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2 Laboratoire des Signaux et Systèmes, CNRS–SUPELEC, 91192, Gif–sur–Yvette, France

3 Institute of Mathematics and Computing Science, University of Groningen
PO Box 407, 9700 AK, Groningen, The Netherlands

Abstract. The problem of velocity estimation for mechanical systems is of great
practical interest. Although many partial solutions have been reported in the liter-
ature the basic question of whether it is possible to design a globally convergent
speed observer for generaln degrees of freedom mechanical systems remains
open. In this paper an affirmative answer to the question is given by proving the
existence of a3n + 1–dimensional globallyexponentiallyconvergent speed ob-
server. Instrumental for the construction of the speed observer is the use of the
Immersion and Invariance technique, in which the observer design problem is re-
cast as a problem of rendering attractive and invariant a manifold defined in the
extended state–space of the plant and the observer.

Notation. For general mappingsS : Rn × Rp → Rq , (x, ζ) 7→ S we define
∇xS(x, ζ) := ∂S(x,ζ)

∂x
and∇ζS(x, ζ) := ∂S(x,ζ)

∂ζ
. For brevity, when clear from

the context, the subindex of∇ and, in general, the arguments of all the functions
are omitted.

1 Problem Formulation

We consider generaln degree of freedom mechanical systems with nonholonomic con-
straints described in Lagrangian form by [11], [13],

M(q)q̈ + C(q, q̇)q̇ +∇U(q) = G(q)u +A(q)λ, (1)

A⊤(q)q̇ = 0, (2)

whereq(t), q̇(t) ∈ Rn are the generalized positions and velocities, respectively,u(t) ∈
Rm is the control input,A(q)λ are the constraint forces withA : Rn → Rn×k , λ ∈ Rk,
G : Rn → Rn×m is the input matrix,M : Rn → Rn×n is the mass matrix with
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M = M⊤ > 0 andU : Rn → R is the potential energy function.C(q, q̇)q̇ is the
vector of Coriolis and centrifugal forces, with the(ik)–th element of the matrixC :
Rn × Rn → Rn×n defined by

Cik(q, q̇) =
n∑

j=1

Cijk(q)q̇j ,

whereCijk : Rn → R are the Christoffel symbols of the first kind defined as

Cijk(q) :=
1
2

{
∂Mik

∂qj
+
∂Mjk

∂qi
− ∂Mij

∂qk

}
. (3)

We considerq(t) to be measurable and assume that the inputu(t) is such thatq(t), q̇(t)
exist for all time, that is, the system is forward complete. Our objective is to design a
globally asymptotically convergent observer forq̇(t).

Speed observation is a longstanding problem whose completetheoretical solution
has proven highly elusive. The first results were reported in1990 in the fundamental
paper [14], and many interesting partial solutions have been reported afterwards. Par-
ticular attention has been given to the case in which the system (1) can be rendered
linear in the unmeasurable velocities via partial changes of coordinates, see,e.g., [6,
16]. An intrinsic local observer, exploiting the Riemannian structure of the system, has
been recently proposed in [1] (see also [2] for a Lyapunov analysis and [7] for a gener-
alization). A solution for a class of two degrees of freedom systems has been recently
reported in [8]. The reader is referred to the recent books [5,?,?] for an exhaustive list
of references.

A complete solution to the problem is given by the proposition below. As will be-
come clear in the proof, the construction of the observer relies on the use of the Im-
mersion and Invariance (I&I ) technique—first reported in [4] and further developed in
[3, 10]. In I&I the observer design is recast as a problem of rendering attractive a suit-
ably selected invariant manifold defined in the extended state–space of the plant and
the observer. It should be mentioned that the observers in [8, 16] are also based on the
I&I approach.

