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Abstract. The development of a parallel algorithm for batch pattern training of 
a multilayer perceptron with the back propagation algorithm and the research of 
its efficiency on a general-purpose parallel computer are presented in this paper. 
The multilayer perceptron model and the usual sequential batch pattern training 
algorithm are theoretically described. An algorithmic description of the parallel 
version of the batch pattern training method is introduced. The efficiency of the 
developed parallel algorithm is investigated by progressively increasing the 
dimension of the parallelized problem on a general-purpose parallel computer 
NEC TX-7. A minimal architecture for the multilayer perceptron and its 
training parameters for an efficient parallelization are given. 

1 Introduction 

Artificial neural networks (NNs) have excellent abilities to model difficult nonlinear 
systems. They represent a very good alternative to traditional methods for solving 
complex problems in many fields, including image processing, predictions, pattern 
recognition, robotics, optimization, etc [1]. However, most NN models require high 
computational load, especially in the training phase (up to days and weeks). This is, 
indeed, the main obstacle to face for an efficient use of NNs in real-world 
applications. Taking into account the parallel nature of NNs, many researchers have 
already focused their attention on their parallelization [2-4]. Most of the existing 
parallelization approaches are based on specialized computing hardware and 
transputers, which are capable to fulfill the specific neural operations more quickly 
than general-purpose parallel and high performance computers. However 
computational clusters and Grids have gained tremendous popularity in computation 
science during last decade [5]. Computational Grids are considered as heterogeneous 
systems, which may include high performance computers with parallel architecture 
and computational clusters based on standard PCs. Therefore, existing solutions for 
NNs parallelization on transputer architectures should be re-designed. Parallelization 
efficiency should be explored on general-purpose parallel and high performance 
computers in order to provide an efficient usage within computational Grid systems.  

Many researchers have already developed parallel algorithms for NNs training on 
weights (connections), neuron (node), training set (pattern) and modular levels [6-10]. 
The first two levels are a fine-grain parallelism and the second two levels are a 
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coarse-grain parallelism. Connection parallelism (parallel execution on sets of 
weights) and node parallelism (parallel execution of operations on sets of neurons) 
schemes are not efficient while executing on a general-purpose high performance 
computer due to high synchronization and communication overhead among parallel 
processors [10]. Therefore coarse-grain approaches of pattern and modular 
parallelism should be used to parallelize NNs training on general-purpose parallel 
computers and computational Grids [9]. For example, one of the existing 
implementation of the batch pattern back propagation (BP) training algorithm [6] has 
efficiency of 80% while executing on a 10 processors of transputer ТМВ08. 
However, the efficiency of this algorithm on general-purpose high-performance 
computers is not researched yet. 

The goal of this paper is to research the parallelization efficiency of parallel batch 
pattern BP training algorithm on a general-purpose parallel computer in order to form 
the recommendations for further usage of this algorithm on heterogeneous Grid 
system. 

2 Architecture of Multilayer Perceptron and Batch Pattern 
Training Algorithm 

It is expedient to research parallelization of multi-layer perceptron (MLP) because 
this kind of NN has the advantage of being simple and provides good generalizing 
properties. Therefore it is often used for many practical tasks including prediction, 
recognition, optimization and control [1]. However, parallelization of an MLP with 
the standard sequential BP training algorithm does not provide efficient 
parallelization due to high synchronization and communication overhead among 
parallel processors [10]. Therefore it is expedient to use the batch pattern training 
algorithm, which updates neurons’ weights and thresholds at the end of each training 
epoch, i.e. after the presentation of all the input and output training patterns, instead 
of updating weights and thresholds after the presentation of each pattern in the usual 
sequential training mode. 

