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Abstract: Data replication techniques are widely used for improving availability in software applications. Replicated
systems have traditionally assumed the fail-stop model, which limits fault tolerance. For this reason, there
is a strong motivation to adopt the crash-recovery model, in which replicas can dynamically leave and join
the system. With the aim to point out some key issues that must be considered when dealing with replication
and recovery, we have implemented a replicated file server that satisfies the crash-recovery model, making
use of a Group Communication System. According to our experiments, the most interesting results are that
the type of replication and the number of replicas must be carefully determined, specially in update intensive
scenarios; and, the variable overhead imposed by the recovery protocol to the system. From the latter, it would
be convenient to adjust the desired trade-off between recovery time and system throughput in terms of the
service state size and the number of missed operations.

1 INTRODUCTION

Data replication is a well-known technique used for
improving performance and enhancing fault tolerance
in software applications. Two major classes of repli-
cation approaches are known in the literature, in terms
of who can propagate updates:active replication
(or state-machine) techniques (Schneider, 1993), in
which any replica can propagate a received update
request; andpassive replication(or primary-backup)
approaches (Budhiraja et al., 1993), where only the
replica that acts as primary is in charge of receiving
and propagating all updates, whereas the others act
as backups. Replicated systems have traditionally as-
sumed thefail-stopmodel (Schneider, 1984). Its main
advantage resides in its simplicity, since replicas only
fail when they crash, remaining forever in this state.
Nevertheless, as replicas cannot connect to the sys-
tem during normal operation, only the crash of a mi-
nority of replicas is tolerated. For this reason, there
is a strong motivation to consider thecrash-recovery
model, in which replicas can dynamically leave and
join the system. Despite being a desirable feature,
this requires a recovery protocol, where joining repli-
cas obtain the necessary changes to update their stale
state. In this context,Group Communication Systems

(GCS) (Chockler et al., 2001) greatly simplify the job
of ensuring data consistency in the presence of fail-
ures. A GCS features a membership service that mon-
itors the set of alive members and notifies member-
ship changes by means of a view change, along with
a communication service that allows group members
to communicate among themselves.

The recovery of outdated replicas can be carried
out in many ways. The simplest one would consist of
atotal recovery, by transferring the entire service state
to the joining replica. This is mandatory for repli-
cas that join the system for the first time, but it may
also be adequate if most of the data have been up-
dated since the replica failed. However, total recov-
ery can be highly inefficient if the size of the service
state is big or there have not been many updates since
the joining replica went down. In such situations, it
may be more convenient to perform apartial recov-
ery, transferring only the changes occurred during the
joining replica’s absence. Partial recovery is possible
thanks tovirtual synchrony(Chockler et al., 2001);
however, this property provided by the GCS expresses
delivery guarantees that have nothing to do with pro-
cessing. As a consequence, the real state at the join-
ing replica may differ from the last state it is assumed
it had before crashing, due to the fact that it may
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not have processed all delivered messages, causing
the amnesia phenomenon (Cristian, 1991; de Juan-
Marı́n, 2008). Thus, the joining replica will have to
obtain two types of lost messages:forgotten messages
that were delivered but not applied before failure, and
missed messagesthat were delivered at the system
during the disconnection period.

In this paper we present a replicated system that
takes advantage of the properties provided by GCSs
to support the crash-recovery model. As far as the
type of replicated service is concerned, special atten-
tion has been paid to databases (Bernstein et al., 1987;
Kemme et al., 2001). With the aim to study problems
that may arise when the operation is not performed in-
side the boundaries of a transaction, we have focused
on non-transactional services. In particular, we have
implemented a replicated file server allowing clients
to remotely execute basic operations over a structure
of directories and files. Moreover, the file server man-
ages a lock system to block files and temporarily pre-
vent other clients from accessing them. We compare
the performance of passive and active replication for
the file server, depending on the workload and rate of
reads and writes. This paper also assesses the over-
head introduced by the recovery process, analyzing
total and partial recovery in a variety of reconfigura-
tion scenarios. We intend to determine the circum-
stances in which partial recovery performs better than
total recovery, and discuss the advantages of a combi-
nation of both approaches.

