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Abstract: In this article a procedure to tune robust Generalized Predictive Controllers (GPC) is presented. To tune
the controller parameters a multiobjective optimization problem is formulated so the designer can consider
conflicting objectives simultaneously without establishing any prior preference. Moreover model uncertainty,
represented by a list of possible models, is considered. The multiobjective problem is solved with a specific
Evolutionary Algorithm (ev-MOGA). Finally, an application to a non-linear thermal process is presented to
illustrate the technique.

1 INTRODUCTION

Generalized predictive control (GPC) (Clarke et al.,
1987a) (Clarke et al., 1987b) has been shown to be an
effective way of controlling single-input single-output
processes. The strategy proposed by GPC is simple to
understand and makes good practical sense: predict
the behaviour of the output as a function of future con-
trol increments and minimize over these increments a
cost index. This cost includes the errors between pre-
dicted and desired outputs and the control effort. De-
spite its advantages, tuning GPC methods are based
on a linear models, which are usually adjusted around
an operating point. When the process operates out-
side the validity zone of the model (where differences
between model and process behaviour increase) poor
control performance is obtained since in that case the
tuning is suboptimal even close-loop stability could
take place.

To avoid that, robust GPC tuning approach is as-
sumed. In this case model uncertainties are taking
into account to cover non-modelled dynamics (such
as non linearities, high frequency dynamics, and so
on) and measurement noise (Reinelt et al., 2002). The
simpler the model is the bigger uncertainties are, pro-
ducing an excess of conservativeness in the tuning
result, which give as a result a loss of performance
in the close-loop control. Therefore the goal is to
achieve robust tunings with good performance at the
same time, for instance, minimizing error or control
effort. Objectives that are usually in contraposition.

The GPC tuning methodology that is presented
tries to achieve that goal by:

• Using non-linear parametric models with uncer-
tainty. The uncertainty is consider by means of a
set of models, the Feasible Parameter Set (FPS∗).
Although the real process is not known, assume
that it lies within theFPS∗ (Walter and Piet-
Lahanier, 1990).

• Proposing a Multiobjective optimization (MO)
GPC tuning approach.

Optimal tuning considers not only a nominal model
but theFPS adjusting the controller parameters for
the worst case (the most unfavorable model). More-
over, because the tuning method has to consider
conflicting objectives, an optimization multiobjective
problem is stated where each objective minimizes the
maximum cost function for all the models in the un-
certainty description.

Multiobjective optimization (MO) techniques
present advantages as compared with single objective
optimization techniques due to the possibility of giv-
ing a solution with different trade-offs among differ-
ent individual objectives so that the Decision Maker
(DM) can select an appropriate final solution.

The presence of multi-modal MO functions and
non-convex constrined spaces needs optimizer with
good performance. A good choice are stochastic op-
timizers such as the Evoluationary Algorithms (EAs)
(Coello et al., 2002) that can work well with multi-
modal and non-convex problems, in particular, the al-
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gorithms used in this work will be the ev-MOGA one
(Herrero et al., 2007c; Herrero et al., 2007b).

This paper is organized as follows. Section 2
presents GPC formulation, section 3 introduces tun-
ing procedure proposed in this article, section 4 de-
scribes briefly used. Section 5 illustrates the GPC tun-
ing procedure with the example of a thermal process.
Finally, some concluding remarks are reported in sec-
tion 6.

2 GPC FORMULATION

The GPC formulation with quadratic cost index has
been extensively developed in (Clarke et al., 1987a),
(Clarke et al., 1987b). Such formulation uses the fol-
lowing CARIMA stochastic model:

y(t) =
B(z−1)

A(z−1)
u(t −1)+

T(z−1)

∆A(z−1)
d(t) (1)

where: u(t) and y(t) are the process input and out-
put respectively,d(t) the disturbance (white noise),
T(z−1) is a polynomial used to filter disturbance and,
B(z−1) andA(z−1) are the polynomial transfer func-
tion of the discrete model. A GPC controller is ob-
tained through the optimization of the following cost
index and applying Receding Horizon:

J(∆u) = E[
N2

∑
i=N1

α[y(t + i)− r(t)]2 +
Nu

∑
j=1

λ[∆u(t + j −1)]2]

(2)
where N = N2 − N1 + 1 is the prediction hori-
zon, Nu is the control horizon,α is the pre-
diction error weighting factor, λ is the con-
trol weighting factor, r(t) is the setpoint, and
[ ∆u(t) ∆u(t +1) · · · ∆u(t +Nu−1) ]T are the
control actions.

