
BUILDING COMPLEX SYSTEMS ON TOP OF WEB 2.0
Integration of Web 2.0 Services using Enterprise Service Bus

Pavel Drášil and Tomáš Pitner
Masaryk University, Faculty of Informatics, Botanická 68a, 602 00 Brno, Czech Republic

Keywords: Web 2.0, Service-Oriented Architectures, Service Integration, Mashups, ESB, BPEL.

Abstract: Service-oriented architectures are a predominant architectural style in current enterprise software systems
while Web 2.0 is a predominant paradigm in current web environment. Even if the ideological and
technological bases of the two are quite different, many similarities can be found in their view of services as
basic building blocks and service integration as a way of creating complex applications. The “Web 2.0
Platform”, introduced in this paper, bridges these two worlds by applying enterprise-oriented technologies
in Web 2.0 service integration. Its advantages are shown in a case study of a learning environment, based on
Web 2.0 services, supporting the learning patterns required by Inclusive Universal Access in learning.

1 INTRODUCTION

The term “Web 2.0” itself still has some notion of
controversy in it (Berners-Lee, 2006). But the ideas
it represents are by no means the most important
driving force of current web development and can
bring a renewed vigour to many long-established
fields of computer science such as knowledge
management (wikis, tagging, folksonomies) or
software development methodologies (frequent
releases, perpetual beta).

This paper focuses on yet another field, in which
the Web 2.0 experience can be useful – software
architectures. In section 2 we briefly review the
concepts of service and service integration in both
traditional and Web 2.0 sense. Section 3, as a result
of our research, proposes a new architecture for
Web 2.0 services’ integration based on enterprise
technologies. Consequently, the case study in
section 4 utilizes the platform to support learning
founded on Inclusive Universal Access. Finally, the
conclusion rounds the paper off and identifies some
extension points for further research and
development.

2 SERVICE-BASED SYSTEMS

Loosely coupled standalone services with defined
interfaces can be used as basic building blocks of

complex systems. This idea can be traced back to the
concept of “modular programming”, introduced in
1970s. In the late 1990s, this principle came up
again labelled “Service-oriented architecture” or
simply SOA (Gartner, 1996). One decade later, the
term “Web 2.0” was coined as a general label for the
new spontaneously evolved trends apparent in the
web (O’Reilly, 2005).

When considering the totally different origin and
evolution of SOA and Web 2.0 concepts, it is
surprising how close they got at the end - at least
from a software architect’s perspective. They both
promote easily accessible services and “composite
applications” built on top of them.

2.1 Service Integration

Both traditional SOAs and Web 2.0 deal with
integrating and orchestrating simple services in
order to create aggregate services able to support
complex requirements of their users. However, the
technological bases of the two are quite different
which leads to different solutions.

The most traditional way of implementing the
SOA principles is employing the “Web services”
technology based on HTTP, SOAP, WSDL and
UDDI specifications. However, modern SOA
implementations accompany this low-level
technology by the “Enterprise Service Bus” (ESB)
messaging layer and also by the “Web Services
Business Process Execution Language” (WS-BPEL,

179
Drášil P. and Pitner T. (2009).
BUILDING COMPLEX SYSTEMS ON TOP OF WEB 2.0 - Integration of Web 2.0 Services using Enterprise Service Bus.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 179-182
DOI: 10.5220/0002259101790182
Copyright c© SciTePress

or just BPEL) engine for service orchestration.
Interoperability of Web 2.0 services is achieved

in a different way. Web 2.0 service integrations,
usually called “Mashups”, are based on simple
protocols (HTTP used in either RPC or REST style),
simple data models (JSON, custom XML or
RSS/ATOM) and often moved from servers to
clients (Drášil et al, 2008). As opposed to traditional
SOAs, no formalized or machine-readable notations
are used for describing the service API and no
service discovery mechanisms are employed. APIs
are described textually and service discovery is left
up to the community.

The popularity of Web 2.0 services has made an
impact on legacy applications too. Many present
applications come with a built-in support for various
Web 2.0 services. Probably the best known
representative is Flock, a Firefox-based web browser
with integrated support for 21 Web 2.0 services (at
the time of writing).

3 PROPOSED ARCHITECTURE

“Web 2.0 Platform” is our contribution to the field
of Web 2.0 services’ integration. Its basic idea is that
it delivers the functionality, actually provided by
remote services with various APIs, to its client
applications through a provider-neutral WSDL-
defined interface. This way, it bridges the traditional
SOA and the upcoming Web 2.0 paradigms (as
described earlier in section 2).