The output value of a three-layer perceptron (Fig. 1) can be formulated as:  
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where  is the number of neurons in the hidden layer,  is the weight of the 
synapse from neuron  of the hidden layer to the output neuron,  are the weights 
from the input neurons to neuron  in the hidden layer,  are the input values,  
are the thresholds of the neurons of the hidden layer and T  is the threshold of the 
output neuron [1, 11]. In this study the logistic activation function  
is used for the neurons of the hidden ( ) and output layers ( ), but in general case 
these activation functions could be different. 

N 3jw

i

3F

j ijw

(F

j x jT

)x−1/(1) ex +=

2F

The batch pattern BP training algorithm consists of the following steps [11]: 
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Fig. 1. The structure of a three-layer perception. 

1. Set the desired error (Sum Squared Error) SSE= minE  and the number of training 
iterations t ; 

2. Initialize the weights and the thresholds of the neurons with values in range 
(0…0.5) [12]; 

3. For the training pattern pt : 
3.1. Calculate the output value )(ty pt  by expression (1); 

3.2. Calculate the error of the output neuron )() , where  

is the output value of the perceptron and )(td pt  is the target output value; 

()(3 tdtyt ptptpt −=γ )(ty pt

3.3. Calculate the hidden layer neurons’ error ))(( , 

where )(tS pt  is the weighted sum of the output neuron; 

)()()( 333 tSFtwtt pt
j

ptpt
j ′⋅⋅= γγ

3.4. Calculate the delta weights and delta thresholds of all perceptron’s neurons 
and add the result to the value of the previous pattern 

)())( , ))(( , 

)())( , ))(( , 

where )(tS pt
j  and )(th pt

j  are the weighted sum and the output value of the  
hidden neuron respectively; 
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3.5. Calculate the SSE using ( )2)()(
2
1)( tdtytE ptptpt −= ; 

4. Repeat the step 3 above for each training pattern pt , where { }PTpt ,...,1∈ , PT  is 
the size of the training set; 

5. Update the weights and thresholds of neurons using ijijij wstwPTw Δ⋅−= )()0()( α , 

jjj TstTPTT Δ⋅+= )()0()( α , where )(tα  is the learning rate; 

6. Calculate the total SSE )(tE  on the training iteration t  using ∑
pt

pt tE ; 
=

=tE
1

)()(
PT

7. If )(tE  is greater than the desired error minE  then increase the number of training 
iteration to 1+t  and go to step 3, otherwise stop the training process. 
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3 Parallel Batch Pattern Back Propagation Training Algorithm 

It is obvious from analysis of the batch pattern BP training algorithm in Section 2 
above, that the sequential execution of points 3.1-3.5 for all training patterns in the 
training set could be parallelized, because the sum operations ijwsΔ  and  are 
independent of each other. For the development of the parallel algorithm it is 
necessary to divide all the computational work among the Master (executing 
assigning functions and calculations) and the Slaves (executing only calculations) 
processors.  

jTsΔ

The algorithms for Master and Slave processors functioning are depicted in Fig. 2. 
The Master starts with definition (i) the number of patterns PT in the training data set 
and (ii) the number of processors p used for the parallel executing of the training 
algorithm. The Master divides all patterns in equal parts corresponding to number of 
the Slaves and assigns one part of patterns to himself. Then the Master sends to the 
Slaves the numbers of the appropriate patterns to train.  

Each Slave executes the following operations for each pattern pt among the PT/p 
patterns assigned to him: 

• calculate the points 3.1-3.5 and 4, only for its assigned number of training 
patterns. The values of the partial sums of delta weights ijwsΔ  and delta 
thresholds jTsΔ  are calculated here; 

• calculate the partial SSE for its assigned number of training patterns. 
After processing all its assigned patterns, each Slave waits for the other Slaves and 

the Master at the synchronization point. At the same time the Master computes the 
partial values of  and  for its own (assigned to himself) number of training 
patterns.  

ijwsΔ jTsΔ

The global operations of reduction and summation are executed just after the 
synchronization point. Then the summarized values of the ijwsΔ  and jTsΔ  are sent to 
all the processors working in parallel. Using a global reducing operation and 
simultaneously returning the reduced values back to the Slaves allows a decrease of 
the time overhead in the synchronization point. Then the summarized values of  
and  are placed into the local memory of each processor. Each Slave and the 
Master use these values  and 

ijwsΔ

jTsΔ

ijwsΔ jTsΔ  in order to update the weights and thresholds 
according to the point 5 of the algorithm. These updated weights and thresholds will 
be used in the next iteration of the training algorithm. As the summarized value of 

 is also received as a result of the reducing operation, the Master decides 
whether to continue the training or not. 

