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Abstract. In this paper we consider the dynamic model of a logistic node of a
transportation network and study dispatching feedback policies in terms of sta-
bility and optimality. A necessary and sufficient condition for the existence of a
stable feedback policy is given and a policy is presented which would be optimal
if the transportation resources were continuous.

1 Introduction

An intermodal logistic system can be modeled as a network comprising a set of nodes
(hubs and terminals) connected by the links established by the transport operations,
which, in general, take place under different modes. The management of logistic nodes
in this network is a complex problem where several factors have to be taken into ac-
count, from the availability of carriers and their assignment to particular tasks (in terms
of products to be shipped, destinations or routes), and fulfillment of various perfor-
mance criteria such as timely delivery, minimization of transportation and inventory
costs (possibly, both at the logistic nodes and at the destinations); see among others,
[1-4].

Many instances of decisional problems for these systems are presented and solved
in the literature; often transportation problems can be addressed in terms of linear pro-
gramming problems, see e.g., [5-8], and developing ad-hoc techniques to obtain the
solutions, such as dynamic programming with linear approximation of the (unknown)
value function. It is worth mentioning that by the approach of [5, 6] the framework of
the Logistic Queuing Networks is introduced.

A slightly different paradigm considers shipping policies for simplified models of a
logistic network (or a part of it) and addresses the minimization of transportation and
inventory costs, see for example [9, 10] and [15] where a stochastic setting is adopted.
Still another example of management problems for a logistic node is represented by the
optimization of space allocated for containers in ports (e.g., [13]); or the optimization
of the operations of discharging containers from a ship, their location in the terminal
yard and the upload of new containers [14]. In these last two cases, the performances
considered can be also viewed in terms of the necessity to maintain low levels of stocked
products in the logistic node (in this case, a port). The stability of the dynamics of the
stock at a logistic node is therefore a relevant issue to be taken into account.
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In order to study the stability (and the performance of s$itgbg policies) from
a dynamical point of view, in this paper a simplified model ologistic node in a
transportation network is considered and feedback pslisgsed on the current state
of the system are defined to control the node. The scenarimigsto those arising in
other applicative domains (like in manufacturing, comneatipns, computer systems
or queuing networks in general), so the feedback policiesicered in this paper have
been inspired by various well established techniques dpeel in those domains. The
stability of these policies will be investigated and a neeeg and sufficient condition
for the possibility of stabilizing the system will be detemad. The sufficiency will be
established in a constructive way by determining a classlidips which guarantee the
stability of the system. A comparison among the performamdealifferent stabilizing
policies will be carried out through simulations, showihgtta policy, inspired by a
control known as optimal for the fluid version of the problemil] provide the best
results among the policies considered in the paper.

2 Problem Formulation

Consider the discrete time model of a logistic node coltepd) different types of wares
which have to be shipped 1@ different locations, and let;; (k) > 0 be the quantity of
items of typej = 1, ..., Q, with destination = 1,..., P, stocked at the logistic node
at timet,,, and collected in the buffé[BZ-j. In this model adestinationcould be more
in general considered asraute among different locations, established through some
routing algorithm.

The time evolution of each;; is observed at various decisional time instants
and as such characterized by a discrete time dynamics. Dgnbj (k) the amount of
goods of typej to be sent to destinatianarriving in the node in the intervaly, t;41)
andu;; (k) the amount of goods of typeshipped to destinationfrom the node in the
same intervalty, tx+1), we have:

zi5(k +1) = @i5(k) + dij (k) — ui; (k) 1)

In addition to this dynamics, we consider that of the velsid&ecuting the shipping
task. Letn;(k) be the number of vehicles assigned to destinatiom the interval
(tr, tr+1); the total numbeN (k) of vehicles presentin the node at timeobeys to the
following equation:

,
N(k+1) = N(k) + R(k) = > ni(k) 2)

i=1

where R(k) is the number of vehicles arriving from outside in the ingr¢;, t541).
Notice that, according to the above dynamics, the total rarmabvehicles available for
a shipping task at timg, is given by

% These buffers could be considered as virtual, in the sersdrttsome cases we may have
items which are physically stocked in different places aditwy to their type (in such a way
that the physical content of a buffer is givenE/f:1 x;) as it happens for the stocked finished
products in a factory.



