
S-MODULES – AN APPROACH TO CAPTURE SEMANTICS  

OF MODULARIZED DL KNOWLEDGE BASES 

Krzysztof Goczyła, Aleksander Waloszek and Wojciech Waloszek 
Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology 

Narutowicza Str. 11/12, Gdańsk, Poland 

Keywords: Description Logics and Ontologies, Knowledge Engineering, Knowledge-based Systems. 

Abstract: Modularity of ontologies has been recently recognized as a key requirement for collaborative ontology 

engineering and distributed ontology reuse. Partitioning of an ontology into modules naturally gives rise to 

development of module processing methods. In this paper we describe an algebra of ontology modules 

developed during our work on a Knowledge Base Management System called RKaSeA. The idea differs 

from other algebras in the fact that we treat a module semantically, i.e. we focus on the set of a module‟s 

models rather that on the set of axioms and assertions included in its representation The algebra has revealed 

its potential also in the process of reasoning. 

1 INTRODUCTION 

Subsequent years bring more and more attention into 
the area of modularization of Description Logics 
(DL) knowledge bases. The main motivation is the 
hope to reach the maturity of the collaborative 
ontology development and reuse process comparable 
to the one achieved by software engineering 
methods in the case of software modules. In 
consequence, many methods and techniques of 
ontology decomposition and merging have been 
devised. 

During the course of work on a Description 
Logic-based Knowledge Base Management System 
(KBMS) called RKaSeA we faced the issue of 
choosing the proper formalism for modularization. 
Naturally we strived for allowing the user to create 
and process a modularized knowledge base, but we 
wanted also to enable her to extract a fragment of a 
selected module, combine it with a fragment from 
other module, etc. Moreover, our aim was also to 
explore possibilities of automated (i.e. unseen by the 
user) ontology decomposition in order to obtain 
shorter time of executing reasoning tasks. 

As a result we developed a formalism for 
describing operations on modules. The formalism is 
simple, yet robust enough to describe various 
complicated operations useful for expressing module 
decomposition and merge. Because we focused 
strongly on the semantic aspect of modules, we 

called the formalism s-module algebra (pronounced 
semodules, as „s’ stands here for “semantics”). 

In the following we introduce basic notions of 
s-module algebra and present examples of its use. 
Then we discuss issues connected with decidability 
and compare our work with related published 
methods. A short discussion of further directions of 
development of the algebra concludes the paper. 

2 PRELIMINARIES 

In the following we assume that we use an arbitrary 
chosen description logic .  

Let a signature, denoted S = C  R  I for any 
, is a disjoint union of concept names (C), role 
names (R), and individual names (I). C(S), R(S),  
and I(S), respectively, refer to corresponding part of 
S. We assume that there exist a set of acceptable 
names, denoted as  (C, R, I  ). 

The chosen description logics  determines the 
set of (possibly complex) concepts, roles and 
individuals one can build using the operators in  
and names from a signature S. We denote these sets 
with C(S), R(S), I(S), respectively. For instance, 
if  is , then C(S) ::= A | C | C  D | C  D | 
R.C | R.C |  | , where A  C(S), C, D  C(S), 
R  R(S). 

An S-interpretation  is a pair (, ), where  
is a set called the domain of the interpretation and  

117

Goczyła K., Waloszek A. and Waloszek W. (2009).
S-MODULES – AN APPROACH TO CAPTURE SEMANTICS OF MODULARIZED DL KNOWLEDGE BASES.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 117-122
Copyright c© SciTePress



 

is an interpretation function assigning each 
A  C(S) a set A  , each R  R(S) a binary 
relation R


  


  


, and each a  I(S) an element 

a of the domain . Moreover each description 
logic  establishes its own rules for extending the 
interpretation to complex concepts, e.g. in  
(C  D) = C  D. 

Each description logic allows for formulating 
axioms and assertions (sentences), and define the 
conditions under which a specific interpretation  
satisfies a particular sentence. We denote the set of 
all axioms and assertions that can be built from a 
given signature S as (S). The fact that the 
interpretation  satisfies a given sentence   (S) 
(is its model)  is denoted as   . 

3 S-MODULES ALGEBRA 

3.1 Basic Definitions 

An assumption we take is that a user is interested in 
conclusions that can be drawn from an ontology 
rather than in particular axioms and assertions. So, 
we define an ontology module strictly semantically, 
focusing only on its interpretations. 

