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Abstract. Considering nonlinear sampled-data systems, it has been shown in
[14] - that emulating a continuous-time controller that ensures some global asymp-
totic stability properties in continuous-time. In this study, we provide a similar
result, for a general class of systems, using a hybrid formulation that allows de-
riving explicit bounds on the maximum allowable sampling period.

1 Introduction

A number of researches focused on the stabilization problem of nonlinear sampled-data
systems during the last decades (see the overview [13] and [14] and the references cited
therein). A common approach consists in emulating a known continuous-time controller
using a sample-and-hold device. Based on discrete-time model approximations and us-
ing results of [17], it has been shown in [14] that, by choosing a sufficiently small sam-
pling period, asymptotic stability properties are recovered in an appropriate practical
sense, under mild conditions. Practical state convergence might be an issue in practice,
especially when the sampling period cannot be taken small enough. It is also important
for engineers to know an explicit bound on the sampling period that can be taken so that
designed controllers ensure the desired asymptotic state convergence. Thus, a number
of papers propose solutions for the asymptotic stabilization of nonlinear sampled-data
systems and the knowledge of an explicit boundlamsp . In most of these works,
global asymptotic stability properties are studied. Two exceptions are however available
in the literature. First in [9] where a hybrid stabilization method is proposed for some
classes of systems: it consists in decomposing the state space in a number of regions
for which a controller is designed in order to reach the next region that is closer to the
origin. A semiglobal asymptotic stability property is shown to hold for system in output
feedback form in [21] but no explicit bound @nyasp is given. Concerning results on
global asymptotic stability properties for nonlinear systems, some papers are available
in the literature. In [4], global Lipschitz conditions on system and static state-feedback
nonlinearities are supposed to apply, thus the global exponential stability of the system
origin is recovered under sampling. In [1], considering the Euler approximation of a dy-
namic feedback controller, Lyapunov stability results for impulsive systems are applied,
under similar conditions than in [4]. A small gain theorem for a class of hybrid systems
that does not satisfy the classical semi-group property is developed in [7] that allows to
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design discrete-time controllers for classes of nonlisyatems. The same authors in
[9] derive an analytic bound diiy;asp When using emulated controllers, by modeling
sampled-data systems as time-delay systems. Recentigjgees firstly developed for
networked systems have been applied to the stabilizatmvigom of nonlinear sampled-
data systems [16]. Writing nonlinear sampled-data systeittsemulated controllers
as hybrid systems in the modeling framework of [3, 2], sufitiLyapunov-type condi-
tions are proposed and an explicit bound onthges s p is given.

In this study, considering a known controller that is sugaht® ensure the input-to-
state stability w.r.t. measurement errors of the closeg-kystem in continuous-time,
it is shown that the emulated controller will ensure the gstptic stability of system
origin if the sampling period satisfy an explicit boundesseondition. Similarly to
[16], the system is written as the interconnection of thetiomous-time closed-loop
system and the ‘error’ system due to the sampling. The #iabialysis relies on tra-
jectory based arguments and the Lyapunov-like analysiagare bounds on the state
and sampling error.

2 Notations

The Euclidean norm of a vector is denoted |byi, for a functionf : R — R™ and
t1 <tz € R, [|f|, 1) Stands fosup ;1) | f(7)]. Let C(RP,R?), p, g € N, denote
the space of all continuous mappi®y — RY. B; C of R™ denotes the open ball
centered af and of radiusd. For initial conditions we use notatiorts > 0, z, =
x(to), eo = e(to), finally, to simplify the notations we sometimes omit thelargents
and when it is clear from the context, we writgz(t)), or evenV (¢) in place of of
V(x(t, to, xo)).

3 Problem Statement

Consider a system:

Tp = fp($p,U), 1)

y = hp(zp)v (2)
wherez, € R"sr denotes the state vector of the plante R™* the input vector,
y € R™ the output vectorp.,, ny,ny €N, f, € R"*» x R"« — R"» is locally Lip-
schitz with f,,(0,0) = 0, andh,, € R"» — R"v is differentiable, its partial derivatives
are locally Lipschitz and,,(0) = 0.

