
ADAPTIVE SYNCHRONIZATION OF BUSINESS OBJECTS IN
SERVICE ORIENTED ARCHITECTURES

Michael Ameling, Bernhard Wolf
SAP Research CEC Dresden, Chemnitzer Str. 48, Dresden, Germany

Thomas Springer, Alexander Schill
Dresden University of Technology, Noethnitzer Str. 46, Dresden, Germany

Keywords: Application server, Business objects, Replication, Synchronization, Web Service, SOA.

Abstract: Business applications such as supply chain management and enterprise relationship management use business
objects (BOs) for data containers. The BOs are cached at the middle-tier since the applications are hosted
on application servers within a multi-tier architecture. The applications are replicated to achieve scalability
and fast local access for the clients. Therefore, replica control for the BOs is mandatory to fulfill consistency
requirements. However, following the service-oriented architecture the synchronization of BOs through stan-
dardized services is time consuming and can be optimized. In this paper, a solution is presented that allows
an adaptive synchronization for business objects based on profiling. A BO and system profiling enables an
efficient synchronization by an appropriate configuration of the replication strategy. A cost model based on an
experimental evaluation allows to find e.g., the trade-off of sending full BO copies or just delta synchronization
messages. The proposed solution is evaluated by temporal consistency constraints for BOs. Finally, an ini-
tial configuration of the replication strategy and an adaption during runtime is applicable based on constantly
updated profiles.

1 INTRODUCTION

Recent software solutions for mid-size companies
provide functionalities of typical business appli-
cations e.g., Customer Relationship Management
(CRM), Project Management (PM) and Supply Chain
Management (SCM). Applications are hosted typi-
cally on application servers within a multi-tier archi-
tecture which allows resource sharing and thin client
support. However, the number of clients can be very
high. High activity of users can lead to low perfor-
mance of the applications. Furthermore, clients can
be globally distributed which results in long latencies.

Replication is a solution to achieve scalability and
provide fast local access. Several instances of busi-
ness applications can be hosted at one application
server or might even be replicated across different
application servers. Since the replicated data within
the applications has to be up-to-date and consistent
replica control is strongly required.

Common solutions provide replication at the
database level where replica control has been inves-

tigated very well over the last two decades. However,
data containers in business applications are large and
complex business objects (BOs). The BOs provide
services to be read, created, modified and deleted.
They are involved in business processes and link to
other BOs. Especially, data belonging to one BO
is usually distributed over multiple database tables.
Read and write access is provided by services and al-
ways executed in the context of business operations.
A replication at database level has to operate on its
schema specifications only, without any assumption
about the application context the data is changed in.
This results in a loss of application knowledge and
the separate handling of information that belongs to-
gether. Furthermore, the application servers do not
necessary access the same database type at the per-
sistence layer. Therefore, the replication of BOs at
application level is aimed where the application con-
text can be considered and existing services can be
used. The synchronization of BOs is time consum-
ing since BOs are complex data containers to be pro-
cessed and their size leads to a large data volume to

91
Ameling M., Wolf B., Springer T. and Schill A. (2009).
ADAPTIVE SYNCHRONIZATION OF BUSINESS OBJECTS IN SERVICE ORIENTED ARCHITECTURES.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 91-98
DOI: 10.5220/0002253300910098
Copyright c© SciTePress

be transferred. A synchronization always takes place
from the changed BO at the primary (called sender) to
the replicated BO at the secondary (called receiver).
The replication strategy has to be carefully selected.
In example the trade-off either to send the full copy or
the delta of a changed BO has to be found. The two
cases are listed in Table 1. In Case I, copying the BO
at the sender and a replacement at receiver side is not
very time consuming. On the other hand, a message
including a full copy results in long transfer time. In
Case II, the sending of a delta means additional effort
at sender and receiver for processing the delta of the
BO and integrating the changes. However, this way
the message size can be reduced significantly, if just
a subset of the BO data has been changed. Therefore,
transfer time can be saved compared to case I.