)(tE

The software routine is developed using the C programming language with the 
standard MPI library. The parallel part of the algorithm starts with the call of the 
MPI_Init() function. The parallel processors use the synchronization point 
MPI_Barrier(). The reducing of the deltas of weights ijwsΔ  and thresholds  is 
provided by function MPI_Allreduce(), which allows to avoid an additional step for 
sending back the updated weights and thresholds from the Master to each Slave. 
Function MPI_Finalize() finishes the parallel part of the algorithm. 

jTsΔ
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Fig. 2. The algorithms of the Master (a) and the Slave (b) processors. 

4 Experimental Researches 

Our experiments were carried out on a parallel supercomputer NEC TX-7, located in 
the Center of Excellence of High Performance Computing, University of Calabria, 
Italy (www.hpcc.unical.it). NEC TX-7 consists in 4 identical units. Each unit has 4 
Gb RAM, 4 64-bit processors Intel Itanium2 with a clock rate of 1 GHz. This 16th-
processor computer with 64 Gb of total RAM has a performance peak of 64 GFLOPS. 
The NEC TX-7 is functioning under the Linux operation system.  

As shown in [12], the parallelization efficiency of parallel batch pattern BP 
algorithm for MLP does not depend on the number of training epochs. Parallelization 
efficiencies of this algorithm are respectively 95%, 84% and 63% on 2, 4 and 8 
processors of the general-purpose NEC TX-7 parallel computer for a 5-10-1 MLP 

83



with 794 training patterns and an increasing number of training epochs from 104 to 
106.  

As shown in [7], parameters such as the number of training patterns and the 
number of adjustable connections of NN (number of weights and thresholds) define 
the computational complexity of the training algorithm and, therefore, exert influence 
on its parallelization efficiency. Therefore, research efficiency scenarios should be 
based on these parameters. In this case the purpose of our experimental research is to 
answer the question: what is the minimal/enough number of MLP connections and 
what is the minimal/enough number of training patterns in the input data set for the 
parallelization of batch pattern BP training algorithm to be efficient on a general-
purpose high performance computer? 

The following architectures of MLP are researched in order to provide the analysis 
of efficiency: 3-3-1 (3 input neurons × 3 hidden neurons = 9 weights between the 
input and the hidden layer + 3 weights between the hidden and the output layer + 3 
thresholds of the hidden neurons and 1 threshold of the output neuron = 16 
connections), 5-5-1 (36 connections), 5-10-1 (71 connections), 10-10-1 (121 
connections), 10-15-1 (181 connections), 15-15-1 (256 connections), 20-20-1 (441 
connections). The number of training patterns is changed as 25, 50, 75, 100, 200, 400, 
600 and 800. It is necessary to note that such MLP architectures and number of 
training patterns are typical for most of neural-computation applications. During the 
research the neurons of the hidden and output layers have logistic activation 
functions. The number of training epochs is fixed to 105. The learning rate is constant 
and equal 01.0)( =tα .  

