
FORMALIZATION OF BROADCAST COMMUNICATION IN
PROCESS CALCULUS AND ITS MODEL CHECKING

Ritsuya Ikeda, Takuya Ohata and Shin-ya Nishizaki
Department of Computer Science, Tokyo Insititute of Technology, 2-12-1-W8-69, O-okayama, Meguro, Japan

Keywords: Automated reasoning, Model checking, Broadcast communication, Process calculus, Pi-calculus, Model
checking, Model checker SPIN.

Abstract: A large number of studies have examined communicating processes in formalizing concurrent systems for
unicast communications. We propose a process calculus to enable formalizing communicating processes
and their computational costs to analyze denial-of-service attack resistance by estimating the cost balance
between a victim and attackers. Our system is similar to other process calculi in that it is based on unicast
communication. Broadcast communication is also important in the context of denial-of-service attack resis-
tance because several denial-of-service attack methods, such as the Smurf attack, use broadcast communica-
tions. Little is known about the formal framework of broadcast communicating processes. In this paper, we
formalize broadcast communication in the framework of process calculus and apply it to an analysis of
denial-of-service attack resistance of communicating processes via broadcast communication. We propose
an extension of the proposed process calculus and an analysis method that uses the SPIN model checker.
We give two examples of broadcast communication and verify several properties using the SPIN model
checker

1 INTRODUCTION

The formalization of communicating processes has
been the object of study for a long time. One of the
most important frameworks is the pi-calculus (Miln-
er et al., 1992) (Sangiorgi et al. 2004), a system that
formalizes communi-cating processes. In that calcu-
lus, communication between processes is allowed to
be point-to-point or unidirectional; the calculus does
not support broad-cast communication. The spi-
calculus was proposed to formulate and analyze the
security of communication protocols enhanced by
adding cryptographic constructs like public-key en-
cryption, shared-key encryption, and hashing (Abadi
and Gordon, 1997).

A denial-of-service (DoS) attack is an at-tempt to
make a computer service unavailable to its users.
The first study of the formalization of DoS attacks
on communications protocols and resistance against
such attacks was performed by Meadows (2001).
She extended the Alice-and-Bob notation by anno-
tating the computational costs in processing data
packets. Although the property was deeply related to
operational behavior, cost annotation was assigned
to each communication operation independently of

the operational behavior. We therefore proposed
another formal framework called spice calculus; this
is based on process calculi where the cost estimation
mechanism is linked to operational behavior (Tomi-
oka et al., 2004). We can use this calculus success-
fully to formalize DoS attack resistance; however, it
can only handle point-to-point communication, not
broadcast communication.

In this paper, we study the formalization of
broadcast communication in spice calculus and a
verification method using model checking.

2 FORMALIZATION OF
BROADCASTING

Broadcasting is the transmission of a message to be
received by all hosts in a network. It is supported by
several network protocols such as Ethernet, token
ring, and IPv4. On the other hand, point-to-point
transmission is called unicasting.

Some DoS attacks on communication protocols
use broadcasting as a packet amplifier to overwhelm
a victim. The most typical of these is the Smurf at-
tack, in which an attacker sends ICMP echo requests

348
Ikeda R., Ohata T. and Nishizaki S. (2009).
FORMALIZATION OF BROADCAST COMMUNICATION IN PROCESS CALCULUS AND ITS MODEL CHECKING.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 348-352
DOI: 10.5220/0002276703480352
Copyright c© SciTePress

Unicast Broadcast

Figure 1: Unicasting and broadcasting.

to IP broadcast addresses whose source IP addresses
are spoofed as the victim’s IP address (CERT-1998).
Each receiver then replies to the victim with an echo
reply, and the spoofed echo requests from the at-
tacker are amplified as the echo replies sent from
hosts in the network. Broadcasting therefore plays
an important role in DoS attacks.

There are two ways of incorporating broadcasting
into spice calculus:

1. Implement broadcast communication using
unicast communication, which is already pro-
vided in the calculus.

2. Introduce broadcast communication primitives
into the calculus, just like the unicast primitives,
and then define operational semantics of the
broadcast primitives.

In this paper, we start with the first option because it
works with a model checker.
We implement a process that creates a group of
processes simulating a broadcast. We call the
process a broadcast arranger: the processes in Fig.
3 are generated and arranged as the result of the ex-
ecution of the process description shown in Fig. 4.
We do not explain the description in detail. The code
does not implement the processes in Fig. 3 directly,
but generates a procedure that creates the processes
in Fig. 3. The relay process in Fig. 3 shows the “re-
ception” of a broadcast request and the subrelay
process is a “control clerk” for each host participat-
ing the broadcast network. If some host, e.g., HST2,
wants to make a broadcast, (1) it sends a message to
the channel broadcast; (2) (3) then the relay
process delivers it to the other subrelays. (4) The
subrelays send the message to the corresponding
hosts.

