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Abstract:  Software has become a critical part of a rapidly growing range of products and services. Key aspects of the 
development of such software-intensive systems are the description and analysis of their software architec-
ture, encompassing both the formal model of the component-based architecture and the formal specification 
of the correctness properties that the modeled architecture must satisfy. Therefore, an Architecture Descrip-
tion Language (ADL) must be complemented by an Architecture Analysis Language (AAL) enabling the 
specification of architecture-related correctness properties. A major challenge for an AAL is to provide 
adequate expressive power to specify both structural and behavioral correctness properties, and to be well-
suited for machine-automated processing for verification, at a time. This paper presents how π-AAL com-
plements π-ADL (designed in the ArchWare European Project) for enabling the specification of architectur-
al correctness properties based on the modal π-calculus. The toolset and its experimentation in industrial 
pilot projects are outlined. 

1 INTRODUCTION 

Software has become a critical part of a rapidly 
growing range of products and services. Key aspects 
of the development of such software-intensive sys-
tems are the description and analysis of their soft-
ware architecture, i.e. the fundamental organization 
of the system embodied in its components, their re-
lationships to each other and to the environment, 
and the principles guiding its design and evolution 
(IEEE Std 1471-2000). 

From the perspective of the system design, an 
architecture description provides a formal model of 
a software architecture in terms of its structure and 
behavior: 
 The structure may be specified in terms of: (i) 

components (units of computation of a system); 
(ii) connectors (interconnections among compo-
nents supporting their interactions); (iii) configu-
rations of components and connectors. 

 The behavior may be specified in terms of: (i) 
actions a component or connector executes or 
participates in; (ii) relations among actions to 
specify behaviors; (iii) behaviors of components 

and connectors, and how they interact. 
In the past decade, several Architecture Descrip-

tion Languages (ADLs) have been defined for mod-
eling the structure and behavior of software 
architectures. However, describing the structure and 
behavior of an architecture is needed, but it is not 
enough. Indeed, in addition to describing software 
architectures, designers need to rigorously specify 
their correctness properties.  

An architectural correctness property is a seman-
tic property that specifies a constraint which an ar-
chitecture must enforce to be correct with respect to 
defined requirements. Thereby, an architecture is 
correct when it, by its structure and behavior in 
terms of configurations of components and connec-
tors, meets the functional and nonfunctional re-
quirements as described by the correctness 
properties. 

Before using an architecture description as a blu-
eprint to implement a system, designers must be able 
to specify, validate and verify the correctness of the 
architecture, i.e., that the architecture model satisfies 
the specified correctness properties. In addition, as 
the cost of addressing correctness properties is a 
function of how late they are addressed (the later, 
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the more costly) (Barber & Holt 2001), addressing 
them in the architectural phase leads to more cost-
effective solutions. 

Therefore, an Architecture Analysis Language 
(AAL) must complement (or be part of) an ADL in 
order to enable the specification and support the 
verification of architectural correctness properties. A 
major challenge for an AAL is to provide sufficient 
expressive power to specify both structural and be-
havioral correctness properties and to be well-suited 
for machine-automated processing for verification, 
at a time. 

Formal methods are increasingly used for model-
ing software architectures (Marcos et al. 2007). 
Their potential advantages have been widely recog-
nized (Oquendo 2007). Designing an AAL enabling 
the specification of structural and behavioral cor-
rectness properties of component-based architec-
tures is a key research challenge. 

π-AAL has been designed in the ArchWare1 
European Project to meet this challenge. It comple-
ments π-ADL and provides a uniform framework 
for specifying correctness properties of software 
architectures. These properties have different na-
tures: they can be structural (e.g., cardinality of arc-
hitectural elements, interconnection topology) or 
behavioral (e.g., safety and liveness properties de-
fined on actions of the architectural elements’ beha-
viors).  