2 Main Result

Proposition 1. Consider the system (1), and assumeu is such that trajectories exist for
all t ≥ 0. There exist smooth mappingsA : R3n−2k+1 × Rn × Rm → R3n−2k+1 and
B : Rn → R(n−k)×(3n−2k+1) such that the dynamical system

χ̇ = A(χ, q, u) (4)

with stateχ(t) ∈ R3n−2k+1, inputsq(t) andu(t), and output

η = B(q)χ, (5)

has the following property.
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All trajectories of the interconnected system (1), (2), (4)are such that

lim
t→∞

eαt[N (q)q̇(t)− η(t)] = 0, (6)

for someα > 0 and for all initial conditions(q(0), q̇(0), χ(0)) ∈ Rn×Rn×R3n−2k+1,
whereN (q) : Rn → Rn−k×Rn is a left invertible matrix. That is, (4), (5) is a globally
exponentially convergent speed observer for the mechanical system (1)-(2).

Remark 1.For the special case of a mechanical system with no nonholonomic con-
straints, it is clear thatk = 0 and subsequently the matrixN (q) becomes an invertible
square matrix.

3 A Preliminary Lemma

Before giving the proof of the main result, we recall that thesystem (1)-(2) can be
written in the port-Hamiltonian form [13] as

[
q̇
ṗ

]
=

[
0 I
−I 0

] (
∇qH(q, p)
∇pH(q, p)

)
+

[
0

G(q)

]
u+

[
0

A(q)

]
λ, (7)

A⊤(q)λ = 0, (8)

wherep = M(q)q̇ are the generalized momenta and

H(q, p) =
1
2
p⊤M−1(q)p+ U(q)

represents the total energy stored in the system. Further, as per [13], the system (7)-(8)
when restricted to the constrained space

Xc = {(q, q̇)|A⊤(q)q̇ = 0},

takes the form
[
q̇
˙̃p

]
=

[
0 S̃(q)

−S̃⊤(q) J(q, p̃)

] (
∇qH(q, p̃)
∇p̃H(q, p̃)

)
+

[
0

Bc(q)

]
u+

[
0

A(q)

]
λ, (9)

H(q, p̃) = V (q) +
1
2
p̃⊤M̃−1(q̃)p̃, (10)

with p̃ ∈ Rn−k being given as̃p = S̃⊤(q)p whereS̃(q) ∈ Rn×n−k is the full rank
annihilator of the matrixA(q) satisfying the conditionA⊤(q)S̃(q) = 0. The matrix
J(q, p̃) is skew-symmetric and is given by

Jij(q, p̃) = −p⊤[S̃i, S̃j ], (11)

where[S̃i, S̃j ] denotes the standard Lie bracket of the column vectorsSi, Sj and the
matrixM̃(q) ∈ Rn−k×n−k is symmetric positive-definite.
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In order to streamline the presentation in this section, we introduce a factorization
of the mass matrix

M̃−1(q) = T⊤(q)T (q), (12)

whereT : Rn → Rn−k×n−k is a full rank matrix4 and define the mappingsL : Rn →
Rn×n−k andF : Rn × Rm → Rn−k as

L(q) = S̃(q)T⊤(q), (13)

F (q, u) = L⊤(q)[Bc(q)u−∇U(q)]. (14)

Notice that, sinceq andu are measurable, these mappings are known. We next state the
following proposition.

Lemma 1. The system dynamics (9)-(10) when expressed in the new coordinates(y, x) =
(q, T (q)p̃), admits a state space representation of the form

ẏ = L(y)x, (15)

ẋ = S(y, x)x+ F (y, u), (16)

where

S = TJT⊤ +
n∑

i=1

({ ∂T
∂yi

T−1x}{L⊤ei}⊤ − {L⊤ei}{
∂T

∂yi
T−1x}⊤), (17)

andei is theith basis vector ofRn−k.