Table 1: Trade-Off Full Copy vs. Delta.

Case Sender Network Receiver
I. copy full BO transfer copy replace BO
II. process delta transfer delta integrate delta

Our solution focuses on an adaptive synchroniza-
tion for BOs at the middle-tier to support an efficient
update process for replicated BOs. We consider a
primary copy approach where write access is only
granted to one master BO. We introduce a profiling
of BOs and a profiling of the system environment to
achieve an efficient synchronization process exploit-
ing knowledge about the BO structure and application
level context of change. In order to achieve efficiency
we provide a cost model based on a BO model used for
profiling of BOs and a system model used for profiling
of the system environment. In Fig. 1 the conceptual
steps of our approach are depicted. The first step (1)
is the profiling of BOs based on the BO model. BO
instances are profiled individually. The second step
(2) is the determination of system parameters. The
profile of each system is stored persistently as well.
The third step (3) is the execution of the cost model
where the BO profiles and system profiles are used to
determine the costs for the synchronization processes
based on our cost model. In step four (4) the result
of step three can be used to choose and configure the
replication strategy to achieve an efficient replication
process. Since BOs are changing, BO and system
profiles have to be updated and replication parameters
have to be adjusted accordingly. Step (5) performs an
adaptation of replication parameters during runtime.

The rest of the paper is organized as follows: In
Section 2 the synchronization of BOs in SOA is de-
scribed in detail. It is followed by related work in
Section 3. Afterwards, we follow the conceptual steps

Figure 1: System Support for Efficient Synchronization of
Business Objects.

in separate sections as depicted in Fig. 1: profiling of
BOs in Section 4, determination of system parameters
in Section 5, execution of cost model in Section 6 and
the selection of the replication strategy in Section 7.
In Section 8 a short conclusion and outlook is given.

2 SYNCHRONIZATION OF
BUSINESS OBJECTS IN SOA

According to a multi-tier architecture the application
logic is executed at the middle-tier. At this tier, BOs
are instantiated and cached for local access and ef-
ficient processing. This set-up allows implement-
ing agents watching BOs for changes. A change
pointer which references changed BOs is advisable
since agents slow down the response time for clients.
However, synchronization agents at sender and re-
ceiver include the replica control observing the BOs
for changes, assembling synchronization messages
and integrating the changes. Following a service-
oriented architecture (SOA) the business logic of the
applications is exposed through well defined inter-
faces. The same applies for replication processes such
as the synchronization of BOs. At application level
Web Services (W3C, 2002) are used to send synchro-
nization messages via the network.

In widely distributed systems the lazy primary
copy approach is often used (Ameling et al., 2008).
Primary copy performs well for read intensive ap-
plications and simplifies concurrency control (Gray
et al., 1996). Modifications can be performed on BOs
at the primary (master) only. Secondaries have to pass
changes to the primary. The goal is to keep all BOs
consistent. We assume that all BOs at secondaries
have the same state. Therefore, the same synchroniza-
tion message is sent to all secondaries (receivers).

Summarized, the synchronization of BOs in SOA
can be distinguished in processes taking place at the

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

92

Figure 2: Synchronization Process.

sender, the transport of the synchronization message
and the processes taking place at the receiver. A con-
firmation message is not mandatory within an opti-
mistic approach and therefore not considered. In Fig.
2 a time based division in sender (TS), network (TN)
and receiver (TR) is depicted. TS concludes the time
for all processes at the sender. It starts once the trans-
action of a client is committed and the BO B was
changed to BO B∗. It ends when the synchronization
message is assembled and passed to the infrastructure.
TN concludes the time for the transport of the synchro-
nization message. Several receivers can be addressed
in parallel. Therefore, the longest transport time is
relevant to reach consistency of the complete system.
TR concludes the time for processing the message and
updating the BO B′ to (B∗)′ at one receiver. The syn-
chronization process is finished when all replicas have
the same state as the primary.

