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Abstract. In this work, delays affecting either the output measurements or the
input for a class of nonlinear systems are coped with. This problem is particulary
challenging since time delays arise in variety of applications, such as systems
communicating through (wireless) networks. Indeed when the controller is a re-
mote one, delays must be taken into account, affecting both the input and the
output of the system. We first present a set of cascade high gain observers for
triangular nonlinear systems with delayed output measurement. A sufficient con-
dition ensuring the exponential convergence of the observation error towards zero
is given. This approach is then applied to design an output feedback control in the
presence of input delay. These results are illustrated through numerical simula-
tions.

1 Introduction

Systems communicating through wireless network are now quite common. Data trans-
missions such as output measurements or control laws are necessarily subject to delays
inherent to the communication process. The aim of this paper is twofold. Delays af-
fecting either the output measurements or the input for a class of nonlinear systems are
coped with. This problem is particulary challenging since time delays affecting input
or output measurements arise in a variety of applications. One can cite for example
systems which are controlled by a remote controller. In these systems, the input or the
output data are transmitted between the controller and the system throughout a commu-
nication system, which can be a wireless network. This network introduces a time-delay
between the process and the controller. The design of controllers for such systems can
be viewed as an output feedback design based on state prediction system. In the linear
case, this problem has been solved by the well-kn8mith predictof1] and several
predictive control algorithms [2], [3]. Recently, for the nonlinear case, a new kind of
chained observers which reconstruct the state at different delayed time instadrit for
observablesystems has been presented in [4]. The authors showed, by @smng

wall lemma, that under some conditions on the delay, exponential convergence of the
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chained observers is ensured. These conditions have Hagedén [5] by using an ap-
proach based on a first-order singular partial differemtiplation. On the other hand, in
[6] a novel predictor for linear and nonlinear systems wiithet delay measurement has
been designed. This predictor is a set of cascade obseBudfigient conditions based

on linear matrix inequalitiesare derived to guarantee the asymptotic convergence of
this predictor. Concerning delays affecting the input & slystem, very little attention
has been paid to this subject. For relevant work, the readeférred to [7] and the
references therein.

In the present work, the design of nonlinear observers irptesence of delayed
output measurement is first dealt with. To this purpose, veigtea set of cascade high
gain observers for nonlinear triangular systems by conisiga time delay in the out-
put measurement. We will show that the general high gainrebséesign framework
developed in [8], [9], [10], to mention a few, for delay-freatput measurements can
be extended to systems with delayed output. More preciagelyropose to use a sulit-
ableLyapunov-Krasovskii functionaind a sufficient number of high gain observers, in
order to guarantee the exponential convergence of the &siihstate at timetowards
the true state at timg even if the output is affected by any constant and knownydela
We will also give an explicit relation between the number béervers and the delay.
Then in a second part, this observer is used to design a feledbatroller based on a
dual approach of high gain techniques [11].

The present paper is organized as follows : In section 2, eeant the class of con-
sidered systems and the different assumptions. In thedhiedwe present the proposed
observers and prove their convergence. Section 4 is detmtbd design of a feedback
control law based on the previous observers. In the lasboseete illustrate our results
throughout simulations on academic examples.

2 Prdiminaries and Notations

First some mathematical notations which will be used thhawg the paper are intro-

duced.

The euclidian norm oR™ will be denoted byl|.||. The matrix X7 represents the
-th

T

=~
transposed matrix of. e (i) = (0,...,0, 1 ,0,...,0) € R%s > 1 is thei*"

S components
vector of canonical basis @?*. The convex hull of{z, y} is denoted as Go,y) =
{Ax 4+ (1 =N)y,0 < X < 1} Apin(S) @and A4, (S) are the minimum and maximum
eigenvalues of the square matfix
In the first part of this paper, we consider the following slaénonlinear systems:

T = Az + ¢(z,u)
y=Cz(t—71) (1)

where
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¢’1(m’u)
d(z,u) = : 4)
én(z,u)

The termr represents the measurement time deldy) € R” is the vector state
which is supposed unavailable. The outp(t) € R is a linear function of the state
x at timet — 7. The inputu € U whereU is a compact set ifR. The functions
¢;, i =1,...,n are supposed smooth. This class represents the class ofralyif
observable systems. It has been shown [8], [9] that theselmodncern a wide variety
of systems, such as bioreactors. ..

Throughout the paper, we assume that the following hypethase satisfied.