Proof. We directly obtain (15) by differentiatingy and by using (9), (10), (13). We next
compute the following,

ẋ = Ṫ p̃+ T ˙̃p, (18)

= Ṫ p̃− T S̃⊤
∂

∂y
(
1
2
p̃⊤M̃−1(q̃)p̃)− T S̃⊤∇U + T S̃⊤Bcu+ TJT⊤x, (19)

= Ṫ p̃− L⊤
∂

∂y
(
1
2
p̃⊤M̃−1(q̃)p̃) + F + TJT⊤x, (20)

where we have made use of (10), (13) and (14). We now compute that,

Ṫ p̃ =
n∑

i=1

(
∂T

∂yi
p̃)(e⊤i S̃M̃

−1p̃),

=
n∑

i=1

(
∂T

∂yi
p̃)(e⊤i L)x, (21)

and further obtain

∂

∂y
{1
2
p̃⊤M̃−1p̃} =

∂

∂y
{1
2
p̃⊤T⊤Tp}

=
n∑

i=1

ei{
∂T

∂yi
p̃}⊤x. (22)

4 SinceM is positive definite this factorization always exists. It may be taken to be the (univo-
cally defined) Cholesky factorization, as proposed in [9].
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Substituting (21) and (22) in (20) we obtain the dynamics ofx as,

ẋ =
n∑

i=1

({ ∂T
∂yi

T−1x}{L⊤ei}⊤ − {L⊤ei}{
∂T

∂yi
T−1x}⊤)x+ TJT⊤x+ F,

= Sx+ F, (23)

where we have used (17) to obtain the equation (23). This concludes the proof.

Remark 2.It can be verified easily that matrixS(y, x) defined in (17) satisfies the fol-
lowing properties:

(i) S is skew–symmetric, that is,
S + S⊤ = 0.

(ii) S is linear in the second argument, that is,

S(y, a1x+ a2x̄) = a1S(y, x) + a2S(y, x̄),

for all y, x, x̄ ∈ Rn, anda1, a2 ∈ R.
(iii) There exists a mappinḡS : Rn × Rn → Rn×n such that

S(y, x)x̄ = S̄(y, x̄)x,

for all y, x, x̄ ∈ Rn.

Remark 3.Lemma1 implies that the speed observer problem for system (1)-(2) can be
recast as an observer problem for system (15)-(16) with output y.

Remark 4.For the special case of no nonholonomic constraints, we havek = 0 and

J(q, p̃) = 0, S̃(q) = I, M̃(q) = M(q), L(q) = T⊤(q).

This subsequently simplifies the expression forS(y, x) as

S(y, x) =
n∑

i=1

({ ∂T
∂yi

T−1x}{Tei}⊤ − {Tei}{
∂T

∂yi
T−1x}⊤). (24)

It can be shown (refer to [16]) that the(jk)–th element ofS isSjk = −{T−1x}⊤[Tj , Tk].

4 Proof of the Main Result

The observer is constructed in four steps.

(S1) Following the I&I procedure [3], we define a manifold (inthe extended state-space
of the plant and the observer) that should be rendered attractive and invariant5. As
is well–known, to achieve the latter objective a partial differential equation (PDE)
should, in principle, be solved.

5 The manifold should be such that the unmeasurable part of thestate can be reconstructed from
the function that defines the manifold.
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(S2) To avoid the need to solve the PDE the “approximation” technique proposed in
[10] is adopted. Using this approximation induces some errors in the observer error
dynamics.

(S3) Always borrowing from [10], we introduce a dynamic scaling that dominates—
in a Lyapunov–like analysis—the effect of the aforementioned disturbance terms,
proving that the scaled observer error converges to zero.

(S4) To prove that the dynamic scaling factor is bounded and,consequently, that the ac-
tual observer error converges, exponentially, to zero, high gain terms are introduced
in the observer dynamics to, again, dominate sign–indefinite terms in a Lyapunov–
like analysis.

Step 1. (Definition of the manifold)For the system (15)-(16), we propose the manifold

M := {(y, x, ξ, ŷ, x̂) : ξ − x+ β(y, ŷ, x̂) = 0} ⊂ R5n−3k, (25)

whereξ ∈ Rn−k, ŷ ∈ Rn−k, x̂ ∈ Rn are (part of) the observer state, the dynamics of
which are defined below, and the mappingβ : R3n−2k → Rn−k is also to be defined.

To prove that the manifoldM is attractive and invariant it is shown that the off–
the–manifold coordinate

z = ξ − x+ β(y, ŷ, x̂), (26)

the norm of which determines the distance of the state to the manifoldM, is such that:

(C1) z(0) = 0 ⇒ z(t) = 0, for all t ≥ 0 (invariance);
(C2) z(t) asymptotically (exponentially) converges to zero (attractivity).