3 RELATED WORK

The synchronization of BOs requires an understand-
ing of replica control at application level. We took
advantage of the replication strategies well known
for databases ((Pacitti et al., 1999), (Pedone et al.,
2003), (Plattner et al., 2007)). Approaches imple-
menting a replication at the middle-tier are Middel-
R (Marta Pati et al., 2005), Ganymed (Plattner and
Alonso, 2004) and CORBA ((Othman et al., 2001),
(Killijian and Fabre, 2000)) but mainly focus on one
single algorithm or the replicated application servers
share one single database. The introduced primary
copy approach is used in research solutions (Felber
and Narasimhan, 2002), (Barga et al., 2002) as well
as industrial solutions such as JBoss and WebSphere
since it performs well for read intensive applications.
Most approaches are primarily designed to achieve
fault-tolerance ((Wu and Kemme, 2005)). The only
approaches mainly focusing on the replication of BOs
are (Salas et al., 2006) and (Perez-Sorrosal et al.,
2007) but use specific algorithms. In (Ameling et al.,
2009) a cost model for an efficient BO replication was
introduced which is included in the proposed solution.
Furthermore, a framework for simulating the config-
uration of different replication strategies was intro-
duced in (Ameling et al., 2009).

4 PROFILING BUSINESS
OBJECTS

The schema of a BO defines which elements belong
to a BO, where they are placed and which elements
are mandatory or optional. The choice of optional el-
ements and cardinalities do not allow determining BO
structure. In the following a BO model is introduced
that allows a profiling of the structure and further pa-
rameters of BO instances.

4.1 Business Object Model

The BO model defines the parameters used for pro-
filing BOs. It covers the parameters that influence
the synchronization process. In combination with the
cost model a recommendation for the configuration
of replication strategies can be provided. In (Ameling
et al., 2009) we introduced a cost model for an ef-
ficient BO replication based on the structure of BOs.
Therefore, we defined a structure model for BOs. The
following BO model includes the structure model as
one parameter set. Further parameters are complete-
ness, access ratio and occurrences of BOs. An intro-
duction of all BO model parameters follows.

The structure of BOs allows to determine process-
ing times for BOs at sender and receiver side. A de-
termination on processing times based on the size of
BOs only is not possible since the structure has sig-
nificant influence on the overall synchronization time
(Ameling et al., 2009). The structure model includes
the number of elements, their size, and their position
within the BO. Therefore, TS and TR based on the data
of synchronization messages can be provided.

The completeness expresses the use of mandatory
elements according to the schema. Therefore, empty
values and non used elements can be identified. Since
optional elements and cardinalities increase the use
of elements an additional value for completeness in-
cluding optional elements and cardinalities has to be
profiled as well.

The access to BOs by client applications plays a
significant role for the synchronization process. Read
access affects priority of synchronization of BOs. A
small read ratio might be prioritized as low. Synchro-
nization of often read BOs can be defined with higher
priority. On the other hand, the write ratio has in-
fluence on the amount of synchronization messages.
Each write implicates a change which results in a need
for synchronization.

The value occurrences indicates the number of
BO instances existing within a system. It is the
only value not related to one BO instance but to BO

ADAPTIVE SYNCHRONIZATION OF BUSINESS OBJECTS IN SERVICE ORIENTED ARCHITECTURES

93

classes. It has influence on e.g., the number of mes-
sages to expect.

Finally, all the introduced parameters compose the
BO model which is the foundation for BO profiling.
Each profile of a BO holds all parameters of the BO
model. An example profile is given in Table 2.

4.2 Profiling of Business Object
Instances

BO instances are profiled to get the structure model
parameters. The other parameters of the BO model
are only determinable from BO instances as well.