Optimizing index (2) and applying Receding
Horizon (so that, using only∆u(t)) the following GPC
expression is obtained:

u(z) =
T(z−1)

(

H0r(z)− S(z−1)
T(z−1)

y(z)
)

(T(z−1)+R(z−1)z−1)∆

Figure 1 represents implementation of this controller
with a block diagram.

3 MULTIOBJECTIVE TUNING
OF ROBUST GPC

Let’s assume the following model structure:

ẋ(t) = f (x(t),u(t),θ), ŷ(t,θ) = g(x(t),u(t),θ) (3)
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Figure 1: Control structure for GPC.r represents the set
point for the outputy.

where: f (.),g(.) are the non-linear functions of the
model; θ ∈ RL is the vector of unknown model pa-
rameters;x(t) ∈ Rn is the vector of model states;u(t)
is the input process and ˆy(t,θ) the output.

Asume θn are the parameters of the nominal
model which belong toFPS

FPS:= {θ1, . . . ,θp} (4)

that represents the model parameters uncertainty.
The possible controller parameters to tune arek =

{N1,N2,Nu,α,λ,T(z)}. To obtain the controller the
following MO problem can be formulated:

min
k∈D

J(k) = min
k∈D

[J1(k),J2(k), . . . ,Js(k)] (5)

whereJi(k), i ∈B := [1. . .s] are the objectives to min-
imize andk is a solution inside the solution spaceD.

Since each objective to minimize has to take into
account the model uncertaintyFPS∗ then

Ji(k) = max
θ∈FPS∗

φi (6)

where the cost functionφi is the real objective to min-
imize for the worst model case belonging toFPS∗.
Some typical criteria are: the norm of the control ac-
tion: φi = ||u(t)||, the norm of the rate of change of
control action:φi = ||∆u(t)||, the norm of the error:
φi = ||r(t)− y(t)|| or the norm of the error weighted
with time: φi = ||t(r(t)−y(t))||.

Anyway, to solve the MO problem the Pareto op-
timal setKP (solutions where no-one dominates oth-
ers) must be found.KP is unique and normally in-
cludes infinite solutions. Hence a setK∗

P (which is not
unique), with a finite number of elements fromKP,
should be obtained (see (Coello et al., 2002) for de-
tails of MO problems). To obtainK∗

P a MOEA known
as the ev-MOGA algorithm (Herrero et al., 2007c;
Herrero et al., 2007b) will be used.

Finally a unique solutionk∗ of the Pareto optimal
setK∗

P has to be selected. The selection procedure is
based on designer preferences and can differs depend-
ing on design needs. Since all Pareto optimal points
are non-dominated any selection made will be always
optimal.
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4 EV-MOGA ALGORITHM

ev-MOGA (previously calledεր-MOGA, (Herrero
et al., 2007b; Herrero et al., 2007c)) is an elitist mul-
tiobjective evolutionary algorithm based on the con-
cept ofε-dominance (Laumanns et al., 2002). A com-
pleted and detailed version of ev-MOGA algorithm is
developed in (Herrero, 2006) where the performance
of the algorithm is tested by facing up to classical
benchmarks for MO. It obtains anε-Pareto set,K∗

P,
that converges towards the Pareto optimal setKP in
a distributed manner around Pareto frontJ(KP), with
limited memory resources. Next a brief description of
the ev-MOGA algorithm is presented.