Definition 1 (S-module). An s-module M = (S, 
W) is a pair of a signature S (called a signature of 
the s-module) and a class W of S-interpretations 
(called models of the s-module). The two parts of M 
are denoted as S(M) and W(M), respectively. Each 
S-interpretation from W we call a model of M.         

According to this definition, each module simply 
consists of all its models. We say that s-module 
satisfies a particular sentence , denoted M  , iff 
  W(M):   .   

We think that creators of an ontology is not able 
to foresee all its future uses. By necessity, the 
creators have to focus on a small set of chosen 
contexts of use of particular modules, and the 
contexts of their choice may not be adequate for a 
particular application of a knowledge base with this 
ontology. So, the s-modules algebra puts stress on 
various methods of manipulation for s-modules; that 
in general allow for changing and combining 
signature and models. 

3.2 Operators 

In this section we introduce operators of s-module 
algebra. Some of the operators are non-primitive and 
can be derived from others.   

We assume that description logic  and domain 
set  are chosen and fixed (both assumptions can be 

alleviated, see Section 3.3). We denote a set of all 
modules as M, a set of all signatures as , and a set 
of all S-interpretations as (S). We also use the 
notion of a projection ΄ = |S΄ of an S-
interpretation  to a signature S΄ (S΄  S). ΄ is an 
S΄-interpretation for which the following holds: ΄ 
=  and X΄ = X for every X  S΄. 

In the subsequent descriptions: for unary 
operators, their operand is denoted as M, for binary 
operators the operands are denoted as M1 and M2. M΄ 
always represents a result. 
 
Extend 
S: M  M, S   ; 
S(M) = (S(M)  S, {  (S(M)  S): |S(M) 
                  W(M)}).       

 
Extension extends a signature of a given module 

M by names from a given signature S. The allowed 
set of interpretations of each original name is 
preserved, and so are the relationships between 
original concepts, roles, and individuals (e.g. if 
M  ,   (S(M)), then also S(M)  ). 
 
Project 
S: M  M, S  , S  S(M); 
S(M) = (S, {|S:   W(M)}).      

 
Projection reduces a signature of a given 

module. However, relationships between original 
concepts, roles, and individuals whose names remain 
in the signature are preserved (e.g. if M  , 
  (S), then also S(M)  ). 
 
Rename 
: M  M,  is a signature mapping; 
(M) = ((S), (W)).     

 
Renaming uses the notion of a signature 

mapping. Signature mapping  is a triple: (C, R, I), 
each of them being a bijection from  to . By (S) 
we mean C(C(S))  R(R(S))  I(I(S)), and by 
(), where  is  an S-interpretation, we mean an 
(S)-interpretation ΄ such that ΄ =  and (X)΄ = 
X for every X  S. Rename preserves relationships 
between concepts, roles, and individuals, however 
with respect to their name changes (e.g. if M  , 
  (S(M)), then (M)  (), where () is  
transformed in such a way that all names in  have 
been systematically changed according to ). 
 
Select 
: M  M,   (S(M)); 
(M) = (S, {  W(M):   }).   
 

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

118



 

Selection leaves only these interpretations that 
are models of a sentence . Obviously (M)  . 
 
Union 
: M  M  M, S(M1) = S(M2); 
M1  M2 = (S(M1), W(M1)  W(M2)).   

 
Union performs a set-theoretic union of sets of 

models of s-modules. The condition that S(M1) = 
S(M2) is not very restrictive because we can easily 
upgrade this operation to a generalized union g: M1 
g M2 = S(M

2
)(M1)  S(M

1
)(M2). 

 
Intersection 
: M  M  M, S(M1) = S(M2); 
M1  M2 = (S(M1), W(M1)  W(M2)).   

 
Difference 

–: M  M  M, S(M1) = S(M2); 
M1 – M2 = (S(M1), W(M1) – W(M2)).   

 
Intersection and difference are analogous to the 

union, and can be generalized in the similar way to 
the case when signatures of the operands differ. 

Union and difference are non-linguistic (strictly 
semantic), i.e. their use may lead to generation of a 
s-module M for which there does not exist any 
corresponding set of sentences S in . This issue 
will be elaborated on later in the paper. 
 