In Table 2 an example of a Sales Order profile
is given. A selection of structure model parame-
ters (Ameling et al., 2009) are listed: N - number of
nodes, L - number of levels, K - number of attributes,
Λ - maximum number of positions, W - size of all at-
tributes in bytes, V - total size of leaf nodes, F - num-
ber of links, and a selection of Nl - number of nodes
at level l. Furthermore, values for the size of the com-
plete BO, the completeness (incl. optional elements
and cardinalities in parentheses), read ratio, write ra-
tio and occurrences are listed.

Table 2: Example Sales Order Profile.

STRUCTURE

N L K Λ W V F ...

865 27 1,345 27 899,455 13 12 ...

N1 N2 N3 N4 N5 N6 N7 ...

3 12 43 23 44 33 12 23
SIZE 380.233 Byte

COMPLETENESS 63% (391%)

ACCESS

read ratio 3.78 h−1 write ratio 1.18 h−1

OCCURRENCES 589,333

The profiling of the BO’s structure can be done for
all BOs right after the instantiation of the BO. During
runtime profiles have to be updated when BOs were
changed. The time for updating profiles can be ig-
nored for write operations. The Algorithm 1 describes
how to create a structure profile for a node. Algo-
rithm can be used iteratively to get a complete struc-
ture profile of a node. The parameters for number of
nodes (N), levels (L), attributes (K) and links (F) are
collected. The size of attributes (W) and values (V)
are determined as well. Furthermore, the parameters
for certain nodes, positions and levels have to be col-
lected. Therefore, the indexes l (level), n (node) and
λ (position in a node) are used.

Algorithm 1: getProfile(nodes, level) determi-
nation of structure profile parameters for a node.

Require: node n, level l
1: N ++;
2: Nl ++;
3: if node contains attributes then
4: λ = 0;
5: for all attribute k do
6: K ++; Kl ++; Kn ++; Kλ ++; λ++;
7: W = W +W (k); Wl = Wl +W (k);
8: Wn = Wn +W (k); Wn,λ = Wn,λ +W (k);
9: end for

10: end if
11: if node contains sub nodes then
12: if L < l +1 then
13: L++;
14: end if
15: for all sub node u do
16: getPro f ile(u, l +1);
17: end for
18: else if node has value then
19: V = V +V (v); Vl = Vl +V (v); Vn = Vn +V (v);
20: if value is a link then
21: F ++; Fl ++;
22: end if
23: end if

The update of the structure profile works similarly.
Adding and deleting of elements increases and de-
creases parameter values. Modification of elements
only affects the parameters for size of elements. The
read ratio is logged during system operation. The
write ratio can be determined from timestamps and
versioning of BOs. We assume that the schema of a
BO is available. Therefore, the completeness can be
determined with a comparison of the structure profile
and the BO schema.

4.3 Business Object Analysis Tool

The profiling of BOs can be done within the applica-
tion or as a loosely coupled service. We developed a
Business Object Analysis Tool (BOAT) that provides
profiling as a Web Services. BOs can be sent as XML
documents in the request. The response is a BO pro-
file.

BOAT allows to group profiles. Therefore, it is
possible to make general assumptions about BOs. In
example profiles can be grouped by a BO type or even
for a specific domain. A user interface providing chart
views is implemented. The schemas of BOs are stored
in a repository to allow a comparison and to determine
the completeness.

In Fig. 3 the scenario for profiling BOs from
an application including the architecture of BOAT
is depicted. The applications allow requesting BOs
through services (a) (1). The services (b) provided

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

94

Figure 3: Business Object Analysis Tool.

by the BOs (B1, B2, B3) themself are used to get full
copies (2) and finally return the BO instances. The
BOs can be stored locally at any application. BOAT
provides the Web Service (c) to profile BOs (4). Once
the Web Service is called the BO document is pro-
cessed (5) and an analysis is done (6). The result in
form of a profile is stored persistently (7). The re-
sponse of the Web Service (c) includes the profile.
BOAT provides a user interfaces which allows e.g.,
a statistical analysis of profiles as mentioned above.

