
DECOUPLING CONFIGURATION AND DEPLOYMENT
PROCEDURES BY ASPECT-ORIENTED POLICIES

Kurt Englmeier
Schmalkalden University of Applied Science, Faculty of Computer Science, Am Schwimmbad, Schmalkalden, Germany

Ricki Koinig
bwin Entertainment AG, Vienna, Austria

Keywords: Configuration and deployment management, Model-driven-design, Domain-specific languages, Aspect-
oriented metamodels.

Abstract: Model-driven development (MDD) has the potential to increase the level of cooperation in software design
and adaptation between stakeholders from IT and business domains. Clear and understandable models can
raise transparency of business-relevant key characteristics of software.
Our approach addresses a domain-specific configuration language (DSCL) for the dynamic composition and
adaptation of applications through configuration information. We concentrate on model representations that
reflect individually tailored compositions of generic application modules and their adaptations to individual
business needs. Our approach fosters the collaboration in defining application models on two different
levels of abstraction. High-level model concepts focus on the definition of process aspects across modules.
Low-level concepts cover the complementary role of definition and adaptation of low-level processes that
are abstracted away in the high-level concepts.

1 INTRODUCTION

Model-driven development (MDD) (Stahl and
Voelter, 2006) fosters increased responsiveness to
changes through more expressiveness and
transparency in application design and
development. Both factors help to combine more
effectively IT professionalism and domain expertise.
The objective is that human key actors with domain-
specific knowledge participate more actively in
software development. Domain-specific languages
(DSL) trade generality for expressiveness (Mernik et
al., 2005) and make thus feature and process
specifics more transparent to non-IT professionals.
More transparency, in general, means greater
visibility of business relevant software
characteristics to application stakeholders.

A generic platform for a specific family of
portals (for gaming portals, for instance) consists of
a small number of application modules. Changing
the composition and configuration of these modules
is an easy, albeit limited, but nevertheless powerful
way to adapt systems and software behavior to

individual needs. More important, it enables
organizational decoupling of software development
tasks. Organizational decoupling has a clear
objective: the platform provider produces a set of
generic platforms. The portal providers specify them
according to their individual needs, independently
from the platform provider. (Anand et al., 2005;
Gold et al., 2004) Portal models, as far as they affect
individual businesses, are expressed in a
representation language that both, the IT experts of
the platform provider and the domain experts of the
portal provider understand. Our DSCL is inclined to
the Configuration Description Language
Specifications framework (Bell et al., 2009;
Goldsack et al., 2009). The DSCL conceives
deployment and configuration (D&C) procedures as
modular, self-describing, reusable and tailorable
process components (D’Souza and Wills, 1998;
Szyperski, 1997) that are combined by descriptions
reflecting individual business process aspects
(Siobhàn and Baniassad, 2005; Kiczales et al.,
1997).

The standardized deployment and configuration

321
Englmeier K. and Koinig R. (2009).
DECOUPLING CONFIGURATION AND DEPLOYMENT PROCEDURES BY ASPECT-ORIENTED POLICIES.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 321-324
DOI: 10.5220/0002255303210324
Copyright c© SciTePress

language emerges from experiences in configuration
and deployment management at bwin
Entertainment1. Chapter 2 outlines the principles of
the DSCL and work related to our approach. Chapter
3 presents the architectural context. In chapter 4, we
present the specification of DSCL at different levels
of abstraction. Chapter 5 concludes the paper.

2 METAMODELS FOR
DEPLOYMENT AND
CONFIGURATION ASPECTS

D&C information describes
• deployment processes controlling the

composition of generic modules and
• the specification of object states within the

modules
in accordance to specific business needs.

Metamodeling is a key aspect of MDD.
(Cuadrado and Molina, 2007) A deployment and
configuration metamodel provides abstract
descriptions of deployment procedures, environment
configurations and parameter injection. Deployment
descriptions ensure the correct deployment of the
application modules and their correct configuration
in line with the requirements of the target platform.
Parameter injection addresses the modification of
object states at release of the services or during run-
time. Injection comprises the two phases, namely
introspection (retrieval of information about the
state of an object) and intercession (modification of
object state properties). Low-level instructions
contain object state templates being completed
during deployment or at run-time (see figure 1).
From a different angle, metamodels as well as low-
level instructions can be considered as process
policies on different levels of abstraction.