I-Join (Intersecting Join) 
: M  M  M; 
M1  M2 = (S΄, W΄); 
  S΄ = 1(S(M1))  2(S(M2)); 
  W΄ = {  (S΄): |1(S(M1))  1(W(M1))  
     |2(S(M2))  2(W(M2))}.   

 
I-Join is an operation on two s-modules. It uses 

two signature mappings 1, 2, each of them 
preceding every terminological name in a signature 
with a unique prefix. Thus, I-Join helps to solve 
potential naming conflict between s-modules. I-Join 
preserves relationships between original concepts 
and roles in both modules (if M1  ,   (S(M1)), 
then M΄  1(), analogically for M2). 

I-Join is a non-primitive operation, as M1  M2 
can be expressed as 

1
(M1) g 

2
(M2). This 

derivation justifies the name “intersecting join” as 
we may perceive this join as a “safe” way of 
intersecting modules. 
 
U-Join (union join) 
: M  M  M; 
M1  M2 = (S΄, W΄); 
  S΄ = 1(S(M1))  2(S(M2)); 
  W΄ = {  (S΄): |1(S(M1))  1(W(M1))  

       |2(S(M2))  2(W(M2))}.   
 

U-Join is a counterpart of I-Join. 1, 2 have the 
same meaning as above. U-Join offers the “safe” 
way of performing union. Naturally, M1  M2 = 


1
(M1) g 

2
(M2). 

 
Put-Under 
C: M  M  M, C  C(S(M2)); 
M1 C M2 = (S΄, W΄); 
  S΄ = S(M1)  S(M2); 
  W΄ = {  (S΄): |S(M2)  W(M2)  
     (|S(M1)  C)  W(M1)}.    

 
Put-Under correlates the domains of two 

s-modules. We use here a restriction of an S-
interpretation : by   ΄ we mean an 
interpretation ΄ = (΄,΄) such that X΄ = X ΄ 
for every X  S. As each s-module induces a set of 
laws that enforce certain relationships between 
concepts, roles, and individuals, then Put-Under can 
be perceived as a restriction of the scope of these 
laws to a fragment of a larger domain. 

3.3 Remarks on S-module Algebra 

First we distinguish between primitive and non-
primitive operators. Such a partition is to some 
extent arbitrary (e.g. we could treat I-Join rather than 
Extend a primitive operation). As far as Rename is 
concerned: if we need to change elements of a 
signature S of a s-module M into elements of a new 
signature S΄, we might think of the following 
scenario. Instead of using  operation, we extend the 
signature of M by S΄ (with use of ). Then we assure 
the extensional equality between terms from S and 
S΄ by formulating appropriate axioms (like A  B, 
we assume that A  S and B  S΄). Finally, we 
remove the unwanted terms by using .  However, 
this may not always be possible as not every 
description logic allows for formulating such axioms 
(e.g. in  we cannot express equality of roles). 
This is why we consider Rename primitive. 

Earlier we mentioned possibility of alleviation of 
the two assumptions: that a single description logic 
 is used in all the s-modules, and that a particular 
domain set  is chosen and fixed. The latter is 
simple to be lifted, the consequence is that sets of 
interpretations in s-modules become classes. The 
former assumption relates to the issue of multi-
Description Logics modules and its alleviation is a 
more complicated. In general, the exploited 
description Logic  is not used explicitly in the 
definition of a s-module. Yet, it is indirectly 
contained in the set of interpretations, because each 
interpretation of a s-module follows the rules of 

S-MODULES - AN APPROACH TO CAPTURE SEMANTICS OF MODULARIZED DL KNOWLEDGE BASES

119



 

expanding base-term interpretation into the 
interpretation of complex roles and concepts. 
Therefore, in order to translate a s-module M1 
“expressed” in 1 into a s-module “expressed” in 2 

we just need to “contract” each interpretation 
  W(M1) to its base interpretation and then 
“expand” it in according to the rules of expansion 
appropriate for the logic 2. This, however, may 
lead to over-expressiveness of some s-modules. 
 

Example 1 (Over-expressiveness). Let us take any 
s-module M and assume that it contains  
interpretations. We extend the signature of the 
module by a new role R and select only these 
interpretations that satisfy the axiom Trans(R), i.e. 
we build M΄ = Trans(R)({R}(M)). Then we change the 
logic of M΄ to . Interpretations contained in 
W(M΄) no longer map concepts like  3R., but the 
role R remains transitive in all interpretations in 
W(M΄), although there is no possibility of 
expressing this fact in .  