5 DETERMINATION OF SYSTEM
PARAMETERS

5.1 System Model

The system model provides the parameters describ-
ing the costs for a single process for synchronization.
In Fig. 2 we already divided a BOs synchronization
into processes at sender, network and receivers. For
simplification we assume that each receiver behaves
equally.

At the sender the parameters for identifying
changes, parse the BO and message assembling are
crucial. The first parameter describes the time an
agent needs to compare a new version of a BO with
the previous version of that BO until all changes are
identified. The parsing of the BO can be determined
by single parameters for processing each element of a
BO. The parameters for the processing time for a node
a, of an attribute b, of a Byte of an attribute value
c, of a Byte of an node value d and for resolving a
link e are used. Further parameters are for identify-
ing changes and message assembling e.g., creation of
a SOAP message.

For the transport process we use the bandwidth
BW and latency LW as system model parameters as
introduced in (Ameling et al., 2008). Additionally
the replication factor RF is one parameter which de-
scribes the number of receivers to be addressed.

At the receiver the parameters for the processing
time of the message has to be defined. Parameters for
the parsing of the received synchronization message

are the processing time for a node, attribute, etc. Since
changes have to be integrated the parameter for this
step has to be defined as well.

A higher granularity for the processes at sender
and receiver side exists but is not focus in this paper.
Additional processes during synchronization require
further parameters. In example a process for security
check can be added which requires an additional pa-
rameter. However, since the single process steps for a
synchronization are executed sequentially parameters
can be added easily.

5.2 Parameter Determination

The parameter determination to provide a system pro-
file can be done before operational mode. A profile in-
cludes the costs for processes at sender and receiver.
The transport parameters are included as well.

The determination of the parsing parameters was
done in an experimental evaluation. In Table 3 an ex-
ample of a system profile with a selection of parame-
ters is given. Synchronization process steps at sender
and receiver side have to be measured during execu-
tion. The bandwidth and latency for transportation of
synchronization messages have to be determined by
sending normalized messages.

Table 3: Example System Profile.

SENDER

al in ns bλ in ns c in ms d in ms e in ns
43.53 l 47.596 λ 106.24 145.87 90.684

TRANSPORT

BW in MBit/s LW in ns RF

5.443 127 12

RECEIVER

al in ns bλ in ns c in ms d in ms e in ns
21.765 l 23.798 λ 58.119 72.934 45.342

In the sender profile the parameters for the pro-
cessing time of a node in dependency of the level al ,
the processing time for an attribute in dependency of
the position within a node bλ and the other determined
parameters are listed. We determined the parameters
by measuring BO documents that were individually
created. This way, we were able to solely modify the
number of one type of element. Afterwards, we mea-
sured the processing time of each created BO doc-
ument and were able to determine each parameter.
Since different parsers are possible a comparison of
different implementations parsers was done. The im-
plementation also affects the dependency of the pro-
cessing time on the structure. The listed result just

ADAPTIVE SYNCHRONIZATION OF BUSINESS OBJECTS IN SERVICE ORIENTED ARCHITECTURES

95

Figure 4: System Profiling.

present one set of the results but validate that we are
able to determine the parameters with our solution.

The determination of the system profile can be
done with an experimental setup which is detailed de-
scribed in (Ameling et al., 2009). In Fig. 4 the mea-
surements for increasing the number of nodes f (al),
the number of attributes f (bλ), the size of attribute
values f (c), and size of node f (d) are depicted. The
intersection with the ordinate is the value for pro-
cessing a BO without content. The method of least
squares allows determining functions out of the dis-
crete measurements. In this way e.g., a function for
the processing time of a node in dependency of the
level f (al) can be determined. The function f (c)
shows a linear increase for an linear increase of the
attribute value. The slope exactly reflects the process-
ing time of a Byte of an attribute value (parameter c).
In Table 3 the results of the experiments for the pa-
rameter determination are listed.