Notice that, ifz(t) → 0, an asymptotic estimate ofx is given byξ + β.
To obtain the dynamics ofz differentiate (26), yielding

ż = ξ̇ − ẋ+ β̇

= ξ̇ − S(y, x)x − F +∇yβẏ +∇ŷβ ˙̂y +∇x̂β ˙̂x.

Let
ξ̇ = F −∇ŷβ ˙̂y −∇x̂β ˙̂x+ S(y, ξ + β)(ξ + β)−∇yβL(y)(ξ + β), (27)

where ˙̂y and ˙̂x are to be defined. Replacing (27) in the equation ofż above, and invoking
properties (ii) and (iii) of Lemma 1, yields

ż = −S(y, ξ + β − z)(ξ + β − z) +
+S(y, ξ + β)(ξ + β)−∇yβL(y)z

= S(y, x)z + S(y, z)(ξ + β)−∇yβL(y)z
= S(y, x)z + S̄(y, ξ + β)z −∇yβL(y)z. (28)

From (28) it is clear that condition (C1) above is satisfied. On the other hand, condition
(C2) would be satisfied if we could find a functionβ that solves the PDE

∇yβ = [k1I + S̄(y, ξ + β)]L−1(y), (29)
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with k1 > 0, whereL−1(y) : Rn → Rn−k×n is the full rank left inverse of the
matrixL(y). Indeed, in this case, thez–dynamics reduce tȯz = (S − k1)z, achieving
the desired exponential convergence property. Unfortunately, solving the PDE (29) is a
daunting task, and we don’t even know if a solution exists. Therefore, in the next step
of the design we proceed to “approximate” itssolution.

Step 2. (“Approximate solution” of the PDE)Define the “ideal∇yβ” as

H(y, ξ + β) := [k1I + S̄(y, ξ + β)]L−1(y), (30)

and denote the columns of thisn − k × n matrix byHi : Rn × Rn−k → Rn−k for
i = 1, . . . , n, that is,

H(y, ξ + β) =
[
H1(y, ξ + β) | · · · | Hn(y, ξ + β)

]
.

Now, mimicking [10], define6

β(y, ŷ, x̂) :=
∫ y1

0

H1([s, ŷ2, . . . , ŷn], x̂)ds+ · · ·+

+
∫ yn

0

Hn([ŷ1, . . . , ŷn−1, s], x̂)ds. (31)

From the definition of the mappingβ, and adding and substractingH(y, ξ + β), we
have that∇yβ can be written as

∇yβ(y, ŷ, x̂) = H(y, ξ + β)−
{
H(y, ξ + β)−

[
H1(y1, ŷ2, . . . , ŷn, x̂) . . . Hn(ŷ1, . . . , ŷn−1, yn, x̂)

]}
.

Since the term in brackets is equal to zero ifŷ = y andx̂ = ξ+ β, and all functions are
smooth, there exist mappings∆y : Rn ×Rn−k ×Rn → Rn−k×n,∆x : Rn ×Rn−k ×
Rn−k → Rn−k×n such that

∇yβ(y, ŷ, x̂) = H(y, ξ + β)−∆y(y, x̂, ey)−∆x(y, x̂, ex), (32)

with
ey := ŷ − y, ex := x̂− (ξ + β), (33)

and such that
∆y(y, x̂, 0) = 0, ∆x(y, x̂, 0) = 0, (34)

for all y, ŷ,∈ Rn andx, x̂ ∈ Rn−k.
Replacing (30) and (32) in (28) yields

ż = (S − k1)z + (∆y +∆x)L(y)z. (35)

6 We attract the readers attention to the particular selection of the arguments used in the inte-
grands. Namely that, with some abuse of notation, the vectorŷ has been spelled out into its
components.
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Recalling thatS is skew–symmetric andk1 > 0, it is clear that the mappings∆y and
∆x play the role of disturbances that we will try to dominate with a dynamic scaling in
the next step of the design.