Figure 2: Smurf amplifier.

relay

subrelay

subrelay

subrelay

sink

HST1

HST2

HST3

(1) (2)

(3)

(3)

(3)

(4)

(4)

(4)

broadcast

out

Figure 3: Translated broadcast.

new (broadcast);
store last = [];
fork(/* relay arrangement */
 inp con(reply);
 out internal <[broadcast, last]>;
 inp internal (data);
 split [n,out] is data;
 store last=n;
 out reply <[broadcast,out]>;
)
fork(/* sub-relay creation */
 inp internal(data);
 split [b,last] is data;
 new(out); new(n);
 out internal <[n,out]>;
 fork(
 inp n (data);
 out last <data>;
 out out <data>;
)
)
fork(/* relay creation */
 inp broadcat (data);
 out last <data>
)

Figure 4: Description in spice calculus.

FORMALIZATION OF BROADCAST COMMUNICATION IN PROCESS CALCULUS AND ITS MODEL
CHECKING

349

chan dummy = [0] of { int };
chan broadcast = [0] of { int };
chan con = [0] of { int };
chan last;
byte sink_started = 0;
int node_num = 0;
active proctype sink()
{chan prev = [0] of { int };
 int data;
 atomic {
last = prev;
sink_started = 1;
}
 do ::prev ? data; od
}
active proctype broad_net()
{int data;
 sink_started == 1;
 do ::true ‐>
 broadcast ? data; last ! data;
 od
}
active proctype add()
{chan reply;
chan prev = [0] of { int };
 chan out;
chan internal = [0] of { chan, chan };
 sink_started == 1;
 do ::con ? reply ‐>
 run c(internal);
 internal ! dummy, last;
 internal ? prev, out;
 last = prev; node_num = node_num + 1;
 reply ! out;
 od
}
proctype c(chan internal)
{int data; chan dum; chan next;
 chan prev = [0] of { int };
 chan out = [0] of { int };
 internal ? dum, next;
 internal ! prev, out;
 do ::prev ? data;
 next ! data;
 if ::out ! data; fi;
 od
}

Figure 5: Translated code in Promela.

% ping ‐b 192.168.108.255
WARNING: pinging broadcast address
PING 192.168.108.255 (192.168.108.255)
 56(84) bytes of data.
PING 192.168.108.255 (192.168.108.255)
56(84) bytes of data.
64 bytes from 192.168.108.128:
icmp_seq=1 ttl=64 time=0.289 ms
64 bytes from 192.168.108.90:
icmp_seq=1 ttl=64 time=0.479 ms (DUP!)
64 bytes from 192.168.108.65:
icmp_seq=1 ttl=64 time=1.38 ms (DUP!)
64 bytes from 192.168.108.43:
icmp_seq=1 ttl=64 time=1.38 ms (DUP!)

Figure 6: Example of Ping.

proctype sender(){
 int:data;
 chan pong = [0] of { int };
 broadcast ! ping;
 sended: skip;
 do
 ::pong ? data;
 od
}

Figure 7: Ping Sender.

3 PRACTICE OF BROADCAST
COMMUNICATION IN MODEL
CHECKER

Nowadays, many model checkers are implemented
and used widely not only in academia but also in
industry. Among them, we choose SPIN model
checker (Holzmann 2004), which enables us to give
a model description in a kind of distributed pro-
gramming language with synchronous communica-
tion via channels. The language is called Promela
(Process Meta-Language) . The SPIN model check-
er verifies that a temporal logic’s formula satisfies a
model written in Promela. We translate a process
description of the spice-calculus to a model defini-
tion written in Promela. Similarity between the
spice-calculus and Promela is multi-process lan-
guage based on synchronous communication via
channel.The difference is process creation: although
we can create unlimited number of processes in the
spice-calculus, we can use only processes deter-
mined by a given program code in Promela. Such
limitation is due to efficiency of model checking in
SPIN. In translation of the spice-calculus code to
Promela’s, we naively impose the restriction on
process creation: unlimited process creation is trans-
lated as fixed number’s creation. In Figure 5, the
translated code of the spice-calculus to Promela is
presented, which is slightly editted for readablility.

3.1 Case Study: ICMP’s Ping

Ping is a basic network command in several operat-
ing systems that enables sending ICMP communica-
tions, including ICMP broadcasts. Figure 6 shows an
example of using the ping command where a user
has broadcast to network 192.168.108.0/24 and four
hosts have responded. Code fragments in Figs. 7 and
8 describe the sender of a broadcast and one of four
responders, respectively. The sender sends a broad-
cast packet ping and receives pong responses. The

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

350

responder sends a pong back. The two code frag-
ments provide a model for the SPIN model checker.

proctype sender(){
 int:data;
 chan pong = [0] of { int };
 broadcast ! ping;
 sent: skip;
 do
 ::pong ? data;
 od
}

Figure 8: Ping sender.

proctype responder1(){
 chan reply = [0] of { chan };
 chan out = of { int };
 chan pong; int prefix = 1; int data;
 con ! reply;
 reply ? out;
 do
 ::out ? pong ‐> ping ! prefix;
 received: skip;
 od

Figure 9: Ping Responder.