6 EXECUTION OF COST MODEL

In the previous sections the BO and the system model
were introduced. The models are used for profiling
BOs and the systems used in the replicated environ-
ment. In (Ameling et al., 2009) the part of the cost
model for determining the parsing time of BOs was
introduced. It uses the structure parameters of the BO
profile. The following equation enables to calculate
the processing at the sender side:

TS = To f f set +
L
∑

l=0
(Nl ×al)+

Kn
∑

λ=1
(Kλ×bλ)+W × c+V ×d +F× e

The defined cost model presents a sum of the time
needed for all process steps for one synchronization
of a changed BO. The lazy primary copy approach
for replication is used. Therefore, we consider the
synchronization from a master to the replicas. How-
ever, our cost model does also apply for the use of

other replication strategies. In example, a termina-
tion strategy does require an additional confirmation
message resulting in additional message assembling
at receiver side, an additional transport of that mes-
sage and a processing at the sender. A switch to the
update every approach can be covered (Gray et al.,
1996). Additional process steps can be easily inserted
into the sequence of synchronization process steps. A
comparison between different replication strategies is
planned for future work. The current focus is the con-
figuration of the currently used replication strategy.

The validation of the cost model was done ex-
perimentally with the use of dumps of BOs. BOAT
was used to do a profiling of BOs. To avoid an im-
plementation within a live system the replication en-
vironment introduced in (Ameling et al., 2009) was
used. Therefore, we were able to determine process-
ing time of BOs and to simulate a synchronization of
changed BOs. The determination of read and write
ratio usually requires a comprehensive observation of
representative applications.

7 SELECTION OF REPLICATION
STRATEGY

The cost model including profiling is used to support
an efficient configuration of the synchronization pro-
cess. The following two examples for the selection of
the replication strategy are given: the sending of a full
copy of a BO verses the sending of the delta (amount
of changes between two different BO versions) and
the bulking of BO changes. Both strategies can be
combined.

7.1 Full Copy vs. Delta

To reach more efficiency the time efforts for case
I and case II have to to be compared (Tab. 1) to
choose the most beneficial. Therefore, the process-
ing times TP and the transfer times TN for both
cases have to be determined. The processing time
TP summarizes the process steps of the synchroniza-
tion at the sender (TS) and at receiver (TR). All
values for case I (TP(f ull),TN(f ull)) and case II
(TP(delta),TN(delta)) can be determined with the in-
troduced cost model based on profiling.

The decision either to use case I or case II de-
pends on the trade-off between the time that can
be saved at transfer (∆TN) and the additional effort
for processing (∆TP). In Fig. 5 a method to de-
scribe the trade-off and to find the break-even-point
to switch between the replication strategy is depicted.
The method considers the relative size of the delta

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

96

Figure 5: Decision Model.

compared to the full size of the BO. The function
∆TP(delta) defines the processing time that can be
saved sending a full copy (case I) where ∆TP(delta) =
TP(delta)− TP(f ull). The function ∆TN(delta) de-
fines the transfer time that can be saved send-
ing a delta message (case II) where ∆TN(delta) =
TN(f ull)−TN(delta). For simplification we assume
that the used BO has a fixed size. Therefore, both
functions depend only on the size of the delta since
the size of a full copy is constant if no additional ele-
ments are added to the BO (TN(f ull) = const.).

The function ∆TN(delta) decreases with a larger
delta size since less transfer time can be saved sending
a delta message. The intersection with the ordinate is
the transfer time of a full copy ∆TN(0) = TN(f ull). It
equals the maximum transfer time that can be saved.
No time can be saved when the delta equals a full
copy (∆TN(100%) = 0). The function ∆TP(delta)
lightly increases since a larger delta results in more
effort for processing in case II. The intersection with
the ordinate is the processing time for an empty
delta message (TP(delta)). Finally, the intersection
of the functions ∆TN(delta) and ∆TP(delta) equals
the delta value to switch between the two cases. If
the saved transfer time ∆TN(delta) sending a delta
exceeds the saved additional effort ∆TP(delta) send-
ing a full copy then case II is more efficient (case II:
∆TN(delta) > ∆TP(delta) - left side). Visa versa case
I is used if ∆TP(delta) exceeds ∆TN(delta) (case I:
∆TP(delta)≥ ∆TN(delta) - right side).