The effect described in the above example seems 
to reveal a crucial obstacle in using multi-logic 
modules. However, as it is shown below over-
expressiveness is not specific only to multi-logic. 

To elaborate on this we introduce a notion of a 
linguistic s-module. To ease the task we return to the 
assumptions of chosen and fixed  and . 

Definition 2 (Linguistic S-module). We call a 
s-module M = (S, W) linguistic iff there exists a set 
of sentences S  (S) such that W = {  (S): 
  S:   }.                                                        

In other words, linguistic s-modules are modules 
whose models are all models of a particular set of 
sentences. We denote a linguistic s-module as M(S, 
S), where S is the set of sentences, or simply as M(S) 
if module signature can be inferred from the context, 
e.g. M({A  B, A(a)}) with signature S = {A, B, a}. 

In general, when using specific operations we 
have no guarantee that the outcome is linguistic even 
if all operands are. These operations are called non-
linguistic and they are: Union (), Difference (–), 
Projection (), and U-Join (). They may result in 
obtaining a s-module M which does not correspond 
directly to any set of sentences from (S(M)). 

 
Example 2 (Non-linguistic S-module). Consider a 
union M΄ of two linguistic s-modules 
M΄= M({A  B})  M({B  A}). Neither M΄ A  B 
nor M΄ A  B is true. But after an intersection: 
M΄΄= M΄ g M({A  B(a), A  B(b)}), we obtain 
a s-module with no models: W(M΄΄) = .                

4 EXAMPLES  

There is similarity between the s-module algebra and 
the relational algebra. Both algebras aim at 
delivering operators on defined units of data (or 
knowledge) that allow a user to combine the units in 
order to obtain a new unit, presumably better suited 
for a specific purpose. Like the relational algebra, 
the s-module algebra may be a base for development 
of a language for the end-user, and such a language 
would have a desired property of closeness.  

The following example shows how to merge 
information from two s-modules in order to obtain 
desired piece of knowledge. 

Example 3 (Intersecting S-modules). Consider two 
s-modules: M1 describes human resources and M2 
the structure of a hospital. 

M1 = M({isManagerIn.HTBusinessUnit  Expert,  
 Expert  Employee}) 
M2 = M({leadsDepartment(johnSmith, 
neurosurgery), Department(neurosurgery)}). 

To merge the information from the two 
s-modules in order to infer that johnSmith is an 
expert, we first create an intersection of the 
s-modules: M´= M1 g M2, and then restrict the set 
of models by introducing additional “bridge” 
axioms: M´´= M´ g M({leadsDepartment  
isManagerIn, Department  HTBusinessUnit}). The 
last step can also be done by double selection.    

In the example we did not encounter any name 
conflict between s-modules being merged. In 
general, such a conflict may occur and I-Join 
operator should be used. Below we show how to 
align two s-modules in which the same set of terms 
is used to express different meanings. 

Example 4 (Joining S-modules). Consider two 
s-modules: M1 and M2. They contain assessment of 
several rooms for rent, and use the same 
categorization and signature S = {HSRoom, 
ASRoom, LSRoom}, where the concepts denote high, 
average and low standard rooms. But in M1 and M2 
different criteria were used for categorization, as in 
the first case we were looking for a room to spend 
just one day and in the second case to stay for a 
longer period of time. We “import” the assessment 
from M1 to M2 performing necessary translation of 
classification between the s-modules. 

1. In the first step we simply I-Join the modules. As 
a result we obtain a module M΄= M1  M2. The 
concepts have been renamed, so S(M) = 
{1:HSRoom, 2:HSRoom, 1:ASRoom, …}. 

2. Next, we make the criteria of assessment explicit. 
In this example we use only one criterion: a 

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

120



 

bathroom. So, we extend the signature of M΄ 
appropriately: M΄΄= {RoomWithBathroom}(M΄). 

3. Afterwards, we bind the criteria with the 
assessment. In M1 rooms with bathrooms were 
automatically considered high standard. According 
to the criteria used in M2 no room with bathroom can 
be considered more than low standard.  

M΄΄΄= M΄΄ g M({RoomWithBathroom  1:HSRoom, 
           RoomWithBathroom  2:LSRoom}). 

Naturally, the second axiom is valid only if the 
domain consists of only rooms (which is assumed). 