Even though the platform was developed
primarily for facilitating integrations of Web 2.0
services, it allows us to integrate virtually any
software service, whether it has a Web 2.0 flavour or
not. It can be used for integrating Web 2.0 services
with legacy applications as well.

3.1 Design

“Web 2.0 Platform” consists of a platform core and
an arbitrary number of pluggable components called
“connectors” (see Figure 1).

“Connectors” provide functionality to the
platform and subsequently to its client applications.
Each connector has to provide a formal description
of its interface in the form of an abstract WSDL
definition. Remaining WSDL sections are added by
the platform core when the WSDL is published.

As you can see in Figure 1, we differentiate two
kinds of connectors – primary and secondary.
Primary connector is just a wrapper for some
external service. Even if it can do some necessary

pre- or post-processing, it delivers its functionality
primarily by calling the external service. In contrast,
secondary connectors are higher level components
that deliver their functionality by calling other
connectors – either primary or secondary – and
processing the results using built-in orchestration
logic. This division is of course of no importance for
client applications and there is no difference
between calling the operation provided by a primary
and a secondary connector.

The platform core takes care of routing requests
and responses between client applications and
connectors, publishes WSDL descriptions of
available connectors and manages user accounts.
This includes storing users’ credentials for particular
Web 2.0 services.

Figure 1: ”Web 2.0 Platform” architecture and an example
request flow.

3.2 Technologies Involved

The technological bases of the platform are well
known, widely supported, enterprise-oriented and
time-proved technologies, such as SOAP, WSDL,
JBI and BPEL.

The platform was developed as a JBI (“Java
Business Integration”) application, running in the
Apache Servicemix JBI container. JBI provided us
with a standardized message format, message

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

180

routing facilities and hot-deployability of the
connector components. The platform core is made
up of several modules (“service units” in JBI
language), whose detailed description is behind the
scope of this article. As for the connector
components, there are no limitations for their
internal structure (as long as they are able to provide
the WSDL and the declared functionality). In
secondary connectors, services can be easily
orchestrated using a declarative notation of BPEL.
In cases where the descriptive power of BPEL is not
sufficient, a full strength of the Java language can be
used.

3.3 Selection of the Right Services

There are no technological barriers preventing
incorporation of virtually any Web 2.0 service with
public API into the “Web 2.0 Platform”. However,
choosing the right service to deliver the functionality
needed may not be an easy task.

As stated in (Drášil et al, 2008), a substantial
number of services, that use the fashionable
“Web 2.0” label, were created for direct usage by
humans only and do not allow any programmatic
access. There are also services that offer an
application interface, but it does not cover all the
functionality provided by the service. Another aspect
affecting the practical usability of particular service
in the platform is the design of the API. Not all
Web 2.0 service APIs, we have met so far, are
designed for the communication to be seamless and
effective. For example in Digitalbucket, a storage-
oriented Web 2.0 service, many request-response
interactions may be necessary for converting the
name and path of a known file to its system id,
required for any further operation with the file.

In addition to functional and technological
aspects, one should consider also legal and other
non-functional characteristics of the selected
Web 2.0 service. From the legal point of view, there
are at least two points that one should find out in the
selected service’s “terms-of-service” document.
Firstly, one should ensure that the service allows
using its API for the intended purpose and in the
intended way. Secondly, one should carefully
consider if the rights reserved by the service
provider are acceptable with respect to the character
of the data to be stored in the service.

One may be hesitant about storing sensitive or
critical data in a remote service. Web 2.0 services
provided free of charge often give no guarantees
regarding users’ data security or availability.
However, if this is a concern, there are also Web 2.0
services that pledged to keep a high standard of

provided service, such as Amazon S3 promising to
ensure at least 99.9% service availability under
financial penalties. A free choice of the services
used is therefore one of the most important features
of the “Web 2.0 platform”. It allows platform
adopters to choose the services that best satisfy their
particular requirements or, if no such Web 2.0
service can be found, even to implement the
functionality on their own.

3.4 Evaluation

The proposed architecture has all the advantages and
disadvantages inherent for all service-oriented
architectures. However, there are some notable
characteristics with respect to Web 2.0 service
integration:

Advantages:
 Any Web 2.0 service with public API can be

incorporated, provided that its terms-of-
service allow such a usage.

 Legacy systems can be reused.
 Specific or critical services can be implemented

locally.
 As long as the primary connector’s interface is

designed carefully, the service used to deliver
the functionality can be replaced if needed.