The parallelization efficiency of the batch pattern BP training algorithm is 
depicted in Figs. 3-5 on 2, 4 and 8 processors of NEC TX-7 respectively. The 
expressions S=Ts/Tp and E=S/p×100% are used to calculate a speedup and efficiency 
of parallelization, where Ts is the time of sequential executing the routine, Tp is the 
time of parallel executing of the same routine on p processors of parallel computer. It 
is necessary to use the obtained results as the following: (i) first to choose the number 
of parallel processors used (Fig. 3 or Fig. 4 or Fig. 5), (ii) then to choose the curve, 
which characterizes the necessary number of perceptron’s connections and (iii) then 
to get the value of parallelization efficiency from ordinate axes which corresponds to 
the necessary number of training patterns on abscissa axes. For example, the 
parallelization efficiency of the MLP 5-5-1 (36 connections) is 65% with 500 training 
patterns on 4 processors of NEC TX-7 (see Fig. 4). Therefore the presented curves are 
the approximation characteristics of a parallelization efficiency of the certain MLP 
architecture on the certain number of processors of a general-purpose parallel 
computer. 

As it is seen from the Figs. 3-5, the parallelization efficiency is increasing when 
the number of connections and the number of the training patterns is increased. 
However, the parallelization efficiency is decreasing for the same scenario at 
increasing the number of parallel processors from 2 to 8. The analysis of the Figs. 3-5 
allows defining the minimum number of the training patterns which is necessary to 
use for efficient parallelization of the batch pattern training algorithm at the certain 
number of MLP connections (Table 1).  
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Fig. 3. Parallelization efficiency on 2 processors of NEC TX-7. 

 
Fig. 4. Parallelization efficiency on 4 processors of NEC TX-7. 

 
Fig. 5. Parallelization efficiency on 8 processors of NEC TX-7. 
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For example, the Table 1 shows that the number of training patterns should be 100 
and more (100+) for efficient parallelization of MLP with the number of connections 
more than 16 and less and equal than 36. As it is seen from the Table 1, it is necessary 
to use more training patterns in a case of small MLP architectures. The minimum 
number of the training patterns is increasing in a case of parallelization on the bigger 
number of parallel processors. 

Table 1. Minimum number of training patterns for efficient parallelization on NEC TX-7. 

2 processors 4 processors 8 processors 
Connections 
number, C 

Training 
patterns 

Connections 
number, C 

Training 
patterns 

Connections 
number, C 

Training 
patterns 

16 < C ≤ 36 100+ 16 < C ≤ 36 200+ 16 < C ≤ 36 200+ 
36 < C ≤ 71 75+ 36 < C ≤ 71 100+ 36 < C ≤ 71 100+ 

71 < C ≤ 256 50+ 71 < C ≤ 256 50+ 71 < C ≤ 121 75+ 
C > 256 25+ C > 256 25+ C > 121 50+ 

5 Conclusions 

The parallel batch pattern back propagation training algorithm of multilayer 
perceptron is developed in this paper. The analysis of parallelization efficiency is 
done for 7 scenarios of increasing the perceptron’s connections (number of weights 
and thresholds), in particular 16, 36, 71, 121, 181, 256 and 441 and increasing the 
number of training patterns, in particular 25, 50, 75, 100, 200, 400, 600, 800. The 
presented results can be used for estimation a parallelization efficiency of concrete 
perceptron model with concrete number of training patterns on the certain number of 
parallel processors of a general-purpose parallel computer. The experimental research 
proves that the parallelization efficiency of batch pattern back propagation training 
algorithm is (i) increasing at increasing the number of connections and increasing the 
number of the training patterns and (ii) decreasing for the same scenario at increasing 
the number of parallel processors from 2 to 8. The results of analysis of minimum 
number of training patterns for efficient parallelization of this algorithm show that (i) 
it is necessary to use more training patterns in case of small architectures of 
multilayer perceptron and (ii) the minimum number of the training patterns should be 
increased in a case of parallelization on the bigger number of parallel processors. 

The provided level of parallelization efficiency is enough for using this parallel 
algorithm in Grid environment on the general-purpose parallel and high performance 
computers. For the future research it is expedient to estimate the factors of decreasing 
the parallelization efficiency of batch pattern back propagation training algorithm at 
small number of training patterns and small number of adjustable connections of 
multilayer perceptron. 
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