4. Finally we remove unwanted terms from the 
module signature: M = {2:HSRoom, 2:ASRoom, 

2:LSRoom}(M΄΄΄). 

In these steps all the translations possible to 
perform were done. All average or low standard 
rooms from M1 were considered low standard in 
accordance with criteria from M2.  

We do not claim that the s-module algebra is to 
replace the existing methods of modularization, like 
DDL, -connections (see e.g. d‟Aquin et al., 2008) 
for a brief survey), etc. Each of the methods has its 
own goals and offers apparatus for solving certain 
problems (e.g. locality is in fact beyond the scope of 
the current version of the s-module algebra). Instead 
we argue that the s-module algebra is a tool that 
might be useful in describing some common aspects 
of wide range of actions involving merging and 
transformation of knowledge.  

The s-module algebra cannot capture some 
mappings proposed by other methods. For instance, 
it is impossible to map role instances into concept 
instances, as proposed in (Ghidini et al., 2007) for a 
version of DDL. The reason is that there is no DL 
sentence for such a relationship. However, if we 
extend the language with Horn rules (see e.g. Motik 
et al., 2005), we can obtain somewhat similar result 
with use of a rule like C(a)  R(a, b). 

 

Example 5 (Union). Consider the s-module M:  

M = M({   1murdered.{victim},  
   accuses–.TrustedWitness  murdered– .{victim}, 
   TrustedWitness  presentAt.CrimeScene}). 

The s-module contains knowledge that there is 
only one murderer of a victim and it is the one who 
is accused by a trusted witness (who was present at 
the crime scene). Let consider two (mutually 
exclusive) versions of facts: 

M1 = M  M({TrustedWitness(johnShady), 
 accuses(johnShady, tedInnocent)} 

M2 = M  M({TrustedWitness(henryBrillant), 
 accuses(henryBrillant, markGuilty)}. 

We can hold the two version in a single s-module M΄ 
= M1  M2. No unambiguous conclusion about the 
murder can be drawn from M΄. Fortunately, the 
further information collected (John Shady actually 
was not present at the crime scene) allows to rule out 
one of the versions: M΄΄ = M΄  
M({presentAt.CrimeScene(johnShady)}); M΄΄ 
murdered(markGuilty, victim)).                              

5 DECIDABILITY ISSUES 

Since the use of the s-modules algebra may result in 
exceeding the original expressiveness of a chosen 
description logic, it is necessary to investigate 
whether basic reasoning problems remain decidable. 

In our analysis we focus on the concept 
satisfiability problem (csat), which for s-modules 
can be formulated as follows: Given a module M and 
a concept C  C(S(M)); check if there exists an 
interpretation   W(M) for which C  .  

Factors that influence decidability are: the used 
description logic  (for multi-logic modules we 
assume the most expressive logic) and the set of 
allowed algebra operators. Each problem instance 
can be then described as a triple (p, , A), where p 
is the problem name,  is the logic used, and A is 
the set of primitive operators (A denotes all 
operators: {,,,,,,–,}). We also make an 
assumption that the only s-module constants we use 
correspond to linguistic s-modules. Preliminary 
results are described by the following theorems. 

Theorem 8. Problem (csat, , A–{–}) is 
decidable. 

Sketch of proof. We associate each s-module with 
one or more sets of sentences (denoted M  {S1, S2, 
…}). Linguistic modules of the form M(S) are 
associated with S (M {S}). Each algebraic 
operation produces a new module associated with 
newly constructed sets: (M {S1, S2…}) = M΄  
{S1, S2, …}, (M  {S1, S2, …}) = M΄  {S1, S2, …}, 
(M  {S1, S2, …}) = M΄  {(S1), (S2) , …}, 
M1 {S1-1, S1-2, …}  M2  {S2-1, S2-2, …} = M΄  
{S1-1, S1-2,  …, S2-1, S2-2, …}, M1 {S1-1, S1-2, …}  
M2  {S2-1, S2-2, …} = M΄  {S1-1  S2-1, S1-1  S2-2,  
…, S1-2  S2-1, S1-2  S2-2, …}, M1 {S1-1, S1-2, …} C 
M2  {S2-1, S2-2, …} = M΄  {C(S1-1)  S2-1, C(S1-1) 
 S2-2,  …, C(S1-2)  S2-1, C(S1-2)  S2-2, …}. Two 
operators needs special attention.  may constrain 
the signature in the way that some of the sentences 
from S1, S2, … may fall outside (S(M΄)). 
Nevertheless, we keep track of these sentences, 
watching if there are no naming conflicts (if 
someone tries to reintroduce one or more of the 
“dummy” names, they have to be changed). C 