The following dynamic output-feedback controller is calesied for the system (1)-(2):

Te = fc(xca y)7 (3)
U hc(xca y), (4)
wherez,. € R"=- denotes the state vector of the controllef, € N, f. € R"=c x
R™ — R™e is locally Lipschitz withf.(0,0) = 0 andh, € R"= — R™ is differ-
entiable with locally Lipschitz partial derivatives ahg(0) = 0. For the sake of gener-
ality, all the results are stated for the system (1)-(4) thay apply also for the case of



output or state static feedbacks. Denoting [z, , z!]" € R"™, n, = ng, 4 n,, the
following assumption is supposed to apply throughout theepa

Assumption A 1. The originz = 0 is globally asymptotically stable for the closed-loop
system (1)-(4).

Attention is focused on the case where the inpahd the measure vectgare sampled
at the same instanf{s,. } .en using a sample-and-hold device. In the sequel we will use
the following assumption on the sampling instants.

Assumption A 2. Sequence of sampling instadts }, & € N satisfies the following:
(i) There exist positive constants7},,.. € R~ such that < tx1 — tx < Thuae fOr
all & > 0.

(i) The sequencéty, }ren, is unbounded.

Remark. Assumption A2 allows the sampling sequence to be non-unifdihe lower
boundedness condition on the sampling periods is not cégtrisincev can be taken
arbitrarily small.

Considered sampled-data system can be rewritten in th@nfiolyy way, fork € N and
te (tk,tk+1],

T = f(lv 6), (5)

é=gle,x), (6)
fort = tg,

a(ty) = x(ty), (7

e(tZ) = Oa (8)

wheree = x — z(tx), f = [fp(@p, hee) s fel@es Ppe) 1T, hpe(@,€) = hp(a(ty)) =
hp(xp - ep): hce(xve) — hc(zc(tk)ayk) ~~ hc(zc . emhp(:‘) andg(evx) = f(z,e) :
Due to the properties of the functiorfs, f., hp, he thus introduced functiong and
g are locally Lipschitz. Since by assumption A2 the sampliagugnce is not gener-
ated independently, the system (5)-(8) satisfies the clssemigroup property (see
Example 2.12 in [7]).

The proposed presentation of the sampled data system iaisimthis of [16] with
the difference in the definition of the variakle
Our objective is to establish certain stability propertiethe system (5-8) in case where
Assumptions Al-2 are satisfied. Namely we are interesteeni-global stability prop-
erty defined next.

Definition 1. System (5-8) is said to &emi-Globally Asymptotically Stable (SGAS)

with respect tdl” if for all A € R+, there existiaxer.,, 8 € KL such that for all

T € [v,T)max, z(to) € Ba and for allt € [t,, o) the following inequality holds:
()", e(t) ") < B(|f(te) T elto) "I, — o). 9)

If (9) holds forA = oo, then system (5-8) is said to Btobally Asymptotically Stable
(GAS).



The approach we use is quite similar to the one proposed fof8lesign of hybrid
observers for sampled-data systems. Indeed, similar @{8pS-like property with re-
spect to the measurement errors is exploited for the dhabitialysis. Actually, we base
our analysys on the following theorem which is similar to thsult given in Theorem
2 of [20] but in our case the bound on the possible input doedewend on the system
initial condition but rather on the radius of the ball of ialtconditions for the state\
and a chosen overshoot.

Theorem 1. Consider the system
&= f(z,u), (10)

wherex € R™ and functionf : R™ x R™ — R™ is continuous and locally Lipschitz.
Let A € R.( be arbitrary andxz, € Ba. If the system (10) is GAS with the input
u = 0, then there exist functiod € KL, a continuous positive definite function:
R>o — R>( and for eachA > 0 there exists functionn € K such that for any
to, t > 0, t > t, and each measurable, essentially bounded ingutfor which

lull,. < 8(2), (11)

the solution of (10) exists at least forc [t,,t) and satisfies on this interval the follow-
ing bound
[2(7) < B(lzlo, 7 — to) +yalllully,, 4)- (12)

Proof. Since the originc = 0 is GAS for the systemx = f(z,0), then it follows
from Proposition 13 in [18] (see also [22]) that there existdtionsa;, as € Ko, and
a3 € K and a Lyapunov functiofr € C''(R™, R) such that for all: € R™ we have

ov ov
ar(lz]) < V(z) < as(lz]),  Z-f(2,0) < =V(2), [-(2)| < as(|z)).
Then, for the system (10) we have
S faww) < V(@) + L () = £,0)] £~V (@) + aa(la) | (@) — £,0)