An assertion to be checked by SPIN is described in
linear temporal logic as

[](sender@sent ‐>

 (<>responder1@received &&

 <>responder2@received &&

 <>responder3@received)),

where sender@sent means reachability in line 5 of
Fig. 8, and responder1@received means reach-
ability at line 9 of Fig. 9. The formula denotes that if
control reaches sent in process sender, then it will
finally reach the received points in responder1,
responder2, and responder3. The formula was
successfully checked by the SPIN model checker.

3.2 Case Study: Smurf Attack

We next formalize the Smurf DoS attack using our
framework. In a Smurf attack, an attacker transmits
a spoofed broadcast message with the victim’s
address to a network (CERT 1998). Those receiving
the broadcast send messages back to the victim, and
a large number of messages arrive at the victim to
cause DoS.

byte victim_ready = 0;
proctype attacker(){
 int ping_num = 0;
 victim_ready == 1;
 broadcast ! victim_chan;
 ping_num++;
 smurf_attacked:skip;
}

Figure 10: Smurf attacker.

In the example used in this section, we assume one
attacker, one victim, and three broadcast listeners.

Figure 10 represents a Smurf attacker and Fig. 10, a
victim. We assumed three other receivers of the at-
tacker’s broadcast as shown in Fig. 11. An assertion
to be checked by SPIN is given as a never claim,
which describes an automaton that should not
terminate in the final state. Figure 12 represents “it
holds globally that if the attacker sends a ping, then
the victim will finally receive more than four
packets in total.”
As shown in Fig. 13, this was successfully checked
by the SPIN model checker, showing the property of
leverage, which causes the DoS effect in the Smurf
attack.

4 CONCLUSIONS

We have proposed a method of formalizing broad-
cast communication in a process calculus and of
verifying formal properties using the SPIN model
checker. We presented two case studies: the ICMP
ping and the Smurf attack. Although these two cases
are quite rudimentary, they demonstrate the merit of
our model-checking method compared to other me-
thods such as simulation.

At first, we did not check the condition in line 15
of Fig. 5, “sink_started == 1;”. Without this
condi-tion, if the sink process stops, then whole the
system stops, causing an error. First, we tried to find
the error using the random simulation mode of SPIN
rather than comprehensive model checking, but we
were unsuccessful. We then successfully found the
error using comprehensive model checking. Several
issues remain to be addressed.
First, we should study broadcast communica-tions
more formally. In our work, we encoded the broad-
cast in the spice calculus and Promela; al-though this
approach seems reasonable, it is not yet theoretically

FORMALIZATION OF BROADCAST COMMUNICATION IN PROCESS CALCULUS AND ITS MODEL
CHECKING

351

int victim_ping_received = 0;
prototype victim(){
 chan reply = [0] of { chan };
 chan out = [0] of { int };
 chan pong; int prefix = 0; int data;
 con ! reply;
 reply ? out;
 node_num >= 4;
 victim_chan = out; victim_read = 1;
 do :: out ? pong ‐>

victim_ping_received++;
 od;
}

Figure 11: Smurf victim.

justified. We should axiomatize broad-cast commu-
nication in some concurrent theory to justify our
encoding.

Second, we provided two examples that are very
rudimentary. DoS attacks occur in other envi-
ronments such as internet routing algorithms. We
should try to formalize more practical examples.

#define p
(smurf_attacker@smurf_attacked)

#define q (victim_ping_received >= 4)

never { /* !([](p ‐> <>q)) */
T0_init:
 if
 :: (! ((q)) && (p)) ‐>

goto accept_S4
 :: (1) ‐> goto T0_init
 fi;
accept_S4:
 if
 :: (! ((q))) ‐>

goto accept_S4
 fi;
}

Figure 12: Never claim.

REFERENCES

Abadi, M., Gordon, A. D., 1997. A Calculus for Crypto-
graphic Protocols: The Spi Calculus. In Fourth ACM
Conference on Computer and Communications Securi-
ty, pp. 36-47. ACM Press.

Milner, R., Parrow, J., Walker, D., 1992. A Calculus for
Mobile Processes, Part I and Part II. Information and
Computation, Vol. 100, No. 1, pp. 1-77.

Sangiorgi, D., Walker, D., 2004. The Pi-Calculus: A
Theory of Mobile Processes, Cambridge University
Press.

Meadows, C., 2001. A Cost-Based Framework for Analy-
sis of Denial-of-Service in Networks. Journal of Com-
puter Security, Vol. 9, No. 1/2, pp. 143-164.

Tomioka, D., Nishizaki, S., Ikeda, R., 2004. A Cost Esti-
mation Calculus for Analyzing the Resistance to
Denial-of-Service Attack. In Software Security –
Theories and Systems, Lecture Notes in Computer
Science, Vol. 3233, Springer, pp. 25-44.

Holzmann, G. J., 2004. The Spin Model Checker – Primer
and Reference Manual. Addison-Wesley.

CERT 1998. Smurf IP Denial-of-Service Attacks, CERT
Advisory CA-1998-01,

http://www.cert.org/advisories/CA-1998-01.html

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

352

