
ON THE STUDY OF DYNAMIC AND ADAPTIVE DEPENDABLE
DISTRIBUTED SYSTEMS

J. E. Armendáriz-Iñigo, J. R. Juárez-Rodrı́guez, J. R. González de Mendı́vil
Universidad Pública de Navarra, 31006 Pamplona, Spain

F. D. Muñoz-Escoı́, R. de Juan-Marı́n
Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, 46022 Valencia, Spain

Keywords: Distributed systems, Availability, Dependability, Dynamic systems, Data consistency.

Abstract: Due to the usage of MANETs and some kinds of collaborative applications (P2P), current distributed systems
are becoming increasingly dynamic; i.e., it is difficult to manage membership information and to forecast the
accessibility of each system node. Moreover, dependable applications for static distributed systems also need
to provide good adaptability levels (to different request arrival rates, usage patterns, classes of requests,...) and
good scalability; a case to study is the cloud computing paradigm. Development of dependable applications in
dynamic and adaptive systems is not trivial, since both dynamism and adaptability may compromise algorithm
liveness or may complicate the design of such algorithms, specially those best suited for static systems. Strate-
gies for building adaptable and scalable dependable services (based on “cloud systems”) will be surveyed and
improved. Moreover, an efficient support for dependable applications in dynamic systems will be provided,
combining three different approaches: relaxed consistency models, interconnection protocols (for supporting
both consistency and multicasting) and reconciliation strategies. Last but not least, also the usage and support
for integrity constraints in replicated systems will be analyzed and improved for dynamic systems.

1 INTRODUCTION

In the last decade, there have been several advances
in the distributed systems field that have allowed the
creation of new decentralized applications. A first
sample are P2P applications, e.g. Napster, as a first
system of this kind, that still used a centralized di-
rectory, but where all data transfers were made be-
tween peers that collaborated in order to share files.
Later on, the need of a centralized service is skipped,
such as Gnutella, although it raised difficulties in or-
der to find the files to be shared, since search mes-
sages need to be flooded into the network. This com-
promised system scalability, since this excessively in-
creased the amount of messages needed for obtain-
ing the searched file and did not guarantee that such
file could be located, even when multiple copies of
such file did exist in the system. Another evolution
of these P2P systems were their structured variants,
e.g. Tapestry (Zhao et al., 2004), providing some-
thing similar to a distributed hash table (DHT). In this

case, such system organization or “structure” allows
a fast localization of any shared content, guarantee-
ing system scalability. However, structured variants
also raise serious problems when their nodes join and
leave the system very often. Note that these P2P ap-
plications are a valid example of dynamic distributed
system, since none of their nodes needs to know all
the other potential collaborators system nodes. More-
over, P2P system nodes do not remain in the system
for long time intervals, causing system membership
to be highly dynamic.

As it has been shown in the previous paragraph,
system decentralization may lead to obtaining dy-
namic distributed systems. Another example of dy-
namic system is one consisting of a set of mo-
bile computers interconnected through a wireless net-
work. As in the previous case, the usage of such
systems has become popular nowadays. Currently,
wireless networks can be found in many environments
(universities, enterprises, and airports, to name a few,
or even at home) since many users prefer a com-

183
E. Armendáriz-Iñigo J., R. Juárez-Rodríguez J., R. Gonzalez de Mendivil J., D. Muñoz-Escoí F. and de Juan-Marín R. (2009).
ON THE STUDY OF DYNAMIC AND ADAPTIVE DEPENDABLE DISTRIBUTED SYSTEMS.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 183-186
DOI: 10.5220/0002279801830186
Copyright c© SciTePress