Since the functionf is continuous, it follows from the Lemma 2 that there exist a
strictly increasing function € C'(R, [1,00)) and a functionl € K such that f (x, u) —
f(z,0)] < ¢(|z|)d(|u|) and therefore we have

ov

oo (@) < V(@) + ex(lzl)d(|ul),

wherec; (s) = as(s)(s). Notice that the function; € K
Let A, e > 0 andx, € Ba be fixed and arbitrary otherwise, define functiopsand
1) € Ko as follows

a1 0 Y(s) — as(s)
c(¥(s)

Functionsoy, s € Ko andas(s) > «1(s) hence we have that functioh € £, and
Y(s) > a; ' oas(s) > sforall s > 0, thereforen; o ¢(s) — az(s) > 0forall s > 0.

U(s) = (1 +e)ay  oan(s), d(s)=



Sincec(s) > 1 forall s > 0, functioné defined above is a continuous, positive definite
function.
Claim 1.If the input satisfies the bound (11) fere [t,, t), then it holds that

el < (). (13)

Proof of the Claim 1. We proceed by contradiction. Assuméettiexe exists* < [to, t)
such thatz(t*)| = ¢ (A) and lett; = inf{7 € [to, t) : |z(7)| = ¥(A)}.
Then for allr € [t., ¢1] we have that

710) = 2V f(a,) < V(@) + ew(2)d(le]),

using the comparison principle [10] we obtain that forralt [¢,,¢;] we have

V(@(r) < Viws)e— Tt + /t c(W(A))d(|lell, ) exp(—7)dr

< V(zo)e™ T - e(w(A)d(llel| s, r))- (14)
Combining the last inequality with (13) we obtain that fdralk [to, ¢1]
V(z(r)) < V(zo) + a1(¥(4)) — az(4) < an(¥(4)).

Thus,V (z(t1)) < a1(1(A)) which implies thatx(¢1)| < (A) and we came to the
contradiction with the initial assumption that(¢1)| = ¥ (A) and hence Claim 1 is
proved.

Next, since for any € [to,t) we have thatz(7)| < 1(A) then it follows from (14)
and properties of the functiori(x) that on the same interval

ar(le(m)) < V(a(r)) < V(wa)e 17 + c(u(A)d( el )
< as(llzo e + cw(A)d(lellg, )
and therefore
(o)l < a7 (az(llzele™ =) +e@(A)d(llellp. )
< a7 (200(llzo])e ™) + a7 (2cad(llell. ) -

whereca = ¢(¥(A4)).

Sinceas, as € Ko, andd € K, itis clear from the last inequality that there exists
functiong € KL and for eachA > 0 there exists function, € K such that for all
t € [to, t) the bound (12) is satisfied.

O

4  Main Results

As mentioned in the Introduction, it is well known that thergding of the system
output and the control input is usually source of instapdihd that the only possibility
to overcome this issue consists in restricting the uppentan the sampling period.



The effect of the sampling is mostly due to the dynamics ofdngablee. Thus, it is
interesting to estimate an upper bound of this variablenakito account the fact that
e(t,j) =0,k > 1, i.e. we start every sampling period with zero initial cdrati for this
variable

Lemma 1. Consider the system (10) and assume that the fungtiscontinuous,
locally Lipschitz andf (0, 0) = 0. Then, for anyu € R~ there exist aC! function
W : R>¢ — R with boundedW (z) /9 and aC' functiony € K such that for all
(z,e) € R" x R™

O (@), Flau) < W () + (). (15)

The proof of the lemma 1 is presented in the appendix. It shibaisthe functiorp is
not necessarily unbounded. Thus, according to Lemma 1nforiae R+, there exist
a € RygU{oo} suchthap : R>g — [0, @) of classk (K« if & = 00).

Remark.Lemma 1 is similar to Lemma 11 in [18], but here, instead ofifigcan expo-
nentially decreasing positive definite function of the stan exponentially increasing
one is obtained.

In the remaining part of the paper we assume that for the my&¢ a functioni?’ is
constructed according to Lemma 1 with a consjart R+, given. Note that, sincé’
is locally Lipschitz, using the arguments given in the fadés in [15], this holds for
almost all(z, e) € R™= "< along solutions to (6):

W(e) < uW(e) + (). (16)

The following proposition considers the case when subry$5 is ISS and gives the
conditions under which there exisI$,.x such that the system (5)-(8) is GAS if the
maximal sampling period is less thadi,,.