The remainder of this paper is organized as fol-
lows. Section 2 introduces π-AAL design principles 
and Section 3 the architecture description concepts 
underlying π-ADL. Section 4 presents π-AAL con-
cepts and notation. Section 5 presents through a case 
study how π-AAL can be used for specifying struc-
tural and behavioral correctness properties. In Sec-
tion 6, we compare π-AAL with related work and in 
Section 7, briefly outline the π-AAL toolset and its 
experimentation in pilot projects. To conclude we 
summarize, in Section 8, the main contributions of 
this paper and sketch future work.  

2 DESIGN PRINCIPLES OF 
π-AAL 

π-ADL (Oquendo 2004) and π-AAL (Alloui et al. 
2003) are companion languages for architecture 
description and analysis, respectively. With π-ADL, 
                                                           
1  The ArchWare European Project has been partially funded by 

the European Commission under contract No. IST-32360 in the 
IST Framework Program. 

architectures are described, expressing the structure 
and behavior of their components, connectors, and 
configurations. With π-AAL, correctness properties 
that the architecture must satisfy in terms of struc-
ture and behavior of components, connectors, and 
configurations are specified, enabling the analysis of 
architecture models. 

The following principles guided the design of π-
AAL: 

 π-AAL is a formal language: it provides a for-
mal system (at the mathematical sense) for 
specifying correctness properties and reasoning 
about them; 
 π-AAL is defined in a layered approach, with a 
core canonical abstract syntax and formal se-
mantics; 
 π-AAL offers a user-friendly enhanced con-
crete syntax to be easily used by software sys-
tem architects. 

π-AAL has as formal foundation the modal μ-
calculus (Kozen 1983), a calculus for expressing 
properties of labeled transition systems by using 
least and greatest fixed point operators. π-AAL is 
itself a formal language defined as an extension of 
the μ-calculus: it is a well-formed extension for de-
fining a calculus for expressing structural and beha-
vioral properties of dynamically communicating 
architectural elements. 

π-AAL takes its roots in previous work concern-
ing the extension of modal operators with data-
handling constructs (Mateescu & Garavel 1998), the 
use of regular expressions as specification formal-
ism for value-passing process algebras (Garavel 
1989), and the extension of fixed point operators 
with typed parameters (Groote & Mateescu 1999). 

Indeed, a natural candidate for “pure” behavioral 
properties would be the modal μ-calculus, which is a 
very expressive fixed point-based formalism sub-
suming virtually all temporal logics defined so far in 
the literature (Stirling 2001). However, since π-AAL 
must also provide features for expressing structural 
properties of architectures, the modal μ-calculus is 
not sufficient. Therefore, a formalism encompassing 
both the predicate calculus and the modal μ-calculus 
is needed. The π-AAL is, thereby, this encompass-
ing formalism. 

π-AAL combines predicate logic with temporal 
logic in order to allow the specification of both 
structural and behavioral properties. It enables au-
tomated verification of property satisfaction by 
model checking (through on-the-fly model check-
ing) and theorem proving (through deductive verifi-
cation). 
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3 ARCHITECTURE 
DESCRIPTION WITH π-ADL 

Software architectures can be described with π-ADL 
which is a formal language based on the typed π-
calculus (Milner 1999; Sangiorgi 1992). One can 
mechanically check whether an architecture de-
scribed in π-ADL satisfies a property expressed in 
π-AAL. 

 
 

Figure 1: Architectural concepts in π-ADL. 

In π-ADL, an architecture is described in terms 
of components, connectors, and their composition. 
Figure 1 depicts its main constituents. 

Components are described in terms of external 
ports and an internal behavior. Their architectural 
role is to specify computational elements of a soft-
ware-intensive system. The focus is on computation 
to deliver system functionalities. 

Ports are described in terms of connections be-
tween a component and its environment. Their arc-
hitectural role is to put together connections 
providing an interface between the component and 
its environment. Protocols may be enforced by ports 
and among ports. 

Connections are basic interaction points. Their 
architectural role is to provide communication chan-
nels between two architectural elements. 

A component can send or receive values via 
connections. They can be declared as output connec-
tions (values can only be sent), input connections 
(values can only be received), or input-output con-
nections (values can be sent or received). 

