
MODELING THE EVOLUTION OF SOFTWARE ENGINEERING
TRENDS

A Bottom Up Approach

Latifa Ben Arfa Rabai, Yan Zhi Bai
Institut Superieur de Gestion de Tunis, Université de Tunis, Bardo 2000, Tunisia

New Jersey Institute of Technology, Newark NJ 07102, U.S.A.

Ali Mili
New Jersey Institute of Technology, Newark NJ 07102, U.S.A.

Keywords: Bottom Up Approach, Intrinsic factors, Extrinsic factors, Historical trends, Software technology trends,
Successful trends.

Abstract: Many decision-makers in industry, government and academia routinely make decisions whose outcome
depends on the evolution of software technology trends. Even though the stakes of these decisions are
usually very high, decision makers routinely depend on expert opinions and qualitative assessments to
model the evolution of software technology. In this paper, we report on our ongoing work to build
quantitative models of the evolution of software technology trends. In particular, we discuss how we took
three trend-dependent evolutionary models and merged them into a single (trend-independent) model.

1 INTRODUCTION

Many decision-makers in industry, government and
academia routinely make decisions whose outcome
depends on the evolution of software technology
trends. For example, a corporate manager may take
decisions pertaining to the adoption of a particular
technology, the adherence to a particular standard,
the selection of a particular development
environment, etc. A government official may take
decisions pertaining to mandating a particular
standard, adopting a particular technology, or
acquiring a particular product. An academic
officeholder may take decisions pertaining to
curriculum content or to platform adoption. All
these decisions carry important stakes for the
organizations at hand and sometimes for the objects
of the decisions; yet, they are often made with
relatively little hard data, relying instead on expert
opinions and qualitative assessments.

The work we present in this paper aims to
develop quantitative models for the evolution of
software technology trends. In section 2 we briefly
discuss alternative approaches to modeling software

technology evolution and outline the main attributes
of the approach we propose. In section 3 we present
the empirical background of our project, and in
section 4 we present our quantitative approach,
along with its preliminary results. Because this is
ongoing research, we do not present an objective
validation of our proposed model, but outline a
validation plan nevertheless. In the conclusion, we
summarize and assess our main findings, then
outline directions of future research.

2 APPROACHES TO MODELING
SOFTWARE TECHNOLOGY
TRENDS

We distinguish, broadly, between two families of
approaches to modeling the evolution of software
engineering trends; we study them below, in turn.

2.1 Top Down Approach

The first approach we have considered can be

47
Ben Arfa Rabai L., Zhi Bai Y. and Mili A. (2009).
MODELING THE EVOLUTION OF SOFTWARE ENGINEERING TRENDS - A Bottom Up Approach.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 47-54
DOI: 10.5220/0002259300470054
Copyright c© SciTePress

Figure 1: Generic Evolutionary Cycle. (Cowan et al. 2002).

characterized as being analytical, and proceeding top
down. This approach breaks down the lifecycle of a
product or idea into three partially overlapping
phases (Cowan et al. 2002): Research phase,
Technology phase, and Market phase. We explore
evolutionary models for each phase.

• Research phase. To model this phase, we
have considered research on epistemology
(Rogers 1995; Kuhn 1996) and tried to
specialize it to Software.

• Technology phase. To analyze this phase,
we have considered models of technology
evolution and technology transfer (Gaines
1995; Raghavan et al. 1989, Redwine et al.
1985).

• Market phase. To analyze this phase, we
have considered models of market trends,
such as the Chasm Model (Moore 1999),
the Gold Rush Model (McConnell 1999),
and the Technology Maturation Model
(Redwine et al. 1985).

The X axis represents time, whereas the Y axis
represents activities that must take place in order for
the trend to proceed through its evolutionary cycle.
The various lags are the time periods that various
adoption processes take; the various gaps/ chasms
are the activities that must take place in order for the
trend to proceed successfully. Some trends fail
because the corresponding chasms are never crossed.
More details on this model can be found in (Cowan et
al. 2002).

2.2 Bottom Up Approach

To complement the insights gained from the top
down approach, we have also considered a bottom
up empirical approach, which builds specific

evolutionary models from empirical historical data.
To this effect we have considered three specific
families of software artifacts, namely Programming
Languages.

• Operating Systems.
• Middleware Systems.

To build a quantitative evolutionary model for
these families of artifacts, we proceed as follows:

• For each family (programming languages,
operating systems, middleware systems),
we define a sample of representative
elements.

• We define a set of intrinsic factors, which
reflect the technical attributes of each
member of the family.