We start with introduction of the following assumption whiwill be used to ensure
that the solutions of the sampled data system do not explasegithe first sampling
period.

Assumption A 3. The system

= f(x,x+ce) a7)
is forward complete for any parameter € R".
Remark 1.From the Theorem 2, [23] it follows that assumption A3 is eglént to
assuming existence of a proper and smooth function funétian : R™ — R such
that along solutions of (17) we have

U < qW (18)

foranyc. € R"™.



Remark 2.Assumption A3 can actually be replaced by the equivalentraption on
forward completeness for the systém= g(e, e + ¢,). Choice of the assumption de-
pends rather on the simplicity to verify the assumptiongtiese two systems.

Theorem 2. Consider the system (5)-(8) and let assumptiéds A3 hold. Suppose
that for the system (5)-(6) there exist positive definitefionsl, W : R — R>o,
functionsa;y, gv, 9w € Koo, i € K, 7 = 1,2 and positive constants and o such
that along solutions of the system (5)-(6) we have

ary(|z]) < V(z) < agu(|z]) (19)
ar(le]) < W(e) < azuw(le]) (20)
V < —oV +gu(le]) (21)
W < uW + gu(|z)), (22)

and functiongy, « satisfy the followingdinear gainconditions
gooaje(s) <kis (23)
Guw © cvl_v1 (s) < kas, (24)

wherek,, ko are positive constants. Thenli,., from the assumptioA2 satisfies the
inequality Th,.x < T., whereT, = ——In (1 + %) then the system (5)-(8) is
GAS.

Proof. We start the proof with the remark that there is importarfedénce between the
first sampling interval and the rest of the sequence sinsitly at the beginning of the
1st sampling interval we can have thdt,) # 0 while for all other intervalsi > 1)
we havee(t)) = 0, see (8). Therefore, we will teat here these two cases sepaaad
later combine the results together. We start with the casieediirst sampling interval.
Case L.k = 0. On the intervalt,, t;) we can rewrite the system (5)-(6) as follows:

&= f(z,z+e¢o)
é=gle e+ ).

Due to assumption A3 there exists a function R* — Rx such that (18) is satisfied,
hence for any initial conditiongz., e,) we have tha#? < ¥ and therefore, during the
interval[to,t1) C [to,to + Ti) We have that’ (z(t, 7., €0), €0) < ¥ (w0, ,e0)el. Since
function¥ is proper and positive definite, there exist functiens € K., i = 1,2
such thatvi, (|z]) < V(|z]) < agy(|x]), thus for allt € [to, 1]

(), e(t)] < agy, (azy(lze, eol)e™ ). (25)

Case ll.Lk > 1. This part of the proof is based on the following two obse/adi

— starting witht = 1 we have that at the beginning of each sampling pef(o)ﬁ) =0
and therefore we can use (22) to estimate the elftgrduring the sampling period.

— to ensure asymptotic stability it is enough to show thateleists a Lyapunov func-
tion V(x) such that for any: > 1 and anyt € (¢, tr+1] we have

Vi (t)) < V(x(ty)) (26)



and moreover, there exists> 0 such that
V(a:k.H) < EV(x(tk)). (27)

Notice that condition (26) insures Lyapunov stability ofigmns, while (27) en-
sures decreas of the Lyapunov function during each sampénigd and thus it's con-
vergenceto zero. From convergence to zero of the sequéfagg follows convergence
to zero of thex(¢x ), hence of:(¢) and therefore of the difference&) = x(t) — x(tx).

Thus we only need to ensure that conditions of the theoremagtee that during
any sampling period of the lenght less thBninequalities (26), (27) are satisfied. In
order to prove (26) we proceed by contradiction. We assumaethiere existg: > 1
such that (26) is not true and € (¢, tx+1) is the first moment such th&t(x(¢.)) =
V((th)).