The rest of the paper is organized as follows. Sec-
tion 2 depicts the system model. Section 3 details the
replication protocols we have used, whereas Section 4
includes our recovery alternatives. Section 5 presents
the evaluation of our solutions for replication and re-
covery. Finally, conclusions end the paper.

2 SYSTEM MODEL

The implemented application consists of a replicated
system supporting the crash-recovery model, which
provides high availability for a file server. The system
is partially synchronous, i.e. time bounds on message
latency and processing speed exist, but they are un-
known (Dwork et al., 1988).

The system model is shown in Figure 1. Replicas
communicate among themselves using a GCS, which
guarantees the properties of virtual synchrony. As for
the group composition, we shall consider aprimary
partition service (Chockler et al., 2001). Each replica
manages an instance of the replicated service (in this
case, a file server). Replicas also run a replication
protocol to ensure data consistency and a recovery

protocol, which handles the dynamic incorporation of
replicas. Each one is equipped with a persistent log.

When a clientCi wants to execute an operation at
the replicated system, it must build a requestreqi j ,
uniquely identified by the pair formed by the client
identifieri and a local sequence numberj that is incre-
mented for each new request.Ci submitsreqi j to one
of the replicas using an asynchronousquasi-reliable
point-to-point channel (Schiper, 2006) and waits for
the corresponding result; hence, it will not be able to
send other requests in the meantime. In order to cope
with crashes of replicas,reqi j is periodically retrans-
mitted to other replicas.

Figure 1: System model.

3 REPLICATION

Our replication protocols are based on the specifica-
tions given in (Bartoli, 1999), which provides the im-
plementation outline for a passive replication proto-
col, along with the required modifications to trans-
form it into an active replication protocol.

The algorithm for passive replication for a replica
Rm supporting the fail-stop model is presented in Fig-
ure 2. Rm handles a local counter for update opera-
tions (updateCnt), as well as a list of pairs〈i, result〉
denotedlastU pd, containing the result of the last
update operation executed on behalf of each client
Ci . During initialization,Rm applies the deterministic
functionelectPrimary(), which ensures that all alive
replicas agree on the same primary.

WhenRm receives a read request, it directly exe-
cutes it and sends the result back to the client (lines
7-9). On the contrary, if the request contains an up-
date, backups forward it to the primary, whereas the
primary sends anUniform Multicastmessage (with
FIFO order) by means of the GCS, containing the up-
date request (lines 11-12). Uniform Multicast (Bar-
toli, 1999) enables each replica that applies an update
to conclude that every other replica in the current view
will eventually apply that update or crash, thus avoid-
ing false updates. It is worth noting that read requests
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1. Initialization:

2. p := electPrimary()//Primary ID

3. updCnt:= 0 //Counter for updates

4. lastU pd:= /0 // 〈i, result〉 tuples

5.

6. a. Upon receiving (Request〈reqi j 〉) from PTPChannel

7. ⋆ if (type(reqi j ) = read) then
8. ⋄ resulti j := execute(reqi j )

9. ⋄ send(resulti j ) to Ci

10. ⋆ else // write operation

11. ⋄ if (p = Rm) then UFmulticast(Update〈reqi j 〉)

12. ⋄ else send(Request〈reqi j 〉) to p

13. b. Upon receiving (Update〈reqi j 〉) from the GCS

14. ⋆ if (sender(U pdate〈reqi j 〉) = p) then
15. ⋄ resultik := lastUpd(i)

16. ⋄ if (k < j) then
17. • resulti j := execute(reqi j )

18. • updCnt++

19. • lastUpd(i) := resulti j
20. • if (local(reqi j )) then send(resulti j ) to Ci

21. ⋄ else if ( j = k) then
22. • if (local(reqi j )) then send(resultik) to Ci

23. c. Upon receiving avchg(V)from the GCS

24. ⋆ p := electPrimary()

Figure 2: Passive replication protocol at replica Rm.

are executed as soon as they are received for the sake
of efficiency; thus, it is not ensured that a query will
always reflect the latest system state.