Na(k) := N (k) + R(k) 3)

To model the inflow of vehicle® (%), first consider the simple scenario where there is
a fixed quantityN, of vehicles which could serve the logistic node (as if forrapée,
the logistic node is a shipper who owns a certain quantityof trucks). A traveling
timeT; € N is associated to each route (i.e. destinatigm) particular?; denotes the
round-trip time, i.e. the interval after which a vehicle gain available at the node after
completion of a shipping task to destinatiorin this caseR(k) = Zf; ni(k —T;)

is the number of vehicles coming back from their expeditand therefore (2) reads as
follows:

P P
N(k+1)=N(k)+ > ni(k—T) = > ni(k);  N(0) = N (4)

=1

Notice that the total sum of vehicles (those at the logistdenand those traveling)
equalsN, at each time instant.

In other cases we can consider the logistic node and theesisipg separate entities,
so that the total number of vehicles which are going to actesfogistic node varies
with time; in such situation®/. can be obtained through a suitable average of the expe-
dition history in the node, and can be possibly perturbedhwiesv vehicles are assigned
to (or removed from) the node. A possible way to model thisadibn is by perturbing
the signalR(k), i.e.,R(k) = Zil n;(k—T;)+ A(k), whereA is a disturbance signal
characterized by certain statistical properties (e.go meean). Another interesting ex-
tension would be to add to the round trip time some noise {plysssymmetric, in the
sense that positive perturbations, so that- T}, are more likely to occur than negative
ones). As a first approach to the problem, in the following wasider the simplified
model (4), i.e., assuming that tigs are deterministic quantities aid. is fixed. In this
case the number of available vehicles at times: N, (k) = N (k) + Zil ni(k—"1T5).

Let’s now consider the interaction between the stock dynartii) and the vehicle
dynamics (4). To this end, assume that each vehicle hasedémblume capacity and
that each item of typg = 1,...,Q has a relative volume with respect to vehicle
capacityv; < 1 (thatis, a vehicle has unit capacity). Accordingly, we hinesfollowing
constraint for any routé&q

Q
Zvjuij(k) S [O,HI(]C)] (5)

Sincen;(k) vehicles are used at timg for routesq, it is reasonable that the above
quantity is larger than,; (k) — 1 (actually, by the policies that will be considered in this
paper, vehicles travel completely loaded).

The objectives of this work will be essentially two. Firsgrive conditions on the
stability of the system, that is conditions on the inflow procéss$, (relative) part vol-
umesv;, traveling timesl; and number of vehicled, such that there exists a policy of
selection of,(-) andu;; () which maintains limited all the buffers;; (-). Second, ana-
lyze theperformancef some class of policies, trying to solve the optimizatioolgem



consisting in the selection of thg (k) and of theu;; (k) to minimize:

T = gla(k)]y* (6)
k=1

wherey € (0, 1] is a discount factor an& a planning horizon, possibly infinite. The
functiong(-) penalizes waiting freights in the node, e.g., for a lingar),

P Q
g(z) = chijl‘ij (7)
i=1 j=1

We now make a fluid approximation for the variables involvedl), considering
x;j, di; andu;; as continuous quantities. Accordingly, the informatioatthe vol-
ume of each typg = 1,...,@Q is now carried by the continuous variables (now the
relative volumesy; have no sense per se, hence they will be dropped in the follow-
ing) and each cost;;, assuming a fixed, now has the meaning of holding cost of part
j =1,...,Q per unit volumé. Notice that also the variable$, N, n; will represent
volumes (multiples of the unit volume).

