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Abstract: The research presented in this paper was motivated by the need to build performance self-monitoring and a 
decision-making process into Reactive Autonomic Systems (RAS). In order to achieve RAS compliance in 
terms of the imposed performance policies, we formalize RAS modeling and performance control in a 
single framework based on a representational theory of measurement and category theory. Category theory 
is expressive enough to capture qualitative and quantitative knowledge about heterogeneous RAS 
requirements and their interrelationships, as well as a decision-making mechanism, in one formal 
representation, where structure and reasoning are inextricably bound together. Thus, category theory 
provides a computational mechanism which enables this knowledge to be applied to performance data and 
RAS information structures in order to arrive at valid conclusions.  

1 INTRODUCTION 

The main obstacle to further progress in the IT 
industry is software complexity, since the difficulty 
of managing massive computing systems goes well 
beyond the capabilities of IT administrators. Some 
of that complexity derives from the real-time and 
reactive nature of software systems. One of the 
solutions to the emerging complexity problem is 
autonomic computing, which helps by using 
technology to manage technology. As a result, low 
level complexities are hidden from end users or 
removed altogether (IBM Corporation, 2006) (IBM 
Tivoli, 2005). With autonomic behavior, real-time 
reactive systems can increasingly self-manage, and 
be more adaptive to their environment.  

Current formal methods have not adequately 
addressed the issue of verifying policies on behavior, 
such as performance requirements, which constitute 
one of the most important nonfunctional 
requirements for Reactive Autonomic Systems 
(RAS).  

According to (ISO/IEC 9126-1:2001, 2001), 
level of performance is “the degree to which the 
needs are satisfied, represented by a specific set of 

values for quality characteristics.” Performance 
characteristics can be quantified through 
measurement procedures which provide 
measurement methods and functions, as well as a 
meaningful analysis algorithm for combining 
measurement data along with decision making 
criteria.   

The research proposed in this paper addresses the 
following challenges:  

 The requirement of the performance-critical 
characteristics of the RAS for specification 
and for theoretically valid measurement data; 

 The need for performance self-assessment to 
be regulated by policies which state the 
constraints on system performance 
fluctuations at runtime.  

In order to achieve RAS compliance with the 
imposed performance requirements, we formalize 
RAS and performance modeling in a single 
framework (RASF) based on a representational 
theory of measurement and category theory. 
Category theory is expressive enough to capture 
qualitative as well as quantitative knowledge about 
heterogeneous RAS requirements and their 
interrelationships, and a decision-making 
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mechanism in one formal representation, where 
structure and reasoning are inextricably bound 
together. Furthermore, category theory allows for a 
formal graphical representation of the syntax and 
semantics of models which goes beyond existing 
graphical languages, such as UML, where the 
semantics of the models is informal or semi-formal.  

The rest of this paper is organized as follows: 
Section 2 surveys related work.  RAS modeling is 
described in section 3. Section 4 introduces 
performance modeling. RAS and performance 
models are integrated into an RASF Metamodel in 
section 5, and further formalized in terms of 
category theory in section 6. Our conclusions are 
presented and future work directions outlined in 
section 7.  

2  RELATED WORK 

This section gives a brief overview of related work 
on performance modeling and self-monitoring in 
autonomic systems.  

IBM Research has developed a framework called 
Policy Management for Autonomic Computing 
(PMAC) (IBM Tivoli, 2005), which provides a 
standard model for the definition of policies and an 
environment for the development of software objects 
that can hold and evaluate policies.  

The paper (Abdelwahed and Kandasamy, 2006) 
describes a model-based control and optimization 
framework for designing autonomic systems which 
continually optimizes their performance by changing 
workload demands as well as operating conditions. 
The performance management problem of interest 
can be considered to be one of sequential 
optimization under uncertainty, and a look-ahead 
control approach is used to optimize system 
behavior forecast over a limited prediction horizon. 
The basic control concepts are then extended to 
tackle distributed systems where multiple controllers 
must interact with one another to ensure the overall 
performance goals. 

The research presented here differs from work 
previously done in the area in an important way: the 
RAS components, the measurement procedure, and 
the performance are modeled as categories within 
the same formal framework, which makes it possible 
to formalize the self-monitoring policies, verify both 
their consistency and their completeness, and 
consequently build performance self-monitoring into 
the RAS implementation.  