• We define a set of time-dependent extrinsic
factors, which reflect the evolving
environment in which the members of the
family evolved. Whereas intrinsic factors
depend on the product family, extrinsic
factors are the same for all families of
product, and include: institutional support
which reflects how much support the
software technology/ trend is finding in
academic institutions and research
laboratories, industrial support which
reflects the amount of support the software
technology is getting in industry,
governmental support which reflects
whether or not and to what extent the
software technology is supported by a
governmental agency, organizational
support which reflects the support of
professional organizations for software
technology, and grassroots support which
reflects the support of professionals and
practitioners for the software technology.

Using this quantitative information, we build

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

48

0,00

0,50

1,00

1,50

2,00

2,50

1993 1998 2003 2008

ADA
BASIC
C
C++
FORTRAN
JAVA
PASCAL
SMALLTALK

Figure 2: Evolution of Grassroots support for programming languages (Actual and predicted).

statistical models that take the intrinsic factors and
past extrinsic factors as independent variables and
the present or future extrinsic factors as dependent
variables. These models allow us to predict the
evolution of a trend on the basis of its intrinsic
attributes and the historical evolution of its extrinsic
attributes.

3 RESEARCH BACKGROUND

3.1 Programming Languages

To analyze the evolution of programming languages,
we have considered a sample of 17 programming
languages, including: ADA, ALGOL, APL, BASIC,
C, C++, COBOL, EIFFEL, FORTRAN, JAVA,
LISP, ML, MODULA, PASCAL, PROLOG,
SCHEME, and SMALLTALK. The intrinsic factors
we have defined for programming languages
include: Reliability, Extensibility, Expressiveness,
Generality, Orthogonality, Machine independence,
Efficiency, Simplicity, Maintainability Implemen-
tability. For the sake of simplicity, we assume these
factors to be time-independent; of course, it is not
uncommon for a language to evolve with time, but
we consider that any significant evolution in its
intrinsic factor creates a new product rather than an
evolution of the existing product. This work was
completed in 2003 and collected quantitative
information on the extrinsic factors for 1993, 1998,
and 2003. A sample of the results we obtain from
our statistical analysis is given in Figure 2 (Chen et
al. 2005). The values for 2008 were derived using

the predictive model. Composed in 2003, this figure
shows how the popularity of the various
programming languages with grassroots users
evolved (as a matter of fact) between 1993 and
2003, and how it was expected to evolve
subsequently, up to 2008.

3.2 Operating Systems

To analyze the evolution of operating systems, we
have considered a sample of 15 operating systems,
including: UNIX, Solaris/Sun OS, BSDs, OS/2,
Windows, MS-DOS, MAC OS, Linux, NetWare,
HP-UX, GNU Hurd, IBM AIX, Compaq/DEC,
VMS, Multics, and OS360. The intrinsic factors we
have defined for operating systems include: Security
& Protection, Reliability, Portability, Compatibility,
Openness, Design, Scalability, Ease of learning,
Ease of use, Consistency of Interaction Protocols,
Cost, CPU Management, Memory Management and
IO Management. This work was completed in 2004
and collected quantitative information on the
extrinsic factors for 1997, 2000, and 2003. A
sample of the results we obtain from our statistical
analysis is given in Figure 3 (Peng et al. 2007). The
values for 2006 were derived using the predictive
model.

MODELING THE EVOLUTION OF SOFTWARE ENGINEERING TRENDS - A Bottom Up Approach

49

Grassroot
0

0.5

1

1.5

2

2.5

3

3.5

1997 2000 2003 2006

UNIX

Solaris/Sun OS

BSDs

OS/2

Window s

MAC OS

Linux

NetWare

HP-UX

GNU Hurd

IBM AIX

Compaq/DEC VMS

Figure 3: Evolution of Grassroots support for operating systems.

0

0,5

1

1,5

2

2,5

3

2004 2006 2008 2010

ODBC
JDBC
JMS
JavaBean
J2EE
COM
MS.NET
Geronimo
Fusion

Figure 4: Evolution of institutional support from 2006 to 2010 (Actual and predicted).

3.3 Middleware Systems

To analyze the evolution of middleware systems, we
have considered a sample of 18 middleware systems,
including: ODBC, JDBC, JavaBean, EJB, COM,
CORBA, Jini, JMS, MSMQ, MQSeries, MTS,
.NET, J2EE, JBoss, Weblogic, Websphere,
Geronimo and Fusion. The intrinsic factors we have
defined for middleware systems include:
Availability, Security and Protection, Maintenance

and management, performance, Interoperability,
Scalability, Support for existing applications, OS
supported, Languages Supported, Standard Support,
Ease of learning, Ease of use, Operation Cost,
Acquisition Cost, Tools supporting development and
management and Breadth of applicability. A sample
of the results we obtain from our statistical analysis
is given in Figure 4 (Bai 2009).