As figure 1 shows, the platform provider pre-
defines metamodels and low-level instructions.
Many of these definitions thus contain templates that
are specified later according to the specifics of the
portal provider's IT environment and business needs.

1 bwin Entertainment AG produces platforms for game portal

providers, primarily gaming platforms.

Figure 1: Metamodel descriptions are further specified by
low-level instructions. During deployment and later, at
run-time, the object states (and partly the low-level
instructions) are further specified.

3 ARCHITECTURAL ASPECTS

Composition of the application release package and
management of the delivery process are thus
platform and content dependent. The deployment
target usually comprises a pre-allocated cluster of
machines. The cluster can be differentiated into
layers along architectural or functional aspects, like
a layer for database applications, web front-end
applications, back-end applications, etc. A life-cycle
manager organizes the deployment of the services to
one or more specified host platforms (or host layers).
It interacts with a deployment portal on the host
layer in order to coordinate the deployment. This
portal constitutes a service endpoint that is addressed
by an Endpoint Reference (EPR). It is thus called
portal EPR.

The life-cycle manager starts the instantiation of
the applications on the deployment target by sending
a request to the portal EPR for creating the
application instance. The request contains
application composition description and
configuration information. The portal EPR returns to
the life-cycle manager one or more system EPRs,
that inform about operational characteristics of the
host systems or layers.

Afterwards it routes an initialization request to
the respective system EPRs. Once all affected
applications completed this request, they are
initialized and the life-cycle manager moves forward
to the next life-cycle stage that addresses procedures
to put the system into operation (Loughran 2005).
The life-cycle manager communicates with an API
characterized by the delivery server and the

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

322

deployment model it supports. Introspection reflects
the actual state of the application objects. For this
purpose, it queries the corresponding object
property. In turn, the manager can also set properties
by sending notifications. It is expected that the
deployed application instances communicate with
the life-cycle manager throughout their agreed
communication channel. They send notification
messages to the manager and receive messages
through their respective EPR.

4 SPECIFICATION OF THE
DSCL

The DSCL consists of two complementary types of
semantics: an ontology represent high-level
concepts that correspond to the metamodel (see
figure 2). It has its focus more on definition and
control of processes aspects on a coarse-grained
level. Low-level concepts address instructions that
extend and detail high-level concepts (see figure 3).
Definitions of object state properties base on plain
XML (see figure 4). The ontology concepts are the
building blocks of the D&C metamodels. Each
ontology component is further specified by
extensions that refer to low-level instructions. The
high-level concept for gracefully shutting down a
server instance refers to the generic low-level policy
“timePolicy” that is further specified, for instance, in
the low-level policy “shutdownTimePolicy”.

Figure 2: Part of the metamodel describing a D&C
procedure to start and stop server instances. This
description is further detailed by low-level instructions.

For semantics representing low-level concepts
we use the SmartFrog framework (Goldsack et al.,
2009). SmartFrog organizes representations of
configuration components in a hierarchical structure
with an overlaid naming convention. Figure 3 shows

component representations that refer to a template
used for the specification of a server instance and for
a time policy for shutdown operations.

Figure 3: Descriptions of Low-level instructions using
SmartFrog.

Figure 4: During deployment or at run-time, object state
properties, defined in the templates, are further specified
with values specific to the target environment. The snippet
here lists the (sub)set of (all available) functions of the
accounting application being enabled at this particular
server instance.