Upon receiving an update requestreqi j from the
GCS, it is necessary to check that it was sent from the
current primary (line 14), since the multicast primi-
tive only guarantees FIFO order, so if there has been
a change of primary, updates sent by the previous and
the current primary may arrive to replicas in different
order. Then,Rm checks whetherreqi j is duplicated,
by looking up atlastU pd the last operation executed
on behalf of clientCi (line 15). If reqi j is not du-
plicated, thenRm executes it, incrementsupdateCnt,
and if it is the one who received the request fromCi
it sends the result (lines 16-20). In case the dupli-
cate is the last request ofCi and Rm is the replica
who received that request then it responds toCi , be-
causeCi might not have received the result (lines 21-
23). Finally, upon receiving a view change, function
electPrimary()is invoked, so as to choose a primary
among surviving replicas (lines 23-24).

Transforming this protocol into an active one is
pretty straightforward: all replicas act as if they were
primary. Any replica that receives a request contain-
ing an update multicasts it, usingUniform Total Order
(Bartoli, 1999) to guarantee that all replicas receive
the same sequence of messages.

4 RECOVERY

Supporting the crash-recovery model does not only
require discarding replicas that left the system as in
the fail-stop model, but it also entails dealing with
replica (re)connections. In the latter, upon a view
change event, a recovery process must be performed
to transfer the necessary information to the joining
replicaRj , which will apply it to become up-to-date.
In our model, during the recovery process all updated
replicas continue processing incoming client requests.

The first step of the recovery process is to obtain
the list of updated replicas and choose a recoverer
among them. This can be done either by exchanging
dedicated messages, as presented in (Bartoli, 1999),
or by using the information about views (Kemme
et al., 2001). Our model considers the latter option, as
it does not require to collect multicast messages from
all view members to know which replicas are updated.
In our case, replicas keep a list of updated replicas
during normal operation: when a view change report-
ing on the leaving of a replica is delivered, that replica
is deleted from the list of updated replicas; whenRj
finishes its recovery, it multicasts a message to in-
form on its successful recovery to all alive replicas,
which will include it in the list. Upon starting the
recovery process,Rj is delivered the list of updated
replicas, chooses one of them to act as recovererRr
and sends a recovery request toRr . Upon receiving
that request,Rr obtains the recovery information and
sends it toRj , not via the GCS but using a dedicated
quasi-reliable point-to-point channel. If a timeout ex-
pires andRj has not received the recovery informa-
tion, it will choose another updated replica as recov-
erer. The transferred recovery information depends
on the type of recovery. In the following we detail the
types of recovery we have used in our system.

Total Recovery: Rr must send the service state (in
our case, the whole structure of files and directories in
the file server, along with the information regarding
current locks), as well as the content oflastU pd.

Partial Recovery: In this case each replica must
keep a persistent log to record information about ap-
plied updates. In our model we have not considered
persistent delivery, as not all GCSs support it and
its implementation is complex. If there is no persis-
tent delivery, replicas must store recovery information
during normal processing, that is, after processing
an update operation the replica persistently stores the
corresponding information, even if the current view is
the initial view. This requires to introduce a new vari-
able in the replication algorithm (Figure 2) denoting
a persistent log (LOG), and include a new action after
line 18 of Figure 2, in which〈updCnt, reqi j , resulti j 〉
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is stored in the log. We assume that update opera-
tions are idempotent, so as to avoid inconsistencies
during the recovery process. Before sending the re-
covery request,Rj restores its volatile state using the
information from its local log. Then it sends a recov-
ery request toRr , containing the sequence number of
the last applied update.Rr responds with the informa-
tion related to updates with a higher sequence number
than the one of the last update applied atRj , thus in-
cluding all forgotten and missed updates.

