this domain object. They
are used to control which accessing services are
generated. The service getProductionJobByJob-
Number() (Figure 2) for instance is generated be-
cause the attribute jobNumber of ProductionJob is
marked to be unique and searchable.

Finally, we would like to associate simple data
entities to our model elements in order to build nor-
malized data structures. Each such association in a
domain specific model is an instance of the ToEnti-
tyRelation meta-class. The attributes of this meta-
class are used to control the cardinalities and other
options of the associations.

As models need a single point of entry for further
treatment, all top-level elements of a model are
owned by a model-object of type MESDescription.

The only substantial addition to the meta-model
when compared to the abstract domain model is the
VariableUpdateRelation meta-class used to model
which input event updates which variable and how.

5 CONCLUSIONS

We presented a method to design a meta-model
starting from an abstract object-oriented domain
model. Models conforming to this meta-model can
be used to generate a concrete specialization of the
domain model together with supporting code, where
all elements are guaranteed to be consistent with one
another. Several important goals of model driven
software development such as higher productivity,
easier extensibility and better quality can be
achieved using this simple method. The method can
be easily applied by is easily understandable by faci-

litates model driven engineering for experienced
object-oriented developers.

REFERENCES

Atkinson, C., Kühne, T., 2003. Model-driven develop-
ment: a metamodeling foundation. In IEEE Software.
Vol. 20. No. 5. Sept-Oct 2003.

CHAMDE, 2008: 1st Int. Workshop on Challenges in
Model Driven Software Engineering. Sept 28th. Toul-
ouse. France. (see Posse, Rutle, and Mohagheghi)

Eclipse, 2009: Eclipse Modeling Project EMF,GMF, oaw:
http://www.eclipse.org/modeling/ (2nd april 2009)
http://www.openarchitectureware.org/ (2nd april 2009)

Evans, E., 2004. Domain-Driven Design Tackling Com-
plexity in the Heart of Software. Boston. Addison-
Wesley.

Fowler, M, 2003. Patterns of Enterprise Application Ar-
chitecture. Boston. Addison Wesley.

Kent, S., 2002. Model Driven Engineering. In Proceedings
of the Third International Conference on Integrated
Formal Methods. LNCS Vol. 2335, 2002.

Luoma, J., Kelly, S., Tolvanen, J-P., 2004. Defining Do-
main-Specific Modeling Languages: Collected Expe-
riences. In Proc. of the 4th OOPSLA Workshop on
Domain-Specific Modeling (DSM’04), Technical Re-
ports, TR-33, University of Jyväskylä, Finland 2004.

Mernik, M., Heering, J., Sloane, A. M., 2005. When and
How to Develop Domain-Specific Languages. In ACM
Computing Surveys. Vol. 37. Issue 4. Dec 2005.

Selic, B., 2008. Personal Reflections on Automation, Pro-
gramming Culture, and Model-based Software Engi-
neering. In Automated Software Engineering. Vol. 15.
Issue 3-4. Dec 2008.

Thörn, C., Gustafsson, T., 2008. Uptake of Modeling
Practices in SMEs Initial Results from an Industrial
Survey. In 2008 Int. Workshop on Models in Software
Engineering. Leipzig. Germany. 2008.

van Deursen, A., Klingt, P., Visser, J., 2000. Domain Spe-
cific Languages. In ACM SIGPLAN Notices. Vol. 35.
Issue 6. June 2000.

VariableClass EntityClassJobClass

+name : string
AbstractEntityClassMESDescription

InputEventClass

+cardinality : CardinalityType
+bidirectional : bool = false
+optional : bool = false

ToEntityRelation
+name : string
+type : PropertyType
+unique : bool
+searchable : bool

PropertyClass

+updateType : UpdateType
+customTypeName : string

VariableUpdateRelation

* *

*

**

*

* * *

Figure 4: Extract from the MES meta-model.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

320