Step 3. (Dynamic scaling)Define the scaled off–the–manifold coordinate

η =
1
r
z, (36)

with r a scaling dynamic factor to be defined below. Differentiating (36), and using
(35), yields

η̇ =
1
r
ż − ṙ

r
η

= (S − k1)η + (∆y +∆x)L(y)η − ṙ

r
η.

Consider the function

V1(η) =
1
2
|η|2,

and note that its time derivative is such that

V̇1 = −(k1 +
ṙ

r
)|η|2 − η⊤(∆y +∆x)L(y)η

≤ −
(
k1

2
+
ṙ

r
− 1

2k1
‖[∆y +∆x]L‖2

)
|η|2

≤ −
(
k1

2
+
ṙ

r
− 1
k1

(
‖∆yL‖2 + ‖∆xL‖2

))
|η|2,

(37)

where‖·‖ is the matrix induced2—norm and we have applied Young’s inequality (with
the factork1) to get the second bound. Let

ṙ = −k1

4
(r − 1) +

r

k1

(
‖∆yL‖2 + ‖∆xL‖2

)
, r(0) ≥ 1. (38)

Notice that the set{r ∈ R | r ≥ 1} is invariant for the dynamics (38). Replacing (38)
in (37) yields the bounds

V̇1 ≤ −
(
k1

2
− k1

4
r − 1
r

)
|η|2

≤ −k1

4
|η|2, (39)

where the propertyr−1
r ≤ 1 has been used to get the second bound. From (39) we

conclude thatη(t) converges to zero exponentially.

Step 4. (High–gain injection)From (36) and the previous analysis it is clear thatz(t) →
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0 if we can prove thatr ∈ L∞, which is the property established in this step. To enhance
readability the procedure is divided into two parts. First,we make the function

V2(η, ey, ex) = V1(η) +
1
2
(|ey|2 + |ex|2),

a strict Lyapunov function. Then, the derivative of the function

V3(η, ey, ex, r) = V2(η, ey, ex) +
1
2
r2, (40)

is shown to be non–positive—establishing the desired boundedness ofr. In both steps
the objectives are achieved adding, via a suitable selection of the observer dynamics,
negative quadratic terms inη, ey, ex in the Lyapunov function derivative. We recall that
ey andex are measurable quantities, defined in (33).

Towards this end, define

˙̂y = L(y)(ξ + β)− ψ1(y, r)ey , (41)

with ψ1 : Rn × R+ → R+ a gain function to be defined. The error dynamics, obtained
combining (15) and (41), are

ėy = Lz − ψ1ey. (42)

Now, select
˙̂x = F + S(y, ξ + β)(ξ + β)− ψ2(y, r)ex, (43)

with ψ2 : Rn × R+ → R+ a gain function to be defined. Recalling (27) the error
dynamics forex become

ėx = ∇yβLz − ψ2ex. (44)

Using (39), (42) and (44) and doing some basic bounding, yields

V̇2 ≤ −k1

4
|η|2 + re⊤y Lη − ψ1|ey|2 +

+re⊤x∇yβLη − ψ2|ex|2 (45)

≤ −(
k1

4
− 1)|η|2 −

(
ψ1 −

r2

2
‖L‖2

)
|ey|2 −

−
(
ψ2 −

r2

2
‖∇yβ‖2‖L‖2

)
|ex|2. (46)

Selecting

ψ1 = k2 + ψ3 +
r2

2
‖L‖2,

ψ2 = k3 + ψ4 +
r2

2
‖∇yβ‖2‖L‖2, (47)

with k2, k3 > 0 andψ3, ψ4 : Rn × R+ → R+ to be defined, we conclude that

V̇2 ≤ −1
2
(k1 − 2)|η|2 − k2|ey|2 − k3|ex|2,
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which, selectingk1 > 4, establishes thatη, ey, ex ∈ L2 ∩ L∞ and the origin of the
(non-autonomous) subsystem with stateη, ey, ex is uniformly globally exponentially
stable.