H1. The functionsp; (x, u) are triangular inc, i.e %ﬁf) =0,fork=4,....n—1
‘H2. The functionsp; (x, u) are globally Lipschitz, uniformly in
‘H3. The time delayr is supposed constant and known.

3 Observer Design

In this section, we consider an arbitrary long time detagffecting the output mea-
surement of system (1). The proposed nonlinear observesykiem (1) is a set of:
cascade high gain observers. Each one of them estimatesyeddtate vector with
sufficiently small delayZ.

In order to present the proposed observer, we use the folipadnvenient notations
adopted from [4]:

z;(t) = x(t —T+j%)

wherej =1,....,m
Then the proposed observer can be written in the followimmfdor j = 1,...,m:

i1 = Ady + ¢(31) — 0ATISTIC O34 (t — %) —z(t—1))

o oy T
71 = Ca(t m)

&y = Adj + 9(#;) — 0ATISTIC O@5(t = ) = #5a(1)

g = Ciy(t = =) = Cd;a (1) (5)



whered is a positive constant satisfyirfg> 1.
S is a symmetric positive definite matrix, solution of the foling algebraic Lya-
punov equation:

SA+ATS—CcTCc =-S5 (6)
andA is a diagonal matrix which has the following form :
) 1 1
A:Dwg(1,...,6i—71,...,6n71). ©)

We will show that the vectat;(¢) estimates the delayed statg(t), j =1,...,m —1
andz,, (t) estimates:(t).

Before proving the exponential convergence of the propokathed observers, we
consider the case when the delays sufficiently small. Then only one high gain ob-
server is required to estimate the state of system (1).

Lemma 1. Consider the following observer:

&= Az + ¢(2,u) — AT STICTO@E(t — 7) — x(t — 7))
§=Ca(t—7) ®)

Then for sufficiently large positivg there exists a sufficiently small positive constant
71 such thatyr < 71, observer(8) converges exponentially towards systdm

Proof
First let us denote the observation errottas & — x.
Then we will have:

&= Af 4 ¢(&,u) — d(z,u) — A ST CTCE(t — 7) 9)
If we apply the relation
() =Z(t—7) +/ i(s)ds (10)

t—1
and the change of coordinates= Az, system (9) can be rewritten in the following
manner:

i=0(A—S'CT0)z + Ald(#,u) — p(z,u) + 05 1C'C t i(s)ds.  (11)

t—r

In order to derive an upper bound for the delayr, to ensure the exponential con-
vergence to zero of the erra@r we use the followind.yapunov-Krasovskii functional
[12]:

W =z"5z + /i /t |Z(€)||>déds. (12)

This functional can be written after an integration by pag$ollows (see [12] for more
details):

t
W= *Tsm/ (s — t+ )| ()|Pds (13)
t—71

If we compute its time derivative, we obtain
W < 02T (ATS + SA — 207 C)z + 227 SA(¢(2) — H(z))

t t
+20§:TCTC/ z(s)ds + ||z (t)|]? —/ |1z (s)||*ds (14)
t—1 t—11



Using (6), we have

t
W < —0z" Sz + 227 SA(¢() — p(z)) + -0z CTCz + 202" CTC / i(s)ds

. 2 k . 2
+nll@IF - [ e (15)
t—m71
Note that by using the mean value theorem [13], we can write
. N TN ) 1.
A(9(2) = ¢(x) = A (Z e’ en(d) 7 (5)) ATz (16)
i,j=1

where¢ € Cov(z, ).
Then we will have

3

,n

27T SA($(E) — 6(x)) = 257 SACY. en(i) en() 22 ) A a7

! ox;

4,3

Using the triangular structure and the Lipschitz propsrtiethe functions;, and the
fact thatd > 1, we deduce that

1227 SA($(2) — d(2))]| < kaV (18)

whereV = z7 Sz andk; is a positive constant which does not dependon
Using the following property :

202" " C / s)ds — 0z CTCx
Cx+C/ s)ds)” Cw+C/ s)ds)
+9(/t_ #(s)ds)"C C(/t_ (5. (19)
This means that
29a:TcTc/ ds—@xTCTCa:<6(/tt f(s)ds)TCTC(/tt #(s)ds) (20)

From this, we will have
N t t
W< -0V +kV+ e(/ a*:(s)ds)TcTC(/ z(s)ds)
t—T t—T

FnldOIF = [ lla)Pas (21)

Now, let us remark that if we use equation (11), it comes:

E@2 < 0%k v+|\/ 5)ds|? (22)



whereks is also a positive constant which does not depend.on
Using this and equation (21), we will have:

t
W < =0V + kiV +0I"CTCI + 1160%ka [V + || T||] —/ ||Z(s)||* ds. (23)
t—71
t

wherel = / z(s)ds.
t—T1
To prove the above lemma (1), it is sufficient to find conditiavhich guarantee the
inequality W + %W <0.
From (23), we can write
1 |4 T AT 2 2
—W <OV +EV+—=+0I"C Cl+10k[V+||I
7" < WVt 07k [V + [|1]]7]
. t
li@IPds— [ Jlé()ds (24)
t—71

W+

LT
\/5 Jt—71

If we use the followinglensen’sinequality :

t
. 1
| la@ids= e (25)
t—m71 T1
and ifr; < V0, we have
Wt LW < (0 — ke — 1160%ks — =)V — (2 — 0= 10%ks — 2|12 (26)
Vi 1 107 k2 Nz p 107 ko NG

Then, we can say that lemma 1 is verified for

1
9 A
> mlax{2, (k1 + ka2 + \/5)} @7

T = 6_2
To summarize Lemma 1, it gives the maximum delay supportesbisgrver (8) which
enablesi(t) — xz(t), onced has been fixed according to conditions (27). To cope with
alarger measurement delay, we propose in next paragrapicedure to estimate(t),
based on a chain of high-gain observers: each observerstiithate the state at a given

fraction of the output delay.

CascadeHigh Gain Observers. After proving that the convergence of the observer (8)
requires a small delay, we will see that when the delay igratyilong, a set containing

a sufficient number of cascade high gain observers (5) camstict the states of
system (1).

Theorem 1. Let us consider system (1), then for any constant and knolay dethere
exist a sufficiently large positive constahaind an integern such that the observer (5)
converges exponentially towards the system (1).

Pr oof
The convergence of the cascade observer will be proved gtefep :



Step 1: We consider the first observer in the chain:

) —a(t-7)

i1 = O (t = 1) (28)

i1 = A%+ ¢(#1) — 0AT'STICT O (a1 (t —

We remark that:(t — 7) = x1(t — --) and consequently, if we choogesufficiently
large, and by choosing the integersuch thatn > 627, theni; (t) converges towards
ri(t) =2t -7+ L) =zt —(m—1)L).

Indeed, we are brought back to conditions of Lemma 1, sineelétay to handle with
is now -, which is assumed smaller thglg.

Step j: at each steffj = 2,...,m), we estimate the delayed stat¢t — 7 + j =)
by using the following observer:

by = Adj+ 0(25) — 0ATIS IO (0 - =) — 5 (1)
gy = Ci;(t = =) = Caa (1) (29)

It is not difficult to see that by considering the observatoror vectorz; = x; — 2,
if we add and subtract the teréA\~1.S~1CTCx;_4(t) in the previous equation, we
obtain

&) = Akt 6(85) = 9a;) = 04T STIOTOG (= ) ~Eat)  (30)

If we consider the following change of coordinaigs= Az ;, we will have
#j = 0(A - STICTO)z; + Ad(%5) — d(x))
t
it 95*10Tc/ Z;(s)ds — 0S8 'CTCz;_1. (31)
1 gl
In order to prove by recurrence the convergence of the erfowe suppose that the

observation errof;_ (t) converges exponentially towards zero.
Then we consider the followinlgyapunov-Krasovskii functional

t
W, = 7, S%; +/ (s—t+ %)Ha‘éj(s)Hst (32)
t—
Then its time derivative satisfies the following inequality
W; < 0% Si; + 2%, SA(¢(35) — d(x;)) + —0%, CTCz; — 20%) CT CEj_y

t t
+29@-T0Tc/ z;(s)ds + 1|z —/ |25 ()| ds. (33)
i—7 Jt—T11
As in the proof of the lemma 1, we will also have:

. . t .
W, < —(0 - K))V; + 017 ¢TCI; — 20z €T Oz + 3517 7/ [1Z;(s)]%ds (34)

—71



whereV; = &1 Sz;, I; = ftt_T z;(s)ds andk] is a positive constant which does not
depend o andk] > k.
Now, by using Young’s inequality, we derive the followingenualities

511" < k507 (Vs + ||15]1* + [|Z5-1]1%) (39)
, . 1 °Vo |
~20z; 07Oz < ﬁvj + m”%‘ﬂ”z (36)

wherek), is a positive constant which does not depend @amdk’, > k.
Choosingr; = 9%7 and using (34), (35) and (36), we derive