5 EVALUATION

Our testing configuration consists of eight computers
connected in a 100 Mbps switched LAN, where each
machine has an Intel Core 2 Duo processor running
at 2.13 GHz, 2 GB of RAM and a 250 GB hard disk
running Linux (version 2.6.22.13-0.3-bigsmp). The
file server initially includes 200 binary files of 10 MB
each. The persistent log for partial recovery is imple-
mented with a local Postgresql 8.3.5 database. Each
machine runs a Java Virtual Machine 1.6.0 execut-
ing the application code. Spread 4.0.0 has been used
as GCS, whereas point-to-point communication has
been implemented via TCP channels. In our experi-
ments we compare the performance of the implemen-
tations of passive and active replication to find the in-
fluence of a number of parameters on the saturation
point of the system. On the other hand, we assess the
cost of the recovery process and compare total and
partial recovery, considering the recovery time, the
impact of recovery on the system’s throughput and the
distribution in time of the main steps of the recovery
process.

5.1 Replication Experiments

We have evaluated the behavior of our replication pro-
tocols for the file server in a failure free environment,
depending on the following parameters: number of
replicas (from 2 to 8), replication strategy (active and
passive), percentage of updates (20%, 50% and 80%),
number of clients (1, 5, 10, 20, 30, 40, 50, 60, 80,
100, 125 and 150), number of operations per second
submitted by each client (1, 2, 4, 10 and 20) and oper-
ation size (10, 25, 50 and 100 KB). A dedicated ma-
chine connected to the same network executes client
instances. Each client chooses randomly one of the
replicas and connects to it in order to send requests
(read or write operations over a randomly selected
file) at a given rate during the experiment. Each ex-
periment lasts for 5 minutes.

Figure 3(a) shows the system performance ob-
tained with 4 replicas while incrementing the num-
ber of clients, each one sending 10 requests per sec-
ond. There is a proportional increase of the system
throughput as the number of clients grows, until a sat-
uration point is reached. As expected, system per-
formance is inversely proportional to the operation
size (due to the execution cost itself and network la-
tency), and to the update rate (as read requests are lo-
cally processed, whereas updates must be propagated
and sequentially applied at all replicas). In addition,
active and passive replication have almost the same
throughput levels when there is a low rate of updates,
as reads are handled in the same way. In contrast, pas-
sive replication is more costly if there is a high rate
of updates, since the primary acts as a bottleneck. We
shall remark that, as the constraint of uniform delivery
is responsible for the most part of multicast latency,
the cost of update multicasts is the same in passive
replication, where only FIFO order is needed, and ac-
tive replication, which requires total order. In fact,
Spread uses the same level of service for providing
Uniform Multicast, regardless of the ordering guaran-
tees (Stanton, 2009).

Figure 3(b) results from executing the same ex-
periments as in Figure 3(a), but in this case with 8
replicas in the system. From the comparison between
both figures we can conclude that an increase in the
number of replicas improves performance when there
is a low rate of updates, since read requests are han-
dled locally and therefore having more replicas allows
to execute more read requests. On the contrary, when
there is a high rate of updates, performance does not
improve, and it even becomes worse if the operation
size is small, as the cost of Uniform Multicast incre-
ments with the number of replicas. However, if the
operation size is big, the cost of Uniform Multicast is
masked by the execution costs.

5.2 Recovery Experiments

In the following we present how the recovery experi-
ments were run. The system is started with 4 replicas,
and then one of them is forced to crash. The crashed
replica is kept offline until the desired outdatedness is
reached. At that moment, the crashed replica starts
the recovery protocol. Figure 4 depicts the recovery
time depending on the recovery type. In this case, no
client requests are being issued during recovery. To-
tal recovery has been tested with different initial sizes;
therefore, the recovery process must transfer the ini-
tial data in addition to the outdated data. The results
show that, in total recovery, the recovery time is pro-
portional to the total amount of data to be transferred.
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(a) With 4 replicas. (b) With 8 replicas.

Figure 3: System throughput. Each client submits 10 requests per second.

On the other hand, in partial recovery the initial size
has no effect on the recovery time, since only the out-
dated data have to be transferred. In this case, opera-
tion size has a relevant impact on the recovery time: if
the operation size is small, a greater number of oper-
ations have to be applied, which takes more time than
applying less operations of bigger size. We can infer
that, when the total size of the service state is small,
total recovery is more efficient, especially if the re-
covering replica has missed a lot of operations. On
the contrary, if the service state is big in relation with
the outdated data, partial recovery is more convenient.

