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Abstract. Abnormalities in the oculomotor system are well known clinical 
symptoms in patients of several neurodegenerative diseases, including 
modifications in latency, peak velocity, and deviation in saccadic movements, 
causing changes in the waveform of the patient response.  The changes in the 
morphology waveform suggest a higher degree of statistic independence in sick 
patients when compared to healthy individuals regarding the patient response to 
the visual saccadic stimulus modeled by means of digital generated saccade 
waveforms. The electro-oculogram records of six patients diagnosed with ataxia 
SCA2 (a neurodegenerative hereditary disease) and six healthy subjects used as 
control were processed to extract saccades. We propose the application of a 
blind source separation algorithm (or independent component analysis 
algorithm) in order to find significant differences in the obtained estimations 
between healthy and sick subjects. These results point out the validity of 
independent component analysis based techniques as an adequate tool in order 
to evaluate saccadic waveform changes in patients of ataxia SCA-2.  

1 Introduction 

The ocular movement records have been widely used in processing and classification 
of biological signals and pathological conditions: clinical sleep scoring [10, 11], 
cerebellar dysfunctions [12-14], diagnosis of the visual system [15, 16], amongst 
others, also in human computer interface and visual guided devices [17-19]. The 
Spino Cerebellar Ataxia type 2 (SCA-2) is an autosomal dominant cerebellar 
hereditary ataxia with the highest prevalence in Cuba, reporting up to 43 cases per 
100,000 inhabitants in the province of Holguin. In most families there is clinical and 
neuropathological evidence of additional involvement of brainstem, basal ganglia, 
spinal cord, and the peripheral nervous system [1]. This form of ataxia occurs 
commonly in persons of Spanish ancestry in north-eastern Cuba, a figure much higher 
than that found in western Cuba or in other parts of the world. The high prevalence is 
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probably the result of a founder effect, but might be due to an interaction between a 
mutant gene and an unidentified environmental neurotoxin [2, 4]. 

Several studies have reported oculomotor abnormalities in SCA2 [1, 4-8]. 
Specifically, slowness of saccades has been suggested as a relatively characteristic 
finding in SCA2[4, 8]. This fact determines significant differences in saccade 
morphology between healthy individuals and patients with SCA-2, mainly for 60º of 
stimulus amplitude. The electro-oculographical records are quite different in healthy 
individuals and patients with a severe ataxia as it is shown in Figure 1 for a smooth 
pursuit experiment.  

 

 
Fig. 1. Electro-oculographic response to a smooth pursuit stimulus (top) obtained for a healthy 
subject (center) and a patient of SCA-2 ataxia (bottom). 

2 Using Blind Source Separation for Ataxia SCA2 Diagnosis 

2.1 Hypothesis for the Proposed Method 

Independent component analysis is aimed to find a linear transformation given by a 
matrix W, so that the random variables yi, (i=1,…,n) of y=[y1,…,yn] are as 
independent as possible in: 

( ) ( )y W xt t= ⋅  (1) 

This linear blind source separation approach is suitable for the signals obtained by 
the EOG, as well as in other medical analysis such as electroencephalography (EEG), 
electrocardiography (ECG), magneto-encephalography (MEG), and functional 
magnetic resonance imaging (fMRI) [20-26]. 
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As it was shown in Section 1, in the analysis of EOG oriented to the detection of 
SCA2 experts anticipate two possible behaviors of the individuals:  sick and healthy 
conduct. During an experiment over a healthy subject, the horizontal movement of the 
eye is expected to follow the stimulus signal. Therefore, the horizontal eye movement 
and the stimulus will hold a direct dependence between them, i.e. the signals are not 
independent. In contrast, a sick individual may present a more chaotic response, 
depending on the severity of the disease. Consequently, the subject response will not 
depend in such a high degree on the stimulus signal, and the signals are independent 
(or at least, “not so dependent”). 