ev-MOGA adjusts the limits of the Pareto front
J(K∗

P) dynamically and prevents the solutions belong-
ing to the ends of the front from being lost. For this
reason, the objective space is split up into a fixed num-
ber of boxesn_boxi , for each dimensioni, so that this
grid preserves the diversity ofJ(K∗

P) since one box
can be occupied by only one solution. This fact pre-
vents that the algorithm converges towards just one
point or area inside the objective space (see Fig. 2).
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Figure 2: The concept ofε-dominance. ε-Pareto Front
J(K∗

P) in a two-dimensional problem.Jmin
1 , Jmin

2 , Jmax
1 ,

Jmax
2 , Pareto front limits;ε1, ε2 box widths; andn_box1,

n_box2, number of boxes for each dimension.

The algorithm is composed of three populations:
The main populationP(t) which explores the search-
ing spaceD during the algorithm iterations (t). Its
Population size isNindP; the archiveA(t) which
stores the solutionK∗

P. Its sizeNindA can vary but
it will never be higher than

Nind_max_A =
∏s

i=1n_boxi +1
n_boxmax+1

(7)

wheren_boxmax= max([n_box1, . . . ,n_boxs]) and the
auxiliary populationG(t). Its size isNindG, which
must be an even number.

The pseudocode of the ev-MOEA algorithm is
given by

1. t:=0; A(t):= /0;
P(t):=ini_random(D)
2. eval(P(t))
3. A(t):=storeini(P(t),A(t))
4. while t<t_max {
5. G(t):=create(P(t),A(t))
6. eval(G(t))
7. A(t+1):=store(G(t),A(t))
8. P(t+1):=update(G(t),P(t))
9. t:=t+1 }

The main steps of the algorithm are detailed as
follows:

Steps 2 and 6. Function eval calculates function
value (Equation (5)) for each individual inP(t)
(step 2) andG(t) (step 6).

Step 3. Functionstoreini checks individuals ofP(t)
that might be included in the archiveA(t) as fol-
lows:

1. Non-dominatedP(t) individuals are detected,
KND.

2. Pareto front limitsJmax
i andJmin

i are calculated
from J(k),∀k ∈ KND.

3. Individuals inKND are analyzed, one by one,
and those that are notε-dominated by individu-
als inA(t), will be included inA(t).

Step 5. Functioncreate creates individual ofG(t) by
using linear recombination technique and random
mutation with Gaussian distribution.

Step 7. Functionstore checks, which individuals in
G(t) must be included inA(t) on the basis of their
location in the objective space. Only individu-
als which are notε-dominated by any individual
from A(t) will be included (if its box is occu-
pied by an individual notε-dominated too, then
the individual lying farthest away from the cen-
tre box will be eliminated). Individuals fromA(t)
which areε-dominated by individual ofG(t) will
be eliminated. Also this function updates the lim-
its Jmax

i ,Jmin
i of the Pareto front if it is necessary.

Step 8. Functionupdate updatesP(t) with individ-
uals fromG(t). Every individualkG from G(t)
is compared with an individualkP randomly se-
lected fromP(t). If kG dominateskP thenkG re-
placeskP. kP will not be included inP(t) if there
is no individual inP(t) dominated bykG.

Finally, individuals fromA(t) compound the MO
problem solutionK∗

P.
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5 ROBUST GPC TUNING FOR A
THERMAL PROCESS

A scale furnace with a resistance placed inside is con-
sidered. A fan continuously introduces air from out-
side (air circulation) while energy is supplied by an
actuator controlled by voltage. Taking into account
heat transfer phenomena (conduction, convection and
radiation) the dynamics of the resistance temperature
can be modelled by

ẋ(t) =

(

θ1u(t)2−θ2 (x(t)−Ta(t))−
θ3(273+x(t))4

1004

)

1000
,

(8)

ŷ(t) = x(t), (9)

where: ẋ(t) is the model state;u(t) is the input
voltage with rank 0 - 100 (%); ˆy(t) is the resistance
temperature (oC) (model output);Ta(t) is the air tem-
perature (oC) andθ = [θ1,θ2,θ3]

T are the model pa-
rameters.