Connectors are special-purpose components. 
They are described as components in terms of exter-
nal ports and an internal behavior. However, their 
architectural role is to connect together components. 
They specify interactions among components. 

Therefore, components provide the locus of 
computation, while connectors manage interaction 
among components. A component cannot be directly 
connected to another component. In order to have 
actual communication between two components, 

there must be a connector between them.  
Both components and connectors comprise ports 

and behavior. A connection provided by a port of a 
component is attached to a connection provided by a 
port of a connector by unification or value passing. 
Thereby, attached connections can transport values 
(that can be data or even connections). 

Components and connectors can be composed to 
construct configured composite elements, which 
may themselves be components or connectors.  

 

 

Figure 2: Architectural composition in π-ADL. 

Architectures are composite elements 
representing systems (e.g., see Figure 2). An archi-
tecture can itself be a composite component in 
another architecture. 

4 CORRECTNESS 
SPECIFICATION WITH π-AAL 

π-AAL supports analysis of component-based soft-
ware architectures, described with π-ADL. In π-
AAL, an architectural correctness property is speci-
fied in terms of logical formulas comprising: predi-
cate formulas, action formulas, regular formulas, 
state formulas, and connection formulas. When eva-
luated, a formula is checked against the architecture 
description, that provides the interpretation domain. 

4.1 π-AAL Semantic Model 

The formal foundation of π-AAL is the modal μ-
calculus extended with the predicate calculus. As 
cited so far, π-AAL is itself a formal language de-
fined as an extended calculus subsuming the modal 
μ-calculus and the predicate calculus for specifying 
correctness properties on component-based software 
architectures. 

Formulas in π-AAL are formally interpreted 
relative to a predicate-extended labeled transition 
system.  

Formally, a predicate-extended labeled transition 
system (pLTS) is of the form pLTS  =  (StateSet, 
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ActionSet, TransitionRelationSet, PredicateSetLa-
belling, state0), where: 
 StateSet is a non-empty set of states; 
 ActionSet is a set of actions (actions that label 

transitions); 
 TransitionRelationSet is a set of transition rela-

tions, such that each transition relation transition 
∈ TransitionRelationSet, is of the form transi-
tion ⊆ StateSet × ActionSet × StateSet; 

 PredicateSetLabelling : StateSet → 2PredicateSet is 
a function that labels each state with the set of 
atomic predicates true in that state (where Predi-
cateSet is the set of atomic predicates and 
2PredicateSet the powerset of PredicateSet); 

 state0 ∈ StateSet is the initial state. 
All states of StateSet are assumed to be reachable 

from the initial state via sequences of (zero or more) 
transitions of the TransitionRelationSet.  

The actions action of ActionSet are defined as:  
 via connection send value1,…, valuen 
 via connection receive value1,…, valuen 

where connection is a connection and value1,…, 
valuen are data values (base values or constructed 
values).  

In addition to communication actions, actions 
can be internal to a component or connector: 
 the action unobservable, where unobservable ∉ 

ActionSet, is used to model an internal “unob-
servable” action of a component or connector 
behavior, 

 the match action if, is used to express conditional 
behaviors of components or connectors. 
The predicates predicate of PredicateSet are de-

fined either as built-in predicates related to the arc-
hitectural structure, or as user-defined predicates. 

Finally we can define BehaviorStateSet as the set 
of states of a behavior in an architectural element 
(e.g., component or connector). Therefore for all s ∈ 
BehaviorStateSet, PredicateSet contains all predi-
cates related to types and data declared in an archi-
tectural element expressed with π-ADL. 

For a complete definition of the π-AAL semantic 
model see (Alloui et al. 2003). 

4.2 π-AAL Types 

π-AAL is a typed language. It shares all base types 
and type constructors of π-ADL equipped with their 
operators. All types are value types. Value types are 
base types or constructed types. Type environments 
are expressed through declarations.  