We will deal with the two problems above by restricting thatrol policies to those
which make vehicles travel completely full (this is poseibbhder the fluid approxima-
tion of the materials): this should represent, as remaridaldy a correct choice under
heavy traffic conditions. Notice, also, that transportatiosts have not been included
in the cost index: this depends on the fact that (i) trangpior costs are considered
constant in time; (ii) we restrict the analysis to policielsi®h make all vehicles travel
completely full. The assumptions above imply that the tpantation cost is a fixed
component that does not influence the optimization probldra.choice of considering
the vehicles fully loaded is reasonable under heavy trafficd¢ions (where allowing
the possibility of sending partially full vehicles may evxempromise the stability), but
may become significantly sub-optimal in the case of reducfol rates, large holding
costsc;; and small traveling costs.

3 Stability

As an introduction, consider a one part-type systém= 1) with constant inflow
processed; and equal transportation timés = T, Vi. The equations are then:

aci(k—f—l)::ci(k:)—&-di—ui(k), i=1,...,P (8)
ui(k) € [0,n;(k)] 9)
P
Zm-(k) < Na(k) (10)
v P P
N(k+1)=N(k)+ > ni(k—T) = ni(k) (11)

4 Formally, as if the system were described by new variables= x;;v; (and similarly ford;;
andu;) andc; = ci; /v;; dropping the “prime” and remaining with the same notation.



Based on the Little’s law, the necessary and sufficient d¢mrdof stability for this
system should be:

P
N,
Sy (12)

In fact, N./T is actually the effective number of vehicles available atheime unit,
and hence also the volume of goods the node may handle in eddi time. This must
be equal to the volume arriving from outside, },_, d;.

The stronger condition that there exists a static vehidtecation such that:

for all ¢, which implies condition (12), actually is not necessamt (dearly sufficient,
since if it holds, allows to apply a policy where vehiclesdiréded once for ever among
the tasks and each task is fulfilled, with no interaction agnthem), as shown in the
following simple example.

Example. Consider a system witd; = d, = .5, 7 = 1, N. = 1. Clearly it is
not possible to distribute vehicles once for ever (in factdoy static selection af;,
condition (13) does not hold). However (12) holds and, ir,fie periodic allocation
ni(-) = {1,0,1,...} andng(k) = 1 — ny(k), maintains the buffers bounded. [

Let us now return to the general case, but considering atditgtinstant inflow
process. Condition (12) should be substituted by:

P Q
>N diTi < N, (14)

i=1 j=1

which will be shown to be necessary and sufficient for theiktyalbf the node. In this
case, in fact, the quantity;; 7; plays the role of avorkinflow in the system per unit of
time (in the sense that for each item of typto be sent ta, the system must allocate
a working capacity ofl;, where the total working capacity i8.). In the case of time
varying inflow rates (but with the inflow rate oscillating itbaunded interval), the same
condition should hold with average inflow ratég.

Remark 1.Actually, while (14) is necessary for stability, the proeported below only
holds if the inequality in (14) is strict. We believe howetleat also the equality ensures
the stability. Notice, in any case, that a strict inequaltiguld be considered in practical
settings to guarantee a certain degree of robustness afthititg property.

The previous discussion can be formalized in the followheprem.

Theorem 1. Condition (14) is necessary and sufficient (if taken witicstnequality)
to maintain all the buffers in the node bounded at all times.

Proof. NecessityThe necessity of (14) can be shown by relaxing the integestcaint
on then;(k). If the vehicle resource is not discrete, it is possible tamaén all the
buffers bounded only if there exists a static assignmenth@fvehicles (notice in fact
that in our model the inflow process is constant) which badaribe freight inflow into



the system for all the routes The freight inflow into the system of parts to be sent
on the routel is given by D; := Z?zl di;. If n; vehicles are assigned to this route,
since each transport requir€stime units,n; vehicles are available only every time
units. The amount of wares accumulated in such a period endgyy D; T;. So it must
be D; T; < n;. Summing over, we get the condition (14). Since this condition is
necessary for the relaxed problem, it is necessary alstiéooriginal problem.