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

50

4 A GENERIC EVOLUTIONARY
MODEL

4.1 A Research Plan

In this section we discuss our plan to combine the
three specific evolutionary models to derive a
generic model that can be applied to any software
technology. To this effect, we proceed as follows:

1. We define a set of generic intrinsic factors,
that are trend independent, i.e. applicable to
any software product/ technology.
Whereas attributes such as genericity,
strong typing, and expressiveness apply
only to programming languages; whereas
attributes such as CPU management, I/O
management, Deadlock management apply
only to operating systems; and whereas
attributes such as interoperability,
scalability, and range of supported
languages apply only to middleware
systems; the attributes we choose for the
generic model apply to all software
technologies/ products. These include:
operational usefulness, functional
usefulness, usability, versatility, and cost.
Of course, these are not as meaningful as
the trend-specific factors, but for the sake
of broad applicability we trade significance
for generality.

2. We map all trend specific factors onto
trend-independent factors for any software
technology; these have been defined in
such a way as to encompass all trend
specific factors.

3. From the mapping, of trend-specific factors
to trend-independent factors, we infer
normalized values for the generic intrinsic
factors of all the products we have studied,
whether they are programming languages,
operating systems, or middleware systems.

4. For extrinsic factors, we determine the
periodicity of historical data, and we record
the values of all historical data on a
common periodicity, by appropriate
interpolations and extrapolations. We have
chosen the periodicity to be two years;
hence for each product we record extrinsic
factor values for the present, two years ago,
four years ago and six years ago. We build
a data table with all the individual products,
along with numeric values for all their
intrinsic and extrinsic factors (which are

identical for all studies, including the
generic study).

5. We derive quantitative statistical models
that relate the current or future values of
extrinsic factors as a function of the
intrinsic factors and the history of extrinsic
factors.

6. To validate the generic predictive model
that we obtain, we are currently conducting
an independent empirical study on two
technologies, data bases and web browsers,
using the generic intrinsic factors, the
common extrinsic factors, and the
periodicity determined in step 4; and we
use the results of this data to validate the
model derived in step 6.

At the time of this writing, step 7 is under way,
steps 1 through 6 are completed. The data table
alluded to in step 6 is available online at
http://web.njit.edu/~mili/tecgeneric.xls.

4.2 Regression Model for Historical
Trends

We model the state of success of a trend by a vector
of extrinsic factors that reflect its popularity with
different quarters of the technology scene:
government agencies, industrial organizations,
academic institutions, professional bodies, and end
users (grassroots). We anticipate that these factors
influence each other over time: a trend that is
widely followed in academia one year may spread to
industry several years later when students graduate
and work in industry; conversely, a trend that is
widely followed in industry one year may find its
way in academic programs years later due to
pressure from recruiters or from shifting job
markets; a trend that is widely popular with
grassroots practitioners one year may gain industrial
support later through market pressure; etc. To model
all these complex interactions, we consider the
intrinsic factors of each trend, along with the history
of its extrinsic factors, and we build a regression
model that derives the values of the extrinsic factors
of a trend at year Y as a function of the intrinsic
factors of the trend as well as the history of the
extrinsic factors of that trend in past years. We
build a linear regression equation for each extrinsic
factor; the dependent variable of each regression is
the relevant extrinsic factor, and the independent
variables are the intrinsic factors, as well as the
history of past extrinsic factors, of the trend.

We build this model by feeding it past and
present extrinsic data, and we use it as a predictive

MODELING THE EVOLUTION OF SOFTWARE ENGINEERING TRENDS - A Bottom Up Approach

51

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

2003 2005 2007 2009 2011

Operational usefullsess
Versatility
usability
Cost
Functionnal usefulness

Figure 5: Relative importance of intrinsic factors for Grassroots support.

tool by feeding it past and present data and querying
it on future data. Specifically, if we let Ey be the
vector of extrinsic factors of a trend at year y, I be
the vector of (time-independent) intrinsic factors of
the trend, then the regression function provides us
with the optimal values of α , β , γ , and δ that
minimize the error term ε in the equation:

E2009 =α *I + β * E2007 + γ *E2005 + δ E2003 +ε .
Using this regression model, we can predict the

future of extrinsic factors by applying the model to
past and present data, as shown below:

E2011 =α *I + β * E2009 + γ *E2007 + δ E2005 +ε .

where α the parameter matrix for intrinsic factors,
β the parameter matrix for extrinsic factors in
2009, γ the Parameter matrix for extrinsic factors
in 2007, δ the parameter matrix for extrinsic factors
in 2005 and ε an error term.