Lett € (ty,t.]. Sincee(t}) = 0, then from (22) it follows that

W(e(t)) < e““’-‘k)/t eH g (Jo(r))dr
Yl

< ert=th) /t e M gw o ar,) (V(x(r)))dr < kaet 'k >/ e " gV (z(r))dr
P tk’
By assumption, for- € (¢, t.] we have thal/(z(7)) < V(z(tx)) and therefore we
conclude that

W(t) < %V(x(tk) (e"(t t) _ ) (28)

In a similar way, from (21) we obtain that

t
V(t) S V(tk)efa'(tftk) + e*U(t*tk) /+ engv(|€(T)|)dT
i

k
t

< V(t)e= 1) 4 e t—t8) / eTTW (e(7))dr

+
tk
t

kik
< V(t ) —o(t—ty) o LQV(tk)e—a(t—tk)/ e (eu(r—tk) _ 1) dr,
t

+
k

where we used (28) in the last inequality.
After simple but tedious calculations we obtain that

V(t) < V() f (1), (29)
where
— (t—tx) ( k1ko ) —o(t—ty) _ F1k2
f(t)—iu(u+a)e“ (e )© o (30)

Notice thatf (¢, ) = 1, while during the interval,", ¢, +7'.) derivative off (¢) satisfies
the following bound

kv ke ki
F(8) < et (—(a + %) - %eWW)Tmax)
n+o n+o

< e—ot=t]) (_(U+ K1k )+ k1 ko —l—a(u—i—a)) P
n+o n+o




and therefore for alt € (tx,tx + T.) we have thatf(t) < 1% Now, sincet* €
(tg,tr+1), we have that* < ¢, + Thax < tx + T and therefore from (29) it fol-
lows that

V() SVEDFE) < V(D) = Vitr)

and we came to the contradiction. Hence the estimate (2@}i&fied during any sam-
pling interval(tx, tp4+1]. Next, lete = f(Timax). SINC€Tmax < T, We have that < 1
and then from (29) we obtain that on any sampling interval

V(tit1) < V(te) f(te1) < V() f(Tmax) < eV (tx)

and so the bound (27) is satisfied for any sampling peipdt ;1] O

5 Conclusions

In this paper, for a general class of nonlinear systems weepted a result on asymp-
totic stability of a continuous time system in a closed lodfinan emulated controller.
We use a hybrid formulation that allows to give explicit bdsron the maximum al-
lowable sampling period.
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Appendix

Proof of Lemma 1.Let i > 0 be arbitrary and define an auxiliary functidiz) =
|l||. Similar to Lemma 11 in [18] this function will serve the b&d construct function
W which satisfies inequality (15). Taking derivative®flong the solutions of (10) we

obtain 05
5, (@) fla,u) < ||If (@ W)l (31)

Notice that functionf satisfies the assumptions of Lemma 2 and therefore there exis
C"* functions);, C* functionssc € K andpositiveconstants; > 0, = 1, 2 such that

Ai(s) = (54 (s) +ci) s, (32)

and
1f (@, w)|| < Au(llzll) + A2 (llul])- (33)



It follows then that

oo

35 (@) f(2,u) < Aa(fal) + Ao(lul) = M (D(2)) + Aa([lull)-

Next we define the functiop as

{p(r) = exp ( ) %(S)ds) forall 7eRsg (34)
p(0) =

wherea = max{u, 2(c1 + 21 (1)}.

Claim 1. Thus defined functiop is a continuous, locally Lipschitz function and
there exists a constaat> 0 such thap’(s) < cforall s > 0.
We will prove this Claim a little bit later while for now we asse that it is true and
define functionlV asW = p o @. FunctionW is locally Lipschitz (as a composition of
2 locally Lipschitz functions) and we have

O @) 0 0) = 5 W) O (1) (,)

A (@
= uW (@) + pp' (P(2)) A2 (Jul) < pW(2) + cpa(lul). (35)

This would end the proof of the lemma.
Proof of the Claim. Functionp defined in (34) is continuous dR~ o and strictly in-
creasing. From (32) we have that for alE [0, 1]

CiS S /\1(5) S (Cl -+ %1(1)) S (36)

and thereford)” -45ds < [ %5 . Since the last integral diverges-tac ast
goes to zero we have that functipiis continuous orR> and therefore € K.
In contrast with [18] we can not guarantee that thus condutinctionp belongs
to K. Actually, this function will belong tdC, only under certain conditions.
Next we will prove that the functiop is locally Lipschitz. Since it is &7 function
onR-, itis enough for us to show théin, _,,+ p'(7) exists and is bounded.
Forr # 0 we have

PO =50 0= (- B e @D

From (32) it follows that\} (0) = ¢; and\'(7) > 0 for all = > 0. Thus there exists a
constan® > 0 such that fol0 < 7 < § we have)] (1) < 2¢; and we have that on the

2 |n doing this we mostly retrace the steps of proof of Lemma[18]



interval(0, 0) the functiory’ is positive and strictly increasing and hetice,. o+ p'(7)
exists.