The previous example was given for one BO with
a fixed size. The method to find the trade-off con-
siders the relative delta. The structure of the BO was
fixed and is reflected in the cost model. Let’s assume
another BO with a smaller size is changed. For sim-
plification the function for the saved processing time
∆TP(delta) does not change due to e.g., more com-
plex structure. The smaller size of the BO results
in a decrease of TN(f ull). The function ∆TN(delta)
is below the previous function (gray line in Fig. 5).
Finally, the intersections of the functions ∆TP(delta)
and ∆TN(delta) moves to a smaller delta resulting in
an earlier switch from case II to case I. The intro-

duced cost model and the profiling allow predicting
both functions for any BO. Finally, we are able to de-
cide either to send immediately a full copy or a delta
message for each BO based on the size of the delta
and the structure of the BO.

7.2 Bulking

A high write ratio of BOs causes frequent synchro-
nization messages which can result in high network
traffic. Consistency constraints allow that not syn-
chronized BOs are still valid for e.g., a certain amount
of time. Therefore, several changes can be bundled in
one message. The so called bulking enables to reduce
the traffic and the overhead that is needed for each
single message. The cost model allows predicting the
time needed for a synchronization process. Therefore,
we are able to determine the latest possible point in
time to send the synchronization message for a certain
change. Currently bulking of delta messages contain-
ing independent changes is considered, i.e. no change
will be overwritten. Full-copy update messages and
overlapping changes are already examined but not de-
scribed in this paper.

In (Lenz, 1996) coherency predicates for consis-
tency are introduced. These are version distance,
value divergence and temporal distance. The predi-
cates define if a BO replica is still valid after a mas-
ter was changed. The distance between the BO ver-
sions, the differences of the BO content or just a cer-
tain amount of time must not exceeded. The bulk-
ing of changes results in a delay for synchronization
messages. Therefore, the temporal distance ∆t for the
replicas is crucial. It must not be exceeded to fulfill
the consistency constraints.

For simplification we assume that ∆t is constant
for all BOs. The temporal distance defines the maxi-
mum time until a change of a BO has to be incorpo-
rated at all replicas. In Fig. 6 three changes of a BO
at random time are depicted. The version of the BO
changes from V0 to V1 to V2 to V3. The changes are
committed at the times t1, t2 and t3. Once a change
was committed the temporal distance for each change
must not exceed t1 + ∆t for V1, t2 + ∆t for V2, and
t3 +∆t for V3.

The assembling and disassembling of the message
header and the transfer of the overhead is necessary
for each message and takes a fixed amount of time
TO f f set (called offset). In Fig. 6 the bulking of the
changes of V1 and V2 is depicted. Both changes are
included in one synchronization message. Due to the
temporal consistency restriction the time t1 +∆t must
not exceeded. Therefore, we have to consider the
time that is needed to process and transfer the mes-

ADAPTIVE SYNCHRONIZATION OF BUSINESS OBJECTS IN SERVICE ORIENTED ARCHITECTURES

97

Figure 6: Delay of Synchronization Message.

sage. Additionally to TO f f set the times for processing
the synchronization message of the first change TP,1 as
well as the transfer time TN,1 are necessary. The times
for the second change are TP,2 and TN,2. An additional
offset for the second change is not necessary because
it is sent within the same synchronization message.
All values can be determined with the help of the cost
model. The synchronization message can sent at the
latest at (t1+∆t)−(TO f f set +TP,1 +TN,1 +TP,2 +TN,2)
which equals t4.