4.3 Profiling Successful Trends

When we study a single family of software trends
(e.g. programming languages, operating systems,
etc), it is useful to plot the chronological evolution
of each member of the family; it may be useful to
know what percentage of people will be using C++,
or C three years from now. But if we are developing
a generic evolutionary model, what is important is
not the values of the extrinsic factors per se, but

rather how intrinsic attributes are correlated to these
values. For example, we may want to know the
importance of usefulness, or usability, or versatility,
or cost, for some extrinsic factor or another.
Consider the chart above, which plots the relative
importance of the various intrinsic factors with
respect to grassroots support, and how this evolves
over time. From this chart we can infer for example
that in 2011, success in terms of grassroots support
is contingent upon the following criteria, ranked by
order of decreasing importance: cost, functional
usefulness, operational usefulness, versatility, and
usability.

By contrast, to be successful in academia in
2011, a software technology trend needs to satisfy
the following criteria, ranked by order of decreasing
importance: cost, operational usefulness, versatility,
functional usefulness, and usability.

Finally, to be successful in governmental
quarters, a software technology trend must stress
operational usefulness, followed by functional
usefulness, followed by versatility, then cost, then
usability.

5 CONCLUSIONS

In this paper we have collected the data and build a
quantitative statistical model to capture the evolution
of software technologies. This model can be

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

52

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

2003 2005 2007 2009 2011

Oprational usefulness
Versatility
Usability
Cost
Functional usefulness

Figure 6: Relative importance of intrinsic factors for Institutional support.

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

2003 2005 2007 2009 2011

Operational usefulness
Versatility
Usability
Cost
Functional usefulness

Figure 7: Relative importance of intrinsic factors for Governmental support.

applied to any software technology trend, as follows:

• We feed it information on intrinsic
attributes of the trend.

• We feed it historical information on
extrinsic attributes, such as past support
from various relevant quarters.

Using this information, our proposed model can
generate predictions in terms of future support from
relevant quarters. Such a model can be used by
various decision-makers as a source of quantitative
information, to complement expert opinions and /or
qualitative assessments. We are currently validating
this model by preparing to apply it to a new
empirical study, pertaining to data bases. One can
have some level of confidence in its validity, on the

basis of past validation of the individual empirical
studies on which this model is based (programming
languages, operating systems, middleware systems).

We hope the snapshot given in this paper reflects
the potential that our data offers. The raw data that
we have collected for this study is available online at
http://web.njit.edu/~mili/tecgeneric.xls.

REFERENCES

Bai, Y.Z., 2009. Modeling the Evolution of Middleware
Systems. Tech Report. New Jersey Institute of
Technology.

Chen, Y. F., Dios, R., Mili, A., Wu, L. and Wang, K.F.

MODELING THE EVOLUTION OF SOFTWARE ENGINEERING TRENDS - A Bottom Up Approach

53

2005. Programming Language Trends: An Empirical
Study. IEEE Software.

Cowan Robert D., Mili, A., Hany, H., Ammar, A.,
McKendall Jr., Yang, L., Chen, D. and Spencer, T.
2002. Software Engineering Technology Watch. IEEE
Software 19(4): 123-129 (2002).

Gaines, B. 1995. Modeling and Forecasting the
Information Sciences. University of Calgary, Alberta.

Kuhn, Th. S. 1996. Structure of Scientific Revolution.
University of Chicago Press.

Moore Geoffrey A. 1999. Crossing the Chasm. Harper
Business.

McConnell, S. 1999. After the Gold Rush. Microsoft
Press.

Peng, Y., Li, F. And Mili, A. 2007. Modeling the
evolution of operating systems: An empirical study.
Journal of Systems and Software. 80(1): 1-15.

Raghavan, S. and Chand, D. 1989. Diffusing Software
Engineering Methods. IEEE Software, pp 81-90, July.

Redwine Jr., Samuel, T. and Riddle William E. 1985.
Software Technology Maturation. ICSE . pp189-200.

Rogers, E.M. 1995. The Diffusion of Innovations. 4th ed.
The Free Press :New York, NY.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

54