 
 

Typing 
 

 ValueType ::= BaseType | ConstructedType 
 BaseType ::=  Any | Natural | Integer | Real | Boolean  
  | String | Behavior 
 ConstructedType ::= tuple [ ValueType1, …, ValueTypen ] 
  |  view [ label1 : ValueType1, …, labeln : ValueTypen ] 
  |  union [ ValueType1, …, ValueTypen ] | quote [ name ] 
  |  variant [ label1 : ValueType1, …, labeln : ValueTypen ] 
  |  location [ ValueType ] | sequence [ ValueType ]  
  |  set [ ValueType ] |  bag [ ValueType ] 
  |  in [ ValueType ] | out [ ValueType ]  
  | inout [ ValueType ]  

4.3 π-AAL Formulas 

π-AAL provides the formula constructs for specify-
ing structural and behavioral properties to be satis-
fied by component-based software architectures. 

The definition of π-AAL is structured in terms of 
kinds of formula constructs: 
 predicate formula constructs for writing data 

predicate formulas over a set of data values us-
ing data variables, data operators and predicate 
operators; 

 action formula constructs for writing action pre-
dicate formulas over a set of connection and data 
values; 

 regular formula constructs for writing regular 
expressions (i.e., regular formulas) defined over 
action formulas using regular operators; 

 state formula constructs for writing modal for-
mulas defined over regular formulas and value 
variables using predicate, modal, and paramete-
rized fixed point operators; 

 connection formula constructs for writing formu-
la on connections as first-class elements, taking 
into account connection mobility among archi-
tectural elements, i.e., components and connec-
tors. 

4.4 Relating Properties to  
Architectures 

An architectural correctness property is specified by 
a formula that may be a data predicate formula, an 
action formula, a regular formula or a state formula. 

Architectural properties are related to architec-
ture descriptions for specifying their correctness. 
They are assumptions on the correctness of the ar-
chitecture model and state proof obligations. 

Relating architectural properties to architecture 
descriptions is defined as follows. 
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Relating Correctness Properties to Architectures
 

architecture { architectureDescription }  
assuming {  architecturalCorrectnessProperties }  

5 CASE STUDY: CORRECTNESS 
USING π-AAL 

Instead of providing a formal description (Alloui et 
al. 2003), we will present hereafter the use of π-
AAL for specifying correctness properties through a 
case study of a typical component-based software 
architecture, a pipe-and-filter architecture, described 
in π-ADL. 

Pipe-and-filter architectures, e.g., pipelines, are 
used when a sequence of transformations is applied 
to a stream of data by a sequence of filters, produc-
ing a final output. Hence, pipelines are pipe-and-
filter architectures composed of a single chain of 
pipes and filters. 

A pipe transmits output of one filter to input of 
another filter. A filter transforms data received from 
its input and sends the transformed data to its output. 
Filters do not share state, i.e., they do not know 
about upstream or downstream filters. 

 

 

Figure 3: A simple pipeline architecture. 

Figure 3 depicts a pipeline architecture compris-
ing two components (that are filters) which ex-
change data through a connector (that is a pipe).  

5.1 Architecture Description 

In a pipeline architecture: 
 the architecture is composed of filters and pipes; 
 filters are components; 
 a filter has a set of input and output connections 

and uses a function to transform data; 
 pipes are connectors; 
 a pipe has a set of input and output connections 

and transmits data from input to output as they 
are; 

 a pipe connects two filters, it transmits an output 
of a filter to an input of another filter. 

Using π-ADL, the Filter component abstraction 
can be formally described as follows. 

 
 component Filter is abstraction() {  
  type Data is Any.  
  port is { 
   connection input is in(Data). 
   connection output is out(Data)  
  } assuming { 
   protocol is {  
   ( via input receive any. true*. via output send any )* } 
  }. 
  behavior is { 
   transform is function(d : Data) : Data {unobservable}.
   via input receive d : Data.  
   via output send transform(d). 
   behavior() 
  } 
 } 

Filter

 
 
The protocol is specified as a regular formula 

built upon action predicates (one-step sequences) by 
using the standard regular operators: ‘.’ (concatena-
tion), ‘|’ (choice), and ‘*’ (transitive reflexive clo-
sure). In these formulas ‘true’ means any action and 
‘false’ no action. 