2 1

s 1 / 27/ 2./ 2 2
. W, < —(6 — _ 2V —(— —f( — _ = .
WJ+\/§WJ < —(0— Ky — 107k, \/g)va (7_1 0 — 7107k \/E)HIJH
92\/5 ’ — 2

+(m + k) [|Z-1]| (37)

Then, we can say that if
{0>2+K +ky, 7= (38)

we will have
. 1 6%\/0 , 3
W, < ——W,; ——— + ko)l||Ti— 39

J = \/g J+(Amzn(s) Q)H‘TJ 1” ( )

Using the comparison lemma [14], we conclude that;if; converges exponentially
towards zero, the; converges also exponentially towards zero. Note that ¢iomdi
(38), also ensure the convergence of the first obsérver 1), then we deduce, recur-
sively, that all observation errors converge exponenttallvards zero.

4 Output Feedback Controller Design

In previous section, we addressed an observer synthesss is$ien the output mea-
surement is affected by any delay. Now we consider what cahdagght of as a dual
problem. The aim is to design a stabilizing feedback coriawlwhen the controller
is a remote one, which inevitably leads to delays on the syat@ut. To this end we
consider the following class of nonlinear systems:

() = Az(t) + $(x(t)) + bult — 7)
{ym — Ca(t) (40)

and we assume that hypothegésto H; are fulfilled.

We detail now a solution to the above problem that makes usieegbrevious results.
In order to cope with the input delay, we use the above casloaldgerver (5) to derive
a prediction of state(¢) used in the feedback contre(t — 7). For sake of simplicity,
we suppose that we need only one observer to face this délaysdme reasoning as in
previous section can be extended to deal with a larger deitty,cascaded observers.



Using the work developed in [11], the feedback control whsthbilizes (40) can be
expressed as:

u(t) = =\"b" SANE(t +7) (41)
where\ > 0 is a suitable tuning parameter like the paraméterthe observer design
and the matrixA, is defined as in (7) whergis replaced by.

Using the results detailed in previous sectiofy, + 7) can be computed, see (5).
Then this predicted state is used to compute eq. (41). As sequrence, this prediction
cancels the effects of the delay affecting the transmissidhe control law.

We give now a sketch of how to proceadMake the following variable change
to obtain an estimation of the predicted staté&)) = Z(¢t + 7). This is equivalent to
(t) = 2(t — 7).

Then the observer can be expressed as:

2(t) = Az(t) + ¢(2(t)) + bu(t) — 0A; ' STICT (y(t) — 2(t — 7)) (42)

whereu(t) = —A"bTS A 2(t).

We are now brought back to the former problem of sectiosn Bhe key point is to use
the delayed control law(t — 7) in the system dynamics, which corresponds to the real
applied control, whereas we ugét) in the observer’s dynamics.

eThe reader is referred to [11] for a detailed proof of the ifitadtion of the system (40)
and the convergence of the observer (42).

5 Example

To illustrate the obtained results, consider the followioglinear system, affected first
only by delayed measurements:

{ l‘l(t) = l‘z(t)
Z2(t) = —2z1(t) + 0.5 tanh(z1(t) + z2(t)) + z1(¢)u(t) (43)
y(t) = za(t —7)

The input isu(t) = 0.1sin(0.1¢). System (43) belongs to the considered class of
triangular systems with Lipschitz nonlinearities (1).

The initial conditions for the system and for the observerehaeen chosen agt) =
(1-1)", &) =(00)", vtel[-r0.

Simulations have been performed using Matlab-Simulinki arfourth order Runge-
Kutta integration routine. The high gain parameter is sétt02, the control parameter

is set tod = 2. We show the efficiency of the stabilizing control law givereiq. (40)
and (41), based on observer (42), on the example below:

{ l'l(t) = xz(t)
z2(t) = —2x1(t) 4+ 0.5 tanh(z1(t) + z2(¢)) + u(t — 1) (44)
y(t) = z1(t)

The stabilization of the controlled state to zero is showfigare 1.
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Fig. 1. Evolution of the controlled states.

6 Conclusions

In this paper, a novel predictor based on high gain obseragbleen presented. This
observer can be applied to the class of nonlinear uniforiseovable systems, subject
to input or output delays arising from communication netgdior example. The case
of a variable delay can be considered on the basis of themirebe/ork. The design of
adaptive observers for nonlinear systems with delayeduatpd uncertain or unknown
parameters is under investigation.
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