SufficiencyThe proof of sufficiency is constructive: we exhibit a clagpolicies
which, if (14) holds with strict inequality, ensures thdttake buffers remain bounded.
The proofis very similar to the proof of Theorem 1 in [11]. Tdiass of policies ensur-
ing stability is like the CAF policies in [11] where, howey#re bufferz;; is processed
not until it is cleared (level zero) but until its level becesiower thanV.. That is: all
the vehicles are assigned to a single route by filling therh thié products of a certain
buffer B;; (selected according to the CAF rule (15) reported belowy drthis buffer
has sufficient stock to use all vehicles, and the buffer isiged when this is no more
possible. If no buffer can fill all the vehicles, the systemmaéns idle until this becomes
possible. Let,, denote the time a buffer has been finished to be processedchAtiene
7, the next buffer will be the one (denoted witkpsatisfying:

¥ (1y) > € Z 2 (Tn) (15)

for somee > 0 (e.g. the policy which selects the buffer with the largestteat will
belong to this class, satisfying (15) with aany (0,1/P), see [11]). Letl; := T;/N..
Performing a derivation similar to the one reported in [1tlif possible to show that:

T&V N,
Tn+1 — Tn < P (Tn) —=

— 16
- 1-—p* d* (16)

where thex denotes the quantities corresponding to the buffer selettémer,, and
p* := T*d*. The terms in (16) have been obtained as follows: the first t&,ﬂ;ﬂ
corresponds to the time to bring the buffer from its initial level z*(7,,) to a value
below N, and is derived from [11] setting the setup tid & 0 and considering that we
only need to reach a value bela\Wg. and not0; the second terr@% takes into account
that when a buffer is selected, perhaps its content is lessNh. We define, as in [11]:

.3

Then we have:
Tn+1 Z T xl_} Tn-i—l

Z i (Tn) + dij (Tag1 — )] + T2 (Trt1)
.

# 3 Ty (i =) + T () = ()
i



+ Z Tidij (T7L+1 - Tn) + T*Nc — Tz (Tn)
1,jF*
where the last inequality is implied by the fact thatr,, 1) < N. (we stop processing
x* at timer,, 1, when its content is beloW.). Exploiting (16),

T*x* (T, N, _ _
W(Thy1) < w(Th) Z wa (17(/)") + ﬁ) +T*N. —T*x*(7,)
1,57

Now, introducing the notatiop := 3, . :Tyd;;, we have thad_, .., Tidij = p— p*.
Introducing this in the equation above and simplifying, ved: g

Tk ok 1-
w(Thy1) S w(m) — T x (Tn)l—p + (;;N
Using (15), the previous becomes:
W(Tng1) < w(mn) — T* ezxu T +;*Nc
p P
<w —N,
< pe

whereT); = max; T;. So,

Il 1—0} LRy

wlrair) S u(r) |1 - g 1= | + &

Notice that condition (14) under strict inequality can bétien asp < 1, which is
exactly the condition considered in [11]. The proof can beticwed exactly as in [11]

where, however, for us;; = T; 11 (the same as in [11]) and; = ~ N.. So, as in

[11], itis possible to obtain:

T -
suppw(Ty) < o’ max )
€ 1] aij
hence

¥ N,
w(ty) < M max@ + p_°
€ 1] Qjj dm

whered,,, = min,; d;;. This allows to obtain that
1 T
izjxij(tk) < ﬁw(tk) < T—M max —=

is bounded for alt;, (whereT,, := min; T;). O



4 Optimization

Consider for now) = 1 (one part type system). Now, under condition (14), if every-
thing is approximated through continuous variables, tharag policy is myopic [12],
that is, it is thecy rule if dealing with a linear cost functiog(x) as the one consid-
ered in (7). Thezy rule consists in processing the bufféss; according to a priority
established by the productimes;:, where in the present problem, the cost coefficient
c associated to the buffes;; is given by the coefficient;; in (7) and the maximum
processing rate: for this buffer is given byu; = J}’?: this is actually the maximum
processing capacity for goods with destination (rdlz].té')ﬂere are however two major
differences:

— vehicles are not continuous resources;