The Pipe connector abstraction can be formally 
described as follows.  

 
 
 connector Pipe is abstraction() { 
  type Data is Any.  
  port is { 
   connection input is in(Data). 
   connection output is out(Data)  
  } assuming { 
   protocol is {  
   (via input receive d : Data. via output send d)* } 
  }. 
  behavior is { 
   via input receive d : Data. via output send d.  
   behavior() } } 

Pipe

 
 
This pipe is reliable. Let us now describe a pipe 

that is unreliable, i.e., it can nondeterministically 
choose either to transmit data correctly, or to lose it. 

 
 
 connector UnreliablePipe is abstraction() { 
  type Data is Any. 
  port is { 
   connection input is in(Data). 
   connection output is out(Data)  
  } assuming { 
   protocol is {  
   (via input receive d : Data. (via output send d | nil))* } 
  }. 
  behavior is { 
   via input receive d : Data. 
   choose {  
     via output send d. behavior() 
   or  unobservable. behavior() 

Unreliable 
Pipe

 
 
 

A simple pipeline architecture, with two filters 

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

212



 

connected by one pipe as the one shown in Figure 3, 
can be formally described as follows. It uses an un-
reliable pipe. 

 
 
 architecture OnePipeTwoFilters is  
  abstraction() { behavior is compose { 
      F1  is Filter() 
   and  P  is UnreliablePipe() 
   and  F2  is Filter() 
  } where { F1::input  as i1 
   and    P::input  unifies  F1::output as o1 
   and   P::output  unifies  F2::input  as i2 
   and   F2::output    as o2 
   } 
 } 

OnePipe 
TwoFilters

 
 
A general pipeline architecture, with at least one 

pipe and two filters, but with as many reliable pipes 
and filters as needed, can be formally described as 
follows. 

 
 
 architecture Pipeline is abstraction(n : Natural) { 
  behavior is compose { 
      F  is sequence for i = 1 to n using Filter() 
   and P  is sequence for i = 1 to n using Pipe() 
  } where {  
   iterate sequence(1..n) by i do { 
      P::i::input  unifies F::i::output  
   and P::i::output  unifies F::(i+1)::input } 
   } 
 }  assuming {  
  parameter is { n >= 1 } 
  and F −> size >= 2 
  and P −> size >= 1   
 } 

Pipeline

 

5.2 Specification of Correctness  
Properties 

Let us now specify with π-AAL different kinds of 
architectural properties that must be analyzed in 
order to guarantee the correctness of the architec-
ture, including architectural completeness and con-
sistency. 

Architectural completeness means that the archi-
tecture description does not lack components, con-
nectors, connections or their parts or 
interrelationships with respect to architecture-
specific, architect-defined, properties.  

For instance, a pipeline architecture could be 
considered to be complete if all pipes have their 
input and output connections connected to filters 
and all filters, but the first and last one, have their 
input and output connections connected to pipes. Of 
course, input connections must be unified to output 
connections. 

Regarding architectural consistency, it means 
that the architecture description makes sense; that 

different parts of the description do not contradict 
each other. For instance, protocols of ports of uni-
fied connections must be compatible. 

Regarding correctness, in addition to complete-
ness and consistency, it is defined with respect to the 
correctness of the system features, i.e., the conformi-
ty with correctness requirements. For instance, all 
filter transformations must be applied to all data. 

Thereby, correctness (including completeness 
and consistency) are semantic properties, and as so 
are defined with respect to analysis of architecture-
specific, architect-defined, properties. 