In the example, the third change at t3 cannot be
included in the same synchronization message. The
sum of all processing times TP,1, TP,2, TP,3, all transfer
times TN,1, TN,2, TN,3 and the offset exceeds the time
left between t3 and t1 +∆t. Bulking all three changes
in on synchronization message violates the temporal
distance ∆t for the first change V1.

8 CONCLUSIONS

This paper discusses an approach for adaptive syn-
chronization of business objects replicated at the
middle-tier. We introduced a profiling for BOs and
system parameters. Profiling allows determining the
processing and transfer costs for the synchronization.
The sending of full copies of BOs or delta synchro-
nization messages as well as temporal consistency
constraints are considered. A cost model based on an
experimental evaluation allows configuring the used
replication strategy to achieve an efficient synchro-
nization. A validation was done by profiling real BO
instances and the implementation of a simulation en-
vironment. The introduced approach of adaptive syn-
chronization is applicable for an initial configuration
of the replication strategy for BOs and an adoption
during runtime.

REFERENCES

Ameling, M., Roy, M., and Kemme, B. (2008). Replication
in service oriented architectures. In Helfert, M., editor,
ICSOFT, pages 103–110. INSTICC Press.

Ameling, M., Wolf, B., Armendariz-Inigo, J. E., and Schill,

A. (2009). A cost model for efficient business object
replication. In AINAW ’09 (to appear).

Barga, R., Lomet, D., and Weikum, G. (2002). Recov-
ery guarantees for general multi-tier applications. In
ICDE.

Felber, P. and Narasimhan, P. (2002). Reconciling replica-
tion and transactions for the end-to-end reliability of
CORBA applications. In (DOA).

Gray, J., Helland, P., O’Neil, P., and Shasha, D. (1996). The
dangers of replication and a solution. In SIGMOD,
pages 173–182.

Killijian, M.-O. and Fabre, J. C. (2000). Implementing a
reflective fault-tolerant CORBA system. In SRDS.

Lenz, R. (1996). Adaptive distributed data management
with weak consistent replicated data. In SAC ’96,
pages 178–185, New York, NY, USA. ACM.

Marta Pati n.-M., Jiménez-Peris, R., Kemme, B., and
Alonso, G. (2005). Middle-r: Consistent database
replication at the middleware level. ACM Trans. Com-
put. Syst., 23:375 – 423.

Othman, O., O’Ryan, C., and Schmidt, D. C. (2001).
Strategies for CORBA middleware-based load bal-
ancing. In IEEE Distributed Systems Online.
http://www.computer.org/dsonline.

Pacitti, E., Minet, P., and Simon, E. (1999). Fast algo-
rithm for maintaining replica consistency in lazy mas-
ter replicated databases. In VLDB, pages 126–137.

Pedone, F., Guerraoui, R., and Schiper, A. (2003). The
database state machine approach. Distributed and
Parallel Databases, 14(1):71–98.

Perez-Sorrosal, F., Patiño-Martı́nez, M., Jiménez-Peris, R.,
and Kemme, B. (2007). Consistent and scalable cache
replication for multi-tier j2ee applications. In Middle-
ware.

Plattner, C. and Alonso, G. (2004). Ganymed: Scalable
replication for transactional web applications. Mid-
dleware, pages 155 – 174.

Plattner, C., Alonso, G., and T.-Özsu, M. (2007). Extending
DBMSs with satellite databases. The VLDB Journal.

Salas, J., Perez-Sorrosal, F., Marta Pati n.-M., and Jiménez-
Peris, R. (2006). Ws-replication: a framework for
highly available web services. WWW.

W3C (2002). Web services. http://www.w3.org/2002/ws/.

Wu, H. and Kemme, B. (2005). Fault-tolerance for stateful
application servers in the presence of advanced trans-
actions patterns. In (SRDS).

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

98