Therefore, the proposed methodology uses independent component analysis as a 
classification algorithm criterion: if the independence measure (normally mutual 
information) reveals independence between the individual response and the stimulus 
signal, then it is rather possible that the individual presents some degree of ataxia or 
related disease.  

2.2 Description of the Blind Source Separation Algorithm 

The proposed algorithm for ataxia SCA-2 diagnosis will go along the following steps: 

1. Set both horizontal response and stimulus signal in the same phase, i.e. correct the 
delay between the stimulus change and the saccade. 

2. Normalize signals (x). 
3. Apply ICA algorithm. Any well known ICA algorithm may be applied at this point 

(FastICA [27], Jade [28], GaBSS [29-30], etc.).  
4. Normalize estimations (y)  
5. Calculate error measure between estimations (y) and mixtures (x) according to the 

root mean square error expression: 
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6. Depending on the obtained error measure, a simple categorization algorithm (such 
as C-means) may be applied in order to classify individuals. Otherwise, a human 
expert may help in subject categorization based on the ICA results.  

3 Results 

The electro-oculogram recordings of six patients with severe ataxia and six healthy 
subjects diagnosed and classified in the “Centre for the Research and Rehabilitation 
of Hereditary Ataxias (CIRAH)” were used in order to perform the analysis of 
repeated ocular saccadic movement tests for 10º, 20º, 30º and 60º divergence stimuli.  

52



 

 
Fig. 2. Stimulus (1), response (2) and ICA components (3 and 4) obtained at 60º of stimulation 
for patients (top) and control subjects (bottom). 

All the records were carried out by the medical staff of CIRAH. Each individual 
was placed in a chair, with a head fixation device to avoid head movements, the 
variables were collected by a two channel electronystagmograph (Otoscreen, Jaeger-
Toennies). Recording conditions were set as follows: electrodes of silver chloride 
placed in the external borders of right eye (active electrode) and left eye (reference 
electrode), high pass filtering 0.002 Hz, low pass filtering 20 Hz, sensitivity 200 
µV/division, and sampling frequency 200 Hz. For stimulus generation a black screen 
CRT display showing a white circular target with an angular size of 0.7º was used. 
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The stimulus and patient response data are automatically stored in ASCII files by 
Otoscreen electronystagmograph. 

The patient response was filtered using a median filter, to obtain a clean waveform 
of the patient response, afterwards it was phased with the stimulus. Finally FastICA 
was applied to get the independent components (See Figure 2).  

As Figure 3 depicts, results show that the error measure obtained for SCA-2 
patients is clearly differentiable for the same measure obtained for control subjects. 
That is due to the fact mentioned in the hypothesis (Section 2.1) that if the 
independence measure reveals independence between the individual response and the 
stimulus signal, then it is possible that the individual presents some degree of ataxia. 
When the original signals (stimulus and response) were independent, the estimations 
are close to those sources and, therefore, the RMS error decreases. 
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Fig. 3. Root mean squared error between the estimations and the sources after the application of 
the algorithm to EOG data corresponding to SCA-2 patients (left) and control subjects (right). 

4 Discussion 

The results were obtained from six control subjects and six patients. Confirming our 
hypothesis, starting from electro-oculography experiments, patients showed a 
different behavior in terms of the visual response to a fixed stimulus (see Figure 2 and 
Figure 3). Therefore, after applying our proposed approach to the raw EOG data, 
classification and diagnosis can be made easily by simple human inspection of the 
results. Nevertheless, further research in this line may help in the categorization of the 
several stages of severity of SCA-2.  

The proposed method starts from the assumption that the response to a visual 
stimulus is different in a healthy individual when compared to the response of an 
individual afflicted by SCA-2. In the later situation, the response from the individual 
is not dependent on the visual stimulus, so that the ICA algorithm estimations will be 
similar to the obtained observations. This criterion has shown to be suitable in order 
to distinguish between sick (patients) and healthy (control) individuals. 
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