For instance, an architect could specify architec-
tural correctness properties for verifying that: 
 protocols of ports are projections of behaviors of 

components or connectors; 
 protocols of unified ports are compatible, with 

corresponding send-receive actions, and dead-
lock-free; 

 components, connectors, and the architecture are 
deadlock-free; 

 ports of components and connectors in the confi-
guration are connected accordingly; 

 configuration of components and connectors 
conform to the architectural style constraints. 
More specifically, for the described pipeline ar-

chitecture, an architect could specify and verify if: 
 there is the right connectivity, in terms of the 

pipeline style, among pipes and filters; 
 there is a safe alternation of send and receive 

actions in components, i.e., in filters; 
 the pipeline is deadlock free; 
 there is an inevitable reachability of the trans-

form function after receive actions in the pipe-
line; 

 all data received in components and connectors 
are transmitted. 
Let us use the pipeline architecture and its com-

ponents and connectors described so far in π-ADL 
to show how these properties could be specified 
using π-AAL. 

The concrete syntax of π-AAL is based on the 
Object Constraint Language (OCL) and is part of a 
UML Profile for π-ADL. The with construct intro-
duces the context for the property. The variable 
declared in the with construct is used to refer to the 
contextual instance. The “.”, “−>”, relational, logical 
and collection operators have their usual meaning as 
in OCL. Least and greatest fixed point operators 
have their usual meaning as in modal μ-calculus. 

The structural property “there is the right con-
nectivity, in terms of the pipeline style, among pipes 
and filters” can be formally specified as follows. It 
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expresses that every pipe input port is connected to a 
filter output port and every pipe output port is con-
nected to a filter input port in a pipeline architecture. 

 
 

 with { pl : Pipeline } 
 connectivityBetweenPipesAndFilters is property() { 
 -- every pipe input port is connected to a filter output port   
 -- and  
 -- every pipe output port is connected to a filter input port 
 pl.connectors −> 
  forall { p | p.ports.connections −> 
   forall { inp,outp | 
       pl.components −> 
     exists { fi, fo |  
      (fi.ports.connections union  
      fo.ports.connections) −> 
          forall { infi, outfo |  
        (p.ports.connections −> includes inp) 
        and (inp.type = input)  
        and (p.ports.connections −> includes outp) 
        and (outp.type = output) 
        and (fi.ports.connections −> includes infi)  
        and (infi.type = input) 
        and (fo.ports.connections −> includes  
           outfo)  
        and (outfo.type = output) 
        and (inp unifies outfo)  
        and (outp unifies infi) 
       } 
     } 
   } 
  } 
 }  

The behavioral property “there is a safe alterna-
tion of send and receive actions in filters” can be 
formally specified as follows. It expresses that there 
is no send before a receive initially, no two consecu-
tive receives without a send in between, and no two 
consecutive sends without a receive in between. 

 
 

 with { c : Filter } 
 safetyAlternation is property() { 
 -- no send before a receive initially 
 -- no two consecutive receives without a send in between 
 -- no two consecutive sends without a receive in between 
 c.ports.inputPrefixes −>  
  forall { r | c.ports.outputPrefixes −>  
   forall { s |  
    every sequence {  
     (not via r receive any)* . via s send any }  
    leads to state { false }  
    and 
    every sequence {  
     true* . via r receive any . (not via s send any)* . 
     via r receive any }  
    leads to state { false } 
    and 
    every sequence { 
     true* . via s send any . (not via r receive any)* .  
     via s send any }  
    leads to state { false } 
   }  

 

 

The behavioral property “the pipeline architec-
ture is deadlock free” can be formally specified as 
follows. It expresses that at any moment, the pipe-
line system can execute an action. Thereby, it is 
never deadlocked. 

 
 

 with { pl : Pipeline } 
 deadlockFreedom is property() { 
 -- at any moment, the system can execute an action 
 pl.instances −> 
  every sequence { true* }  
   leads to state {  
    some sequence { true } leads to state { true }  
   } 
 } 
   

 
The behavioral property “there is an inevitable 

reachability of the transform data function after re-
ceive actions in a pipeline architecture” can be for-
mally specified as follows. It expresses that after a 
receive action in a filter, the function transform will 
always be carried out after a finite number of steps. 