— the capacity allocation has an influence also on the futtivee(allocate all vehicles
to destinationi we have to waitl; time units before we can change allocation)
while in the scheduling machine case, wheredhgolicy has been proved optimal,
capacity allocations can change instantaneously at eaph st

4.1 A Possible Heuristic

According to the above observations, we propose here aypilét we believe repre-
sents a promising and simple real time rule. We do not give hgrroof of optimality
for this policy and neither give a proof of stability: the flgmance of this policy will
be explored from a computational point of view. Accordindhe simulations, the sta-
bility appears to hold whenever condition (14) holds: tlsisi\dt surprising since the
policy reported below reduces the idle periods with resfzettie one considered in the
proof of the sufficiency of Theorem 1. This depends on the tfzet, even if also this
policy (as the one considered in the proof of Theorem 1) de¢siow vehicles to
travel partially loaded, it is no more required here thatlal vehicles travel together to
the same destination.

In particular, at each time step, the policy consideredimgbction allocates the ve-
hicles available at that moment to the buffg; which, among the ones witEj Tij >
1 (that is, among the ones which allow to complete the load @ftacle) has the largest
¢y index (where, as mentioned above, for the buffgy, the indexcp is given by
¢i;N./T;). To illustrate the policy more in detail, assume for sirojpyi @ = 1 and
letiy,...,ip be the priority established according to the rule (that isc;, /T;, >
Cipy1 /T, Torall k). Then, the policy is given by:

ng, (k) = min {N,(k), |z, (k)| }

niy (k) = min {No (k) — ni, (k), [2i, (F) |}

and so on, wherd&/, (k), defined in (3), is the number of available vehicles in thervel
(tg,tk+1). Then, to fill all the vehicles assigned to routeve set:



4.2 Simulative Results

We tested the policies discussed above in a system@ith1 (a single product)P =

3, characterized by the following parameters: deldys= 4, Ty = 3, T5 = 5; arrivals,
constant in timeg, = dy = 7, d3 = 5; with this choice the minimun¥, guaranteeing
stability is 74, according to condition (14). In figure aresim the performances (6), (7),
with unit costse; = ¢3 = 1, ¢o = 2, andy = 1, of three policies derived by simulating
the system, for a finite time horizon, for various values &f parameteN,.. The dash
dotted line shows the performances of the stabilizing paliescribed in Theorem 1;
the dashed line the performances of the policy which alexat each time instant all
the available vehicles prioritizing the buffers with higleentent, and the continuous
line the performances of the/i policy” (those coefficients, by the parameters chosen,
make buffer2 the one with higher priority followed by buffdrand3).

It is possible to observe that for values@f lower than the stabilizing value (74),
none of the policy described can achieve stability, coest with Theorem 1 (for
N. < 74 the costs reported in Figure 1 result finite as a consequettee dinite
time horizon considered). Fa¥,. > 74 the cu policy performs better than the policy
prioritizing the higher buffers.

Fig. 1. Performances of theu policy (continuous line), the serve-largest-buffer ppl{dashed),
and the basic stabilizing policy (dash-dotted), as a famotif V..

5 Conclusions

In this paper, a simplified model of a logistic node has beersicered, where items
arrive from outside to the node and must be routed to diffedestinations. Waiting
items are stored in different buffers, according to the@issland destination. At first,
a necessary and sufficient condition is given in the papeth@possibility of finding
dispatching dynamic policies that maintain all the buffeesinded. Subsequently an



optimization problem is considered and a simulative consparof the performance of
different feedback policies is presented in the paper. Thblpm has been studied un-
der a fluid approximation of the items traveling in the noties allows to completely fill
the vehicles (and to neglect complex combinatorial loagiraplems). This possibility
is actually used by the policies studied in this paper thahakoallow the vehicles to
travel partially filled. This is actually a reasonable cleoimder heavy traffic conditions
where allowing the possibility of sending partially fullvieles may even compromise
the stability, but may become significantly sub-optimalhie tase of reduced inflow
rates, large holding costs and small traveling costs.
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