To obtain the (FPS∗), which characterize the
model uncertainty, the robust identification method
presented in (Herrero et al., 2007a) was applied. The
FPS∗ is discrete characterization of the parameter set
which keeps the model predictions error bounded for
certain norms and bounds.

In this example∞-norm and absolute norm are si-
multaneously used to determine theFPS∗. Bounds
are selected in order to hold theFPS∗ models predic-
tions errors lower than 2oC and their average values
lower than 0.8oC.

The resultingFPS∗ contains 304 models (for more
details see (Herrero et al., 2007c)).

The nominal modelθn = [0.0776,4.52,0.176] ∈
FPS∗ is linearized in the[y,u] = [56.1,50] point and
converted to discrete time withTs = 10 sample time
obtaining the following modelB(z−1) = 0.0758z−1

andA(z−1) = 1−0.9533z−1. The following GPC pa-
rameters are fixedN1 = Nu = α = 1,T(z−1) = A(z−1)
whilst N2 andλ will be tuned. Therefore the search-
ing space is defined byN2 ∈ [5,6, . . .100] and λ ∈
[0.1. . .100]. The functions selected are the follow-
ings:

φ1 =
||r(t)−y(t)||1

N
,φ2 = ||∆u(t)||1 .

with r(t) = [r(0), r(1 · Ts) . . . r(N · Ts)] and N =
250 is the number of samples.

Then the MO problem to solve is the following:

min
k∈D

[J1(k),J2(k)] = min
k∈D

[ max
θ∈FPS∗

φ1, max
θ∈FPS∗

φ2]

To solve this MO problem the algorithm ev-
MOGA is used. The parameters of the ev-MOGA

algorithm were set to:NindG = 4; NindP = 100;
tmax = 1000 (resulting in 4100 evaluations ofJ1(k)
and J2(k)) and n_box1 = n_box2 = 200. The algo-
rithm was run 10 times.

Fig. 3 shows the best Pareto front and set ob-
tained. Notice that the Pareto front is disjoint, the
same as the Pareto optimal set. The better characteri-
zation of the Pareto front is needed the largern_boxi
has to be used. ev-MOGA algorithm captures the ex-
tremes of the Pareto front, and thusK∗

P will contain
the optimal solutionskJi of eachJi considered on an
individual basis.

Analyzing the Pareto front (see Fig. 3), the so-
lutions corresponding to higher values ofλ (bottom
right area of the Pareto Front) produce bigger control
error as it is expected. Otherwise, the solutions corre-
sponding to lower values ofλ and bigger values ofN2
(top left area) produce lower control error in exchange
for bigger control effort.

Therefore, taking into account the Pareto front
and set obtained, the following compromise solution
k∗ has been selectedk∗ = [12,6.552] ⇒ J(k∗) =
[3.0885,123.1767].

Fig. 4 shows the envelop generated by the com-
promise controllerk∗ for the outputy(t) and inputu(t)
when all the models of theFPS∗ are considered.

6 CONCLUSIONS

A methodology, based on Evolutionary Algorithms,
has been developed to tuning robust GPCs from an
MO point of view. The methodology presents the fol-
lowing features:

• Assuming parametric uncertainty, all kind of pro-
cesses can be considered.

• Since a non-linear models set have been consid-
ered, low uncertainties are produced by the ro-
bust identification process (a difference that a liner
model with interval parametric uncertainty were
considered) and therefore less conservativeness is
produced.

• Any kind of design objectives can be used simul-
taneously to tune the GPC controller resulting in
a MO Problem. Thanks to the ev-MOGA algo-
rithm would be possible to characterize all kind
of Pareto fronts in a well-distributed manner with
bounded memory resources.
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Figure 4: Top: Set point trajectory generatedr(t) and the envelop of the outputsy(t) when the controllerk∗ is applied toFPS∗

models. Bottom: the envelop of the control action produces the envelop of the outputs.
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