puter network of this kind. In this kind of systems,
sensor networks (mainly oriented towards monitor-
ing applications in different environments: weather
forecasting, zoological surveys (habitat-oriented), do-
motics, biomedical applications, etc.) and VANETs
(MANETs whose nodes are plugged into vehicles,
providing a complementary set of services to the ve-
hicles’ driver or users) can also be included. All these
cases are samples of dynamic distributed systems.
Applications developed on them need to consider a
system model that is not equivalent to the traditional
one. Besides assuming asynchrony, in these cases the
application designer is unable to know which is the
actual system membership (each node does only in-
teract with a small part of the system population), and
he/she should also assume that the probability of node
failure or disconnection is high. Thus, the design of
efficient distributed algorithms in these environments
is a challenging task that has deserved attention in
the last years. So, several theoretical results have
been published in this area. For instance, (Mostéfaoui
et al., 2005) already identified these problems and
proposed some parameters and basic primitives that
allow algorithm migration from static to dynamic sys-
tems. Their proposal uses an alpha parameter, con-
sisting in the number of nodes that could be consid-
ered as a stable core in such dynamic system (such
core does not need to be perpetual; its nodes should
be alive and active in a time interval long enough
to ensure algorithm progress), and several commu-
nication primitives (a termination-guaranteed query-
response, that is reactivated as soon as alpha replies
are collected, and a reliable and persistent multicast;
i.e., that guarantees message delivery to the nodes that
have joined the system whilst the message was mul-
ticast). Using these tools, such paper proves that a
leader-election algorithm can be migrated to a dy-
namic system, despite being a problem that has tra-
ditionally been considered unresolvable when system
nodes’ identifiers were unknown. A second proposal
was presented in (Baldoni et al., 2007) where differ-
ent characteristics of several dynamic systems are sur-
veyed and a first classification is provided, depending
on the basis provided for designing distributed algo-
rithms. This proves that this is an interesting research
line, since it will allow algorithm migration (or prove
that such migration is not possible in some cases)
from static systems to dynamic ones. Thus, our aim
consists in choosing several problems already solved
in static systems (consensus, leader election, mutual
exclusion, global state collection, . . . ) and to analyze
in which dynamic settings such problems could still
be solved. Note that it has been widely accepted that
a distributed system should be able to overcome its

node and communication failures in order to be use-
ful. Due to this, it is common that the applications be-
ing developed on these system assume some kind of
dependable support (or even that the underlying sys-
tem is dependable), but it is not trivial to provide such
dependable support in a dynamic system. Another ob-
jective is to improve the dependability of applications
designed, implemented and deployed in this kind of
systems.

On the other hand, systems that consist of a sta-
ble set of nodes able to adapt themselves to different
kinds of load or to different kinds of environments
can also be classified as dynamic. Thus, in the field
of data replication management it has been provided a
meta-protocol (Ruiz-Fuertes et al., 2007) that may si-
multaneously support multiple replication protocols,
allowing that each application uses a different replica-
tion protocol in order to manage its transactions, im-
proving its performance and reducing the abort rates
of those transactions that could use a relaxed isola-
tion level (note that each protocol may support a dif-
ferent isolation level, if needed). Note also that dif-
ferent database replication protocols provide different
performance when they manage different load levels,
as proven by (Wiesmann and Schiper, 2005). Thus,
this meta-protocol is complemented by a system load
monitor, could allow that its replication middleware
chooses the best protocol for each transaction accord-
ing to the current system load configuration when
such transaction is started, improving system adapt-
ability.

This adaptability to variable loads, and the cost
reduction implied by hardware downscaling, have
given rise to a new distributed computing paradigm
called “cloud computing”. The aim of these sys-
tems consists in enabling possibly huge quantities of
networked computing resources to be “contracted”
in order to achieve the execution of large-scale ap-
plications of enterprise customers. To their clients,
the contracted resources become “remote”, being ac-
cessed via the Internet (the virtual “cloud” location
which gave name to this new paradigm). Thus, the
IT departments of cloud computing clients only need
to worry about developing their applications (usually,
web services), and deploying them in the hired vir-
tual computers. They do not need to purchase and
operate a proprietary computing center, such that big
investments and administration costs are avoided. On
the other hand, the company providing such clouds
must maintain enough virtual computing capacities
for guaranteeing the contracted services and for en-
suring easy adaptation to different request loads (note
that the final user of such services could be a third
company or the users of the services provided by the

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

184



client company). There are multiple problems that
need to be solved in this kind of cloud systems: (1)
scalability, (2) availability, (3) security, (4) virtuali-
sation (hired computers are only virtual nodes whose
load will be supported by actual computers; this al-
lows an easy isolation of each virtual node, ensur-
ing a secure deployment, but it also complicates a bit
the overall system management regarding the other
requirements: scalability and availability). Finally,
client companies will be budgeted with a static pay-
ment (depending on the bandwidth and minimal com-
puting power that have been contracted), plus a vari-
able amount that depends on the actual resource us-
age. There are several proposals for this computing
model: Amazon Elastic Compute Cloud (EC2) (Ama-
zon, 2009), Google App Engine (Google, 2009), Win-
dows Azure (Microsoft