We are now ready for thecoup de gr̂ace, namely the selection ofψ3 andψ4 to
guarantee thatr ∈ L∞. For, recall (34), which ensures the existence of mappings∆̄y :
Rn × Rn−k × Rn → Rn−k×n, ∆̄x : Rn × Rn−k × Rn−k → Rn−k×n such that

‖∆y(y, x̂, ey)‖ ≤ ‖∆̄y(y, x̂, ey)‖ |ey|
‖∆x(y, x̂, ex)‖ ≤ ‖∆̄x(y, x̂, ex)‖ |ex|. (48)

Now, evaluate the time derivative ofV3, defined in (40), replace (47) in (46), and use
the bounds (48) to get

V̇3 ≤ −(
k1

4
− 1)|η|2 −

(
ψ3 −

r2

k1
‖∆̄y‖2‖L‖2

)
|ey|2 −

−
(
ψ4 −

r2

k1
‖∆̄x‖2‖L‖2

)
|ex|2.

Fixing

ψ3 =
r2

k1
‖∆̄y‖2‖L‖2

ψ4 =
r2

k1
‖∆̄x‖2‖L‖2

ensuresV̇3 ≤ 0, which ensuresr ∈ L∞.
To prove condition (6) note that equation (39) implies

|η(t)| ≤ |η(0)|e−
k1
8 t,

hence

|z(t)| ≤ r(t)
r(0)

|z(0)|e−
k1
8 t ≤ sup

t≥0
{r(t)}|z(0)|e−

k1
8 t,

which yields the claim, by boundedness ofr(t).
The proof is completed defining the state vector of the observer asχ = (x̂, ŷ, ξ, r),

obtainingA(χ, q, u) from (43), (41), (27), and (38), and defining

B(y) :=
[
T−1(y) 0 0 0

]
.

Remark 5.The four componentŝx, ŷ, ξ andr of the state vector of the observer can be
given the following interpretation. The componentx̂ is the estimate ofx and a filtered
version ofξ + β. The component̂y is a filtered version of the measured variabley.
Theξ-dynamics render the setz = 0 invariant, regardeless of the selection of the other
dynamics, andξ can be regarded as thestateof a reduced order observer7. Finally, the
r-dynamics are used to trade stability of the nominal design for robustness against the
disturbances∆y and∆x.

7 To clarify this point note that,ideally, the PDE (29)should have a solutionβ which is a function
of y alone. In this case the variableξ would play the role of the state of the (reduced) order
observer(see the examples in [8]).
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Remark 6.Although the analysis of the performance of the proposed observer in the
presence of noise is not within the scope of the paper, it is worth noting the following.
The Lyapunov argument establishing uniform asymptotic stability of the zero equilib-
rium of the(η, ey, ex)-subsystem yields robustness againsts small additive perturbations
on the measured variablesu andy. In the presence of such perturbations the variables
ey andex do not converge to zero. Nevertheless, as long as they are sufficiently small,
equation (38) can be regarded as describing a linear (non-autonomous) scalar differen-
tial equation in which, by equations (34), the coefficient ofthe linear term is uniformly
negative. This ensures boundedness ofr(t) for all t.

5 Conclusions

A definite affirmative answer has been given to the question ofexistence of a globally
convergent speed observer for general mechanical systems of the form (1). No assump-
tion is made on the existence of an upperbound for the inertiamatrix, hence the result
is applicable for robots with prismatic joints. Also, no conditions are imposed on the
potential energy function. The only requirement is that thesystem is forward complete,
i.e., that trajectories of the system exist for all timest ≥ 0—which is a rather weak
condition.

In some sense, our contribution should be interpreted more as an existence result
than an actual, practically implementable, algorithm. Leaving aside the high complex-
ity of the observer dynamics, that can be easily retraced from the proof of Section 4, the
difficulty stems from the fact that the key functionβ is defined via the integrals (31),
whose explicit analytic solution cannot be guaranteeda priori. Of course, the (scalar)
integrations can always be numerically performed leading to a numerical implementa-
tion of the observer. Given the recent spectacular advancesin computational technology
this does not seem to constitute an unsurmountable difficulty.
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