 
 

 with { pl : Pipeline } 
 inevitableReachabilityOfTransformAfterReceive is  
 property() { 
 -- the inevitable reachability of a function transform data  
 -- after a receive  
 pl.components −> 
  forall { f | f.functions −> 
   forall { transf |  
    transf.name = transform implies {  
    f.ports.inputPrefixes −> 
     exists { r |  
      every sequence { true* . via r receive any }  
      leads to state { 
       finite tree Y given by { 
        some sequence { true } leads to state  
         {true}  
        and 
          every sequence { not via transf send any} 
        leads to state { Y } 
       } 
      } 
     }  
   }  
  }  
 }  

 
The property “in a pipeline architecture, all data 

received in components and connectors are transmit-
ted” can be formally specified as follows. It ex-
presses that every data that is received will be 
eventually sent after a finite number of steps. 
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 with { pl : Pipeline } 
 dataTransmission is property() { 
 -- every data that is received will be eventually sent  
 -- after a finite number of steps 
 pl.components −> 
 forall { f | f.ports.inputPrefixes −> 
  forall { r | f.ports.outputPrefixes −> 
   exists { s | r.data −> 
    forall { d | 
     every sequence { true* . via r receive d }  
     leads to state { 
      finite tree Y given by {  
       some sequence { true }  
       leads to state { true }  
       and 
         every sequence {not via s send d }  
       leads to state { Y } 
      }  
     } 
    }  
   }  
  }  
 }   

 
Now let us attach the architectural properties de-

fined above to the pipeline architecture described so 
far. 

 
 
 architecture Pipeline is abstraction(n : Natural) { 
  behavior is compose { 
      F  is sequence for i = 1 to n using Filter() 
   and P  is sequence for i = 1 to n using Pipe() 
  } where { iterate sequence(1..n) by i do { 
      P::i::input  unifies F::i::output  
   and P::i::output  unifies F::(i+1)::input } 
   } 
 } assuming { 
  components −> forall { f : Filter | f.safetyAlternation()} 
  and connectivityBetweenPipesAndFilters() 
  and deadlockFreedom() 
  and inevitableReachabilityOfTransformAfterReceive() 
  and dataTransmission() 
 }  

 

6 RELATED WORK 

Several Architecture Description Languages (ADLs) 
have been proposed in the literature (Medvidovic & 
Taylor 2000), including: ACME, AESOP, AML, 
CHAM-ADL, DARWIN, META-H, PADL, 
RAPIDE, SADL, UNICON-2, and WRIGHT.  

Most of these ADLs integrate or are coupled 
with an Architecture Analysis Language (AAL), 
e.g., ARMANI (Monroe 2001) extends ACME 
(Garlan et al. 2000) for supporting the specification 
of design constraints on the architecture structure; 
and DARWIN (Kramer et al. 2003) embeds FSP for 
supporting the specification of safety and (a limited 
form of) liveness properties on the architecture be-
havior. 

The main limitation of these AALs is that they 
address either structural or behavioral properties, but 
not both. Overall, they do not have the expressive 
power to specify architectural correctness properties 
such as those presented in this paper. 

Indeed, π-AAL provides a novel language that 
on the one side has been specifically designed for 
architecture analysis taking into account the need to 
specify and verify properties on both structure and 
behavior from an architectural perspective and on 
the other side is highly expressive. It allows the spe-
cification of both structural properties and behavior-
al properties concerning architecture descriptions 
modeled in π-ADL.  

Regarding behavioral properties, the choice of 
the modal μ-calculus as the underlying formalism 
provides a significant expressive power. Moreover, 
the extension of μ-calculus modalities with higher 
level constructs such as regular formulas inspired 
from early dynamic logics like PDL (Fischer & 
Ladner 1979) facilitates the specification task of the 
practitioners, by allowing a more natural and con-
cise description of properties involving complex 
sequences of actions. The extension of fixed point 
operators with data parameters also provides a sig-
nificant increase of the practical expressive power, 
and is naturally adapted for specifying behavioral 
properties of value-passing languages such as π-
ADL. 