 
 

3 RAS MODELING 

Systems designed to be reactive and autonomic 
(RAS) are complex and built from potentially very 
large numbers of elements which are highly 
autonomic and reactive, but which are also socially 
interactive. The formal and comprehensive 
framework used for modeling and controling 
performance in RAS, the RASF, is built on a 4-tier 
layered structure (see Figure 1), which includes 
Reactive Autonomic Objects (RAO), Reactive 
Autonomic Components (RAC), Reactive 
Autonomic Component Groups (RACG), and 
Reactive Autonomic Systems (RAS).  
 

 
Figure 1: RASF tiers. 

The RASF structure is made up of distributed 
RACG with their asynchronous communication. The 
RAC is a set of synchronously communicating 
RAO, where one of the RAO is designated as the 
leader of the workers. The autonomic behavior, such 
as self-monitoring or self-analyzing, is implemented 
by the RAC leaders, group supervisors, and system 
managers in the RAC, RACG, and RAS tier 
respectively.  

The current trend in autonomic system 
development is towards the direct or dynamic 
composition of autonomic components through task 
workflows. We abstract the behavior of the RAS to a 
collection of communicating task processes. The 
workers are mainly responsible for reactive tasks, 
while the leader works on autonomic tasks such as 
coordinating self-monitoring at the component level. 
The assumption here is that each group performs an 
autonomic task process, and so there is no 
dependency between the task processes of different 
groups. RACG are required to react in real time to 
requests from the system manager for the fulfilment 
of a task process. The task workflows are scheduled 
by TACG supervisors, while individual tasks from 
the specified workflow are assigned to RACs in the 
group and then optimized, given the resource 
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constraints of the RAO in real time. The task 
workflow requires both communication and 
synchronization of individual tasks to ensure reliable 
performance by the supervised group, governed by 
RAS policies.  

RAS performance policies impose restrictions on 
task process communication and synchronization, 
and so need to be considered as an integral part of 
the RAS self-management capability. To allow for 
managing group task process performance, we need 
to express performance in quantifiable terms by 
devising an appropriate performance measurement 
model. We describe next the hierarchical modeling 
of that performance. 

4 MODELING PERFORMANCE  

In our approach, performance is modeled as a 
hierarchical information structure. The performance 
model proposed in this paper ensures that all 
standard aspects of quality are considered from both 
the internal and external points of view. It is 
decomposed into four qualitative performance 
characteristics: i) reliability (the capability of the 
software product to maintain a specified level of 
performance when used under specified conditions 
(ISO/IEC 9126-1:2001, 2001); ii) fault tolerance (the 
capability of the software product to maintain a 
specified level of performance in cases of software 
faults (ISO/IEC 9126-1:2001, 2001); iii) efficiency 
(the capability of the software product to provide 
appropriate performance, relative to the amount of 
resources used, under stated conditions (ISO/IEC 
9126-1:2001, 2001); and iv) performance 
compliance (the capability of the RAS to adhere to 
response time, as well as to throughput policies, 
which are related to task execution and collaboration 
respectively). Those high-level characteristics are 
repeatedly refined, and in each of the 
decompositions the offspring (sub) characteristics 
can contribute partially or fully towards satisfying 
the parent. The lowest level corresponds to the 
quantifiable performance sub characteristics of the 
RAS tasks computed by applying a measurement 
method − a logical sequence of operations applied 
directly to the source, that is, to a task or task 
process. The result of applying a measurement 
method is called a base measure. The base measures 
are then combined by a measurement function to 
obtain the derived measures required for 
characterizing the parent (indicator) in accordance 
with the associated rules for the interpretation of 
measurement data (ISO/IEC 15939, 2007). 

An indicator provides an estimate or evaluation 
of the utility of the performance characteristic, 
which is derived from an analysis of the 
measurement data (values) and with respect to a 
defined decision criterion. “Utility” in this context 
means a property in any task process which tends to 
produce a quality benefit or to prevent disruption 
(failure behavior or unacceptably low reliability) to 
an RAC, a RACG, or the whole system.  