Next we show that this limit is bounded. From the first inegyah (37) we have
that on the interva(0, 1)

, a L
=5 (- n®)
< iexp < /1 #§> = iexp <#hw)
~ T . 1t a(l) s T 1+ (1)
aT it a

=— < —7, (38)

c1T Bt

where we used definition of the constanin the last inequality. From (38) it follows
trivially that lim, .o+ p/(7) = 0 and therefore we proved that the functiors locally
Lipschitz.3

To prove boundedness pfonRR>, we are left only with the case > 1. From (32)
it follows that there exists, > 0 such thate(r,.) + ¢; = a. Without loss of generality
we can assume that > 1. Using lower estimate; (1) > ¢;7 and (37) we obtain that
forall 7 € [1, 7] the following holds

(1) < iexp ( @ ds) -2 exp (lnrﬁ) = gr(ifl) < A,
1

c1T c18 T C1
(&-1) :
whereA = X7, Finally for all 7 > 7, the following holds

Tx T A T d
p'(T)giexp(/ ider/ ids):a—exp</ _s)
C1T 1 C18 - as 1T T S

< %exp <1n l) < 27*(%_2),

C1T e C1

and therefore the functigef is bounded oR?-. O

Lemma 2. Letn, m, [ € N— 0 andF : R"™™ — R!) be continuous function then
the following statements are correct for &it,y) € R" ™™

Al. There exists a functiom € X and a continuouslu differentiable, strictly increasing
functionc : R>¢ — [1, +00) such that the following inequality holds
|F(z,y) = F(z,0)] < c(|z])d(|yl)- (39)
A2. If in addition, functionF is locally Lipschitz andF'(0,0) = 0, then there exist
continuously differentiable functiong € X and nonnegative constants > 0
(i = 1,2) such that
|F(z,y)| < M (lz]) + Az (lyl), (40)
where\;(s) = [c; +7i(s)] 5,9 =1, 2.
3 Actually, following reasoning of Lemma 11 of [18] and slighincreasing the constantwe

can ensure that is a C'* function. However, since functio@ is only locally Lipschitz, in
general we can not expect to findd function W,



Proof.

Al.

A2.

From Lemma A.1, [12] we have that there exist functiopsy; € Koo, 71 € C*
such that, for al(z, y) € R**™,

|F(@,y) = F(z,0)] <0(2lyl) (1+7(2* +yl*)) -

Using properties of clag§.. functions and denotings) = (1 + y1(2s?)),d(s) =
Yo(s) (1 +1(2s%)) we obtain

|F(2,y) = F(2,0)] < vo(lyl) (1+m(@lel®) +mClyl”) <
< 70(lyD) (1 +m@121) +20(lyhm Cly*)

< (vodlyh +v0(yhn @ly?) (1+7 @) = cllzhddlyl)-

Continuous differentiability of the functiomand other properties follow straight-
forward from the definitions of the functiorsandd and the fact thay; € C*.
Definez € R*™*™ asz = (z',y")" and letF'(z) = F(z,y). Since function¥' is
locally Lipschitz inz, hence there exists a continuous function R"*™ — R
such thaﬂﬁ(z)“ < L(z) ||z|. Based onL(z) we define functiorly : Ry — Ry
as followsl(s) = supy,.|.<s; L(2) andlo(0) = L(0). SinceL(z) is continuous,
the functionly(s) is well defined, continuous at = 0 and nondecreasing. It is
easy to show that we can always upperbound fundtjdoy a strictly increasing
continuously differentiable function, i.e there alwayssexaC' functionl; € K
and a constant; > 0 such thaty(s) < l1(s) + ¢; forall s > 0.

Notice that|z|| < ||z||+|ly|| andl;(s1)s2 < 11(s1)s1+11(s2)s2 foranysy, so > 0;
the last one is due to the fact thatc K. Using this inequalities we obtain that for
alls >0

1@, w)ll = [F@)|| < @izl + e 2l < @zl + il + o) (lall + lyl) <

G llzl) + L lyll) + ) (=) + [lyl)

<
< (B2 lzll) + ca) [lz] + Bl 2 lyll) + ea) [y