In the context of software architectures, several 
attempts at using classical process algebras and ge-
neric model checking technology have been reported 
in the literature. In (Heisel & Levy 1997), various 
architectural styles (e.g., repository, pipe-and-filter, 
and event-action) are described in LOTOS, by using 
specific communication patterns and constraints on 
the form of components, and verified using the 
CADP toolbox (Fernandez et al. 1996; Garavel et al. 
2002). In (Rongviriyapanish & Levy 2000), several 
variants of the pipe-and-filter style are described in 
LOTOS and analyzed using CADP. In (Kerschbau-
mer 2002), the transformation of software 

rchitecttures specified in LOTOS and their verifi-
cation using the XTL model checker (Mateescu & 
Garavel 1998) of CADP are presented. Finally, an 
approach for checking deadlock freedom of software 

rchitecttures described using a variant of CCS is 
described in (Bernardo et al. 2001).  

All these works provide rather ad-hoc solutions 
for a class of software architectures limited to static 
communication between architectural elements. 
None of them addresses dynamic architectures and 
they can be subsumed by the more general frame-
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work provided by π-AAL (with π-ADL) and its ve-
rification tools.  

7 IMPLEMENTATION AND 
EXPERIMENTATION 

A major impetus behind developing formal languag-
es for architecture analysis is that their formality 
renders them suitable to be manipulated by software 
tools. The usefulness of an AAL is thereby directly 
related to the kinds of tools it provides to support 
automated verification. Indeed, π-AAL is supported 
by a comprehensive analytical toolset composed of: 
 a model checking tool based on CADP; 
 a theorem proving tool implemented in XSB. 

π-AAL (jointly with π-ADL) has been applied in 
practice in several pilot projects in France, Italy, 
UK, Switzerland, and China for designing compo-
nent-based software architectures. For instance, π-
AAL and its supporting toolset have been applied at 
CERN (the European Organization for Nuclear Re-
search, Switzerland) for enforcing the correctness of 
distributed control systems to restart particle accele-
rators. 

Particle accelerators at CERN, as in many soft-
ware-intensive systems, are composed of a large 
amount of distributed components, including nu-
merous sensors, actuators, processing and storage 
devices. The CERN’s Technical Control Room de-
fined an architectural style with π-ADL and π-AAL 
by formalizing all the correctness properties of sys-
tems controlling the restart of a particle accelerator. 
These properties were embodied as a software envi-
ronment integrating the π-AAL toolset, in order to 
guide the architectural design of such systems, ana-
lyze and generate the code of CERN’s particle acce-
lerator restart control systems.  

This and other experimentations have shown that 
π-AAL and its toolset are suitable for formally spe-
cifying and verifying structural and behavioral cor-
rectness properties of component-based software 
architectures. 

Furthermore, the ArchWare integrated develop-
ment environment itself (Oquendo et al. 2004) that 
supports the architecture and development of soft-
ware-intensive systems using π-ADL and π-AAL is 
itself a validation of π-ADL and π-AAL since it was 
designed based on a component-based software ar-
chitecture and has been specified and developed 
using these languages. 

8 CONCLUSIONS AND FUTURE 
WORK 

This paper presented, in a nutshell, how π-AAL can 
be used for specifying correctness properties of 
component-based software architectures described 
in π-ADL. It complements other publications on π-
AAL by providing a practical view on how to use its 
concepts and notation for specifying correctness 
instead of presenting its formal semantics. 

π-AAL supports formal specification and corres-
ponding verification of both structural and beha-
vioral properties. This is a key factor in the 
architectural design phase in order to support se-
mantic correctness. 

Future work will mainly focus on specializing π-
AAL for Service-Oriented Architecture (SOA) 
(OASIS 2008), a mainstream architectural style for 
developing software-intensive component-based 
systems based on the Web service technology stack, 
in particular by refining the level of description and 
analysis by providing service-oriented abstractions.  
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