 As long as the required functional base is
covered by existing primary connectors, new
mashups can be added in a declarative manner
using BPEL-based secondary connectors.

 It takes advantage of a high standard of
enterprise technologies and tools.

Challenges:
 Reliability of the “Web 2.0 platform” depends

on the reliability of the selected services and
on the reliability of the Internet connection.

 Users have to create accounts in all Web 2.0
services in use and provide their credentials to
the platform. However, a single user account
if often used in all services run by the same
company and there is also a growing number
of services ready for single sign-on systems
such as OpenID.

 Graphical user interface, a key aspect of many
Web 2.0 services, is not utilised and client
applications have to provide their own.
However, there are also Web 2.0 services,
such as Amazon S3, that do not have user

 interface at all.
 The impression of being a member of a

community, another key feature of many
Web 2.0 services, is lost. However, the

BUILDING COMPLEX SYSTEMS ON TOP OF WEB 2.0 - Integration of Web 2.0 Services using Enterprise Service Bus

181

community-related functionality may still be
available.

4 CASE STUDY

The proposed Web 2.0 Platform architecture allows
us to implement an integrated environment for
“Inclusive Universal Access in Technology-
enhanced Learning”.

Derntl and Motschnig (2007) introduced
“Inclusive Universal Access” (IA) as an extension of
“Universal Access” coined by Stephanidis and
Savidis (2001) enhanced with non-technological,
human aspects that can contribute to facilitating
social and personal growth of students in learning
and knowledge sharing settings. IA aims to actively
involve learners in all aspects of learning and
assessment; to primarily address them on all levels
of learning including intellect, skills, and
personality; and to employ universally accessible
tools to support the educational activities.

Web 2.0 represents an ideal environment giving
all learners the freedom to select their favourite
service based on their preferences, experiences, and
the services they use in the “real life” outside of the
education process. In (Pitner, Derntl, Hampel &
Motschnig, 2007) we identified the most significant
learning patterns for IA in Technology-enhanced
Learning and proposed a collection of Web 2.0
services supporting the respective patterns.

Figure 2: “Web 2.0 Platform” equipped with connectors to
services employed to accomplish selected IA learning
patterns.

As a proof-of-concept for our “Web 2.0
Platform”, we select some of the patterns covered by
the services and outline their integration into the
Platform now, thus creating a complete personalized
learning environment solution (see Figure 2). The

chosen patterns include – see (Pitner et al., 2007) for
a detailed explanation:

 Considering goals and expectations, Learning
contracts;

 Project-based learning;
 Sharing and presentation of contributions, Peer

teaching;
 Collecting feedback and opinions

5 CONCLUSIONS

The experiments with Web 2.0 Platform as an
Inclusive Universal Access learning environment
demonstrated the viability of our approach.
However, to discover its full potential, it is
necessary to extend the platform capabilities by
incorporating more Web 2.0 services via new
primary connectors, as well as to provide richer
functionality of the secondary connectors in order to
allow development of more powerful “mashups”
covering – in our case – even more learning patterns.
Another challenge is to cope with the issues listed in
section 3.4.

REFERENCES

Berners-Lee, T., 2006. developerWorks Interviews: Tim
Berners-Lee, http://www.ibm.com/developerworks/
podcast/dwi/cm-int082206txt.html, retrieved 04/01/09.

Derntl, M., Motschnig-Pitrik, R., 2007. Inclusive
Universal Access in Engineering Education, In 37th
ASEE/IEEE Frontiers in Education Conference. IEEE.

Drášil, P., Pitner, T., Hampel, T., Steinbring, M., 2008.
Get ready for mashability!, In ICEIS’08, 10th
International Conference on Enterprise Information
Systems. INSTICC.

Gartner Group, 1996. Service Oriented Architectures, Part
1 and 2, SSA Research Notes SPA-401-068 and SPA-
401-069, Gartner Press.

O’Reilly, T., 2005. What is Web 2.0?,
http://www.oreillynet.com/pub/a/oreilly/tim/news/
2005/09/30/what-is-web-20.html, retrieved 04/01/09.

Pitner, T., Derntl, M., Hampel, T., Motschnig, R., 2007.
Web 2.0 as a Platform for Inclusive Universal Access
in Cooperative Learning and Knowledge Sharing.
Journal of Universal Computer Science, Special Issue
’7th International Conference on Knowledge
Management’.

Stephanidis, C., Savidis, A., 2001. Universal Access in the
Information Society: Methods, Tools, and Interaction
Technologies, Universal Access in the Information
Society Journal, 1, 1.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

182