The combined utility of all indicators serves as a 
basis for performance self-management decision 
making on the part of the RACG supervisor.  

The self-management decision-making process 
can be modeled as a set of alternative rules linking 
the performance utility of a task process to certain 
actions to outcomes (Roberts, 1979). For example, 
the input is task process performance utility and the 
output is the action required to improve the task 
process performance level in the RAS.  If decisions 
are being made in a situation of certainty, then we 
choose that action the certain outcome of which 
maximizes (minimizes) the utility of the task 
process, depending on the rewards associated with 
each outcome of an action (Roberts, 1979). The 
outcome of the action consists of changes to the task 
process which are executed. Their effect on the 
performance utility of the task process is then 
evaluated. The reward associated with the outcome 
will increase if the utility of the task process 
increases following the change. Otherwise, the 
reward decreases.   

One of the possible solutions to increasing 
performance visibility and explicitly linking it to the 
task processes in such systems is to enforce their 
integration by applying metamodeling. 

5 RASF METAMODEL 

The RASF metamodel proposed in this paper is 
aimed at encompassing models of different kinds of 
requirements: functional (task process) and 
nonfunctional (performance), which form the 
foundation of the software system information 
structure. The task processes are scheduled by the 
RACG supervisor and are decomposed into 
individual tasks. The performance of the task 
processes has to conform to RAS policies, 
specifically those on synchronization and 
communication. This is controlled by first collecting 
measurement data on those processes, and then 
analyzing the data according to the decision criteria, 
determining the utility of the task process, and 
taking action intended to further increase task 
process utility. 
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Figure 2: RASF (partial) metamodel. 

Knowledge on RAS task processes, the 
performance hierarchy of measurable characteristics 
in line with the RAS self-management decision-
making policies, and the rules and the relationships 
among them are represented in the metamodel 
structure in Figure 2. Figure 2 depicts the semantics 
of the relationships between different constructs of 
the RASF Metamodel in terms of a UML diagram. It 
should be noted, however, that such a diagram does 
not formally capture the semantics of the constructs 
or their relationships. This lack of formalism is an 
obstacle in the process of formalization and 
consequent automation of the performance modeling 
and self-management mechanisms. Furthermore, the 
theoretical validity of the measurement procedures 
and the decision-making process cannot be 
established from this semi-formal notation.  

This lack of formalism prompted us to exploit 
the idea of a uniform graphical formalization of the 
metamodeling of RAS behavior and performance 
self-management within the RAS life cycle based on 
the representational theory of measurement and 
category theory.  

6 RASF METAMODEL WITH 
CATEGORY THEORY 

Category theory is a branch of mathematics that, par 
excellence, addresses “structure”, which is the main 
motivation behind this research: the structure 
emerges from interactions between elements as 

captured by arrows, and not extensionally as in set 
theory. Compared with other methods of formalizing 
software concepts, category theory is not a semantic 
domain in which the description of components and 
connectors is formalized, but rather involves the 
semantics of interconnections, configurations, 
instantiation, and composition, which are important 
aspects of engineering RAS with both autonomous 
and autonomic behavior. Moreover, automation may 
be achieved using category theory. 

Category theory provides the basic building 
blocks of metamodeling using the fundamental 
notions of category, object, morphism, and functor. 
Informally, a category may be regarded as a 
collection of heterogeneous objects and morphisms 
which model the social life of these objects, that is, 
their interactions. A category can be defined as zero 
or more objects bound together, where each object 
may be either a primitive or a category. In addition, 
a category may be augmented, diminished, or joined 
with other categories to produce a new category. 
Formally, a category consists of objects: A, B, C, 
etc., and arrows (morphisms) f: A → B where, for 
each arrow f, there are given objects: dom(f), cod(f) 
called the domain and the co domain of f, and 
indicated as A = dom(f) and  B = cod(f) respectively. 
Central to category theory is the notion of 
composition: given arrows f: A → B and: B → C 
with cod(f) = dom(g), there is an arrow:   g ◦ f : A → 
C called a composite of f and g. For each object A, 
there is a given arrow: idA: A → A called the identity 
arrow of A. The category must satisfy the following 
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laws: i) Associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f for all f: 
A → B, g: B → C, h: C → D; ii) Unit: f ◦ idA = f = 
idB ◦ f for all f: A → B. A functor F: C → D between 
categories C and D is a structure-preserving 
mapping of  objects to objects, along with arrows to 
arrows: i)  F(f: A → B) = F(f): F(A) → F(B); ii)  F(g 
◦ f) = F(g) ◦ F(f); iii)  F(idA) = idF(A) 

Category theory for RAS self-management has 
adopted an approach of correction by construction, 
through which components are specified, proved, 
and composed so as to preserve their properties. In 
an abstract sense, we are dealing with arrow 
diagrams of task processes where the existing arrows 
represent cooperation channels in a very general 
way. This gives us the justification for associating 
the Task Process category with the PATH category, 
as described in (Pfalzgraf, 2004), where the 
morphisms are sequences (paths) of consecutive 
arrows, each node representing a task and each 
arrow being a structure-preserving mapping, that is, 
a morphism. This defines the composition of arrows 
in a natural way (concatenation of consecutive 
arrows), and this composition is associative. The 
identity arrow with respect to each object in Task 
Process will be assumed to exist by definition; 
according to graph theory, it is a loop to the  
corresponding node.  

The Task Process category represents the 
empirical relational structure in the measurement 
procedure, and it includes the task categories and 
their relations. The Base Measure category 
represents the numerical relational structure to 
which the empirical relational structure is mapped. 
The measurement procedure is deemed valid if it is a 
structure-preserving (homomorphic) function. It is 
easy to see that the mapping Measurement Method 
(MM): Task Process → Base Measure between the 
categories Task Process and Base Measure is a 
functor of objects to objects along with arrows to 
arrows satisfying the functor property outlined 
earlier. The base measures can be further combined 
using categorical products and mapped to derived 
measures (characterizing different performance 
characteristics) by a morphism Measurement 
Function (MF): Base Measure x Base Measure x 
…→ Derived Measure. 

In software engineering decision making, we 
often consider multidimensional alternatives with a 
variety of quality characteristics or from several 
points of a view. Such situations arise when we are 
trying to explain a dependent variable, such as 
performance utility, on the basis of a number of 
independent variables, such as reliability, fault 
tolerance, etc. In order to calculate a utility function 

of multidimensional alternatives, we need to define a 
collection of alternatives. We think of the set of 
alternatives as a Cartesian product of all considered 
attributes characterizing performance expressed as 
Reliability x Fault Tolerance x Efficiency x 
Compliance, and the set of decision criteria, where 
Reliability is a set of all possible values of the 
domain of the utility function morphism for 
reliability, and so on. The categorical product 
relations p0, p1, p2, p3, and p4 are the 
corresponding projections of the product Reliability 
x Fault Tolerance x Efficiency x Compliance x 
Decision Making Criteria to Decision Making, 
Reliability, Fault Tolerance, Efficiency and 
Compliance respectively (see Figure 3). Such a 
product corresponds to all possible alternatives 
representing the values of the Indicator.  

The functor Utility Function: Reliability x Fault 
Tolerance x Efficiency x Compliance x Decision 
Making Criteria → Performance Utility in Figure 3 
maps the Indicator alternatives to a sample scale 
where performance utility is qualitatively 
categorized as Excellent, Acceptable, or 
Unacceptable. These performance categories provide 
feedback on performance utility, and help determine 
whether or not the task processes in the RAS satisfy 
the performance policies or need improvement. The 
functors Method (MM), Measurement Function 
(MF), and Utility Function have to satisfy the 
postulates of the representational theory of 
measurement. By definition, each functor is a 
structure-preserving mapping and thus guarantees 
the theoretical validity of the performance 
assessment. 

We model performance self-management as a 
decision-making process in category theory as 
sequences of consecutive arrows linking 
Performance Utility to Actions to Outcomes. The 
generic functor Decision Rule: Preference Utility → 
Actions maps each object of Preference Utility to an 
object in Actions. Each action has to be mapped to 
an outcome, or set of outcomes, and each outcome is 
associated with a reward that affects the decision 
criteria (or policies). The outcome is meant to 
improve task process performance, and the 
execution of the prescribed changes is modeled with 
the generic functor Execute: Outcomes → Task  
Process.  

The diagram in Figure 3 can be abstracted as a 
concatenation of consecutive arrows Measurement 
Method (MM), Measurement Function (MF), Utility 
Function, Decision Rule, Execute. The diagram 
commutes, which guarantees reliable self-
assessment on task process performance and valid 
decision making based on performance utility. 

 

REACTIVE AUTONOMIC SYSTEM PERFORMANCE MODELING AND SELF-MONITORING WITH CATEGORY
THEORY

329



 

Indicator Category

 Preference Utility  Category

Task Process 
Category

Task 1
T1

Task2 T2

Derived M easure Category

 

[Expected 
Utility]

Decision rule

Unacceptable

Excellent

Acceptable

Utility Function

Reliability x Fault Tolerance x 
Efficiency x Fault Tolerance x 

Decision Criteria

Actions

  action
A1

execute

  action
A2

Outcom es Reward

associate
O1 O2 C1 C2

 Probability of outcome

O3 O4 C3 C4
assess

Reliability Fault 
Tolerance 

Base M easure Category

 

BM1 x BM2

Base 
M easure   

BM1

Base 
M easure 

BM2

Base 
Measure 3

BM3 x BM4 

Base 
Measure 4

MF

 

  

MF

p0
Decision 
Criteria

ComplianceEfficiency

...

MF MF

...

 

M M 

Preference 
order

...

 

p1

p2

  

p3

p4

 
Figure 3: Categorical representation of RAS metamodel with built-in performance self-monitoring. 

7 CONCLUSIONS AND FUTURE 
WORK  

The research reported in this paper proves that 
category theory can provide a sound, scientific, 
and theoretically valid basis on which to integrate 
the RAS structure and performance models, which 
can be treated as mathematical objects and 
investigated by formal analysis. It should be noted 
that the concepts of soundness and completeness 
do not arise in categorical specification. We are 
currently working on the development of a 
graphical tool to capture RAS modeling and 
performance measurement through category 
theory. 

Given the behavior of the rapidly evolving 
RAS and the need to effectively make decisions 
during runtime, there is a need to propose 
probabilistic analogs for traditional algebraic 
theories of fundamental measurement. We aim to 
achieve this goal by providing a probabilistic 
theory of software measurement which can act as a 
foundation for both measurement and decision 
making in complex RAS processes. One of the 
extensions to the current RASF formalization we 
are now investigating is the use of the Markov 
Decision Process for establishing the level of 
confidence in the choice of decision-making rules 
in a given context. The choice of actions in the 

decision-making process can be made on the basis 
of expected utilities and on the analysis of the 
probabilities associated with each alternative 
outcome. This issue will be tackled in our future 
work. 

REFERENCES 

IBM Corporation, 2006. An architectural blueprint for 
autonomic computing. White Paper, 4th Edition. 

IBM Tivoli, 2005. Policy Management for Autonomic 
Computing – Version 1.2. Tutorial, IBM Corp. 

ISO/IEC 9126-1:2001 International Standard, 2001. 
Software engineering – Product quality – Part 1: 
Quality model. 

Abdelwahed, S., Kandasamy, N., 2006. A Control-Based 
Approach to Autonomic Performance Management 
in Computing Systems. In Autonomic Computing: 
Concepts, Infrastructure, and Applications, pp. 149-
167, CRC Press. 

International Standard ISO/IEC 15939 Second Edition, 
2007. Systems and software engineering —
Measurement process.  

Roberts, F., 1979. Measurement Theory.  Encyclopedia 
of Mathematics and its Applications, Addison-
Wesley. 

Pfalzgraf, J., 2004. ACCAT tutorial. Presented at 27th 
German Conference on Artificial Intelligence (KI-
2004), September 24, 2004:  
http://www.cosy.sbg.ac.at/~jpfalz/ACCAT-
TutorialSKRIPT.pdf 

 

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

330

http://www.cosy.sbg.ac.at/%7Ejpfalz/ACCAT-TutorialSKRIPT.pdf
http://www.cosy.sbg.ac.at/%7Ejpfalz/ACCAT-TutorialSKRIPT.pdf