S-MODULES - AN APPROACH TO CAPTURE SEMANTICS OF MODULARIZED DL KNOWLEDGE BASES

121



 

needs a special “translation” of the sentences to 
constrain their influence only to C (e.g. D  E to 
C  D  C  E). Under these assumption we prove 
that checking satisfiability of a concept C in 
M  {S1, S2, …} can be performed by checking its 
satisfiability against each set of sentences S1, S2, … 
(with standard  reasoner).  

Theorem 9. Problem (csat, , A) is decidable. 

Proof. The same technique as in the previous proof 
can be used. Details are omitted for brevity  

A question arises whether the result from 
Theorem 9 can be generalized to more expressive 
logics. This question is open, although we are 
pessimistic in this matter because the line of 
argument used in the proof suggests that the 
problem is similar to extending such logics with 
role negations. 

6 RELATED WORK 

The s-module algebra is inspired by relational 

algebra, especially in its version published in (Hall 

et al., 1975). In our work we draw an analogy 

between a knowledge base (or ontology) module and 

a relation (or a table), and between a model and a 

tuple (a record in a table). 
Some similarities can also be noticed with the 

algebra of software modules proposed in (Herrmann 

et al., 2007). Here we should compare a s-module to 

software model and an interpretation to 

implementation of a system. 

Several ontology and module algebra have been 

developed so far. One of examples is described in 

(Mitra and Wiederhold, 2004). The authors share 

with us some motivations (they treat ontologies as 

contexts, each context represents some viewpoint). 

However their algebra represents ontologies as RDF 
graphs. Moreover, explicit mapping between 

ontologies have to be defined in some extra-

ontological language. 

One of the most recent algebra for modules 

(Neon algebra) has been proposed in (d‟Aquin et al., 

2008). It also contains operations on a signature (in 

the case of Neon algebra called an interface) and on 

module contents. However, the contents of the 

module is understood there as purely linguistic 

(which also makes some of definitions not intuitive, 

e.g. the definition of difference states that (M1 – M2) 

  iff M1   and M2 | .). Additionally NeOn 
algebra does not define any join operation. 

7 SUMMARY 

The s-module algebra provides a broad range of 
tools for manipulating knowledge. So it constitutes a 
framework in which many issues concerning 
modularity of knowledge bases can be efficiently 
described. It also provides a user with methods of 
manipulation of contents of s-modules and enables 
her to override the original (source) way of 
modularization of an ontology. 

Further planned development of the algebra is 
connected mainly with its practical application: 
implementation of a KBMS allowing for storing 
s-modules, creation of knowledge manipulation 
language for users, and efficient methods of query 
execution and optimization. 

ACKNOWLEDGEMENTS 

The work has been supported by Polish Ministry of 

Research and High Education under grant No. 

N N516 4115 33. 

REFERENCES 

d‟Aquin, M., et al, 2008. NeOn Formalisms for 
Modularization: Syntax, Semantics, Algebra. Neon 
Project, Deliverable D1.1.3. 

Ghidini, C., Serafini, L., and Tessaris, S. 2007. On relating 
heterogeneous elements from different ontologies. In 
Proceedings of the 20th International Workshop of 
Description Logics, pp. 283–290.  

Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., and 
Völkel, S. 2007. An Algebraic View on the Semantics 
of Model Composition. In Model Driven Architecture 
- Foundations and Applications, Springer-Verlag, pp. 
99–113. 

Hall, P., Hitchcock, P., and Todd, S. 1975. An algebra of 
relations for machine computation. In Proceedings of 
the 2nd ACM SIGACT-SIGPLAN symposium on 

Principles of programming languages, Palo Alto, pp. 
225–232. 

Mitra P., Wiederhold, G. 2004. An Ontology-Composition 
Algebra. In Handbook on Ontologies, Springer-
Verlag, pp. 171–216.  

Motik, B., Sattler, U., and Studer, R. 2005. Query 
Answering for OWL-DL with Rules. Journal of Web 
Semantics: Science, Services and Agents on the World 
Wide Web 3 (1), pp. 41–60. 

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

122