Besides decoupling and reusability, an
outstanding benefit of the language is its simple
semantics of extension that is also reflected in our
example. Decomposition of deployment procedures
is in particular important when specific D&C aspects
are better addressed by encapsulated components at
different levels of abstraction. Instead of hard-wiring
them repeatedly in the different deployment
procedures we advocate their separate management
by the respective competence team and their loosely
coupling in a cross-organizational management of

DECOUPLING CONFIGURATION AND DEPLOYMENT PROCEDURES BY ASPECT-ORIENTED POLICIES

323

D&C processes.
The first snippet in figure 3 shows configuration

instructions for a portal server instance. The port
number will be assigned at run-time, but the level of
logging information is already initialized. Further
on, two procedures for shutdown and start-up are
specified. The server’s URL, its port, and the
corresponding command strings (“cmd”) for the start
and stop operations are assigned at run-time.
Maximum duration for start-up and shutdown is set
six and four time units, respectively. These two
parameters are pre-defined in advance. The snippet
thus shows an object state template with pre-defined
object properties. The second snippet shows a policy
that defines time restrictions and preferences for
process handling. Naming conventions ensure that
the policy is related to the component description
when the life-cycle manager initiates the server,
starts it, or stops it.

5 CONCLUSIONS

Reusability, tailorability, scalability, and loosely
coupling of functional components are objectives
barely addressed in current deployment and
configuration models and tools. Complexity of
applications and the increasing business agility calls
for more adaptability and flexibility in all phases of
the application development life-cycle (ADLC). We
add intensified cross-competence collaboration to
these objectives. In many phases, software
development can benefit from the active presence of
domain knowledge and expertise. We want to endow
our customers with the capability to adapt their
portals to their individual needs without resorting to
IT personnel from the platform provider.

The active role of the customers in D&C opens
new business models for platform providers. They
concentrate on the development of generic high-
performance platforms whilst serving a probably
broader market for a particular application family.
For the platform providers, the cross-competence
collaboration translates into faster adaptation of their
products to changing requirements. Eventually, it
further translates into shorter time-to-market for new
products or for existing products on new markets.

REFERENCES

Anand, S.; Padmanabhuni, S.; Ganesh, J., 2005.
Perspectives on service oriented architecture.
Proceedings of the 2005 IEEE International

Conference on Services Computing (SCC'05) Vol-2,
Orlando (FL), USA, p. xvii.

Bell, D.; Kojo, T.; Goldsack, P., Loughran, S.; Milojicic,
D.; Schaefer, S.; Tatemura, J.; Toft, P., 2009.
Configuration Description, Deployment, and Lifecycle
Management (CDDLM) Foundation Document.
Published at www.ggf.org/documents/ GFD.50.pdf,
retrieved March 14, 2009.

Cuadrado, J. S.; Molina, J. G., 2007. Building Domain-
Specific Languages for Model-Driven Development.
IEEE Software 24(5). pp. 48-55.

D’Souza, D.F. and Wills, A., 1998. Objects, Components
and Frameworks with UML: The Catalysis Approach,
Addison-Wesley, Upper Saddle River.

Gold N.; Mohan, A.; Knight, C.; Munro, M., 2004.
Understanding service-oriented software, IEEE
Software 21(2). pp. 71-77.

Goldsack, P.; Guijarro, J.; Loughran, S.; Coles, A.; Farrell,
A.; Lain, A.; Murray, P.; Toft, P., 2009. The
SmartFrog Configuration Management Framework.
ACM SIGOPS Operating Systems Review 43 (1), pp.
16-25.

Kiczales, G.; Lamping J.; Mendhekar, A.; Maeda, C.;
Lopes, C.; Loingtier, J.-M.; Irwin, J., 1997. Aspect-
Oriented Programing. In: ECOOP'97-Object-Oriented
Programming, 11th European Conference, volume
1241 of Lecture Notes in Computer Science. Springer,
pp. 220-242.

Loughran, S., 2005. Configuration Description,
Deployment, and Lifecycle Management. CDDLM
Deployment API. Global Grid Forum. Published at
http://xml.coverpages.org/CDDML-Deployment-API-
SpecificationDraft 20050308.pdf, retrieved April 5,
2009

Mernik, M.; Heering, J.; Sloane, A.M., 2005. When and
How Develop Domain-Specific Languages. ACM
Computing Surveys 37(4), pp. 316-344.

Siobhàn, C.; Baniassad, E., 2005. Aspect-Oriented
Analysis and Design. Addison Wesley Professional,
Upper Saddle River.

Stahl, T.; Voelter M., 2006. Model-Driven Software
Development, Wiley & Sons.

Szyperski, C.A., 1997. Component Software: Beyond OO
Programming, Addison-Wesley, Upper Saddle River.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

324