We have performed the same recovery experi-
ments as in Figure 4, but with clients sending requests
at different rates during recovery, so as to evaluate
the impact of attending client requests on the recov-
ery process. Table 1 shows the recovery time for an
outdatedness of 100, 250 and 500 MB with total and
partial recovery. During recovery, there are 10 clients

Figure 4: Recovery results (no clients during recovery).

sending 10 requests per second each, with different
operation sizes and update rates. In general, we can
conclude that the recovery time is proportionally af-
fected by the workload, as the recoverer has to pro-
cess requests while retrieving the recovery informa-
tion, and the network is also being used by the repli-
cation protocol. Furthermore, when there is a high
update rate, the recovery process takes longer because
the recovering replica must apply updates that were
delivered during the previous steps of the recovery
process, so as to catch up with the rest of the sys-
tem. In the same way, the recovery process has an
impact on the system’s overall performance. In gen-
eral, the average response time for client requests is
incremented in a 60% during the recovery process.

Finally, we have measured the relative time to ex-
ecute the four main steps of the recovery process:
reading the recovery information at the recoverer and
sending it to the recovering replica (read), obtaining
the information from the network (receive), applying
the information (apply) and processing updates re-
ceived at the recovering replica during the previous
steps (catch up). Figure 5 shows the percentage dis-
tribution in recovery time for each of the aforemen-
tioned steps. The interesting information conveyed
by this figure is that, in total recovery, the recovering

Table 1: Recovery time (in seconds). There are 10 clients
during recovery, each sending 10 requests per second.

Upd. Op. Total recovery Partial recovery

Rate Size 100MB 250MB 500MB 100MB 250MB 500MB

20% 10KB 9 29 51 21 50 101

80% 10KB 10 30 53 25 70 129

20% 50KB 9 31 52 11 28 57

80% 50KB 12 34 58 17 32 71
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replica spends most of the recovery process waiting
for the recovery information, because the recoverer
sends entire files (of 10 MB each) that need a con-
siderable amount of time to be transmitted through
the network, whereas writing each file on its local file
server is a very fast task. In contrast, in partial re-
covery the major bottleneck is theapply task, as the
recovery information consists in small parts of files,
that are transmitted faster than the time needed by the
recovering replica to write each piece of file.

Figure 5: Percentage distribution in recovery time for each
of the main recovery steps.

6 CONCLUSIONS

We have presented a replicated file server that satisfies
the crash-recovery model by implementing some of
the most representative replication and recovery tech-
niques that make use of GCSs. When comparing our
replication protocols, we have detected that in passive
replication the primary acts as a bottleneck that lim-
its system throughput, whereas in active replication
the total order multicast defines the order of updates
execution. The latency increase of this communica-
tion primitive is irrelevant since the cost of uniform
delivery (needed by both protocols) is much greater.
Moreover, the cost of uniform delivery depends on the
number of replicas, so this parameter must be care-
fully chosen, specially if the workload is write inten-
sive. On the other hand, one of the key aspects for
an efficient fault tolerance is performing the recovery
process as quickly as possible, while minimizing its
impact on the service provided. Since total and partial
recovery perform differently depending on the size of
data and the number of missed operations, the recov-
ery process could be improved by devising a com-
bined solution, in which the recoverer would decide
between total and partial recovery using a threshold
based on the two aforementioned factors. Further-
more, it would be convenient to establish the desired
trade-off between recovery time and system through-
put, according to the necessary system requirements.

Finally, we shall point out that in our model request
processing continues at updated replicas during re-
covery, which might be a problem in scenarios with
high workload, as recovering replicas may not be fast
enough to catch up with the rest of the system. It
would be interesting to implement a solution to avoid
this drawback without incurring unavailability peri-
ods, such as the one proposed in (Kemme et al., 2001),
that divides the recovery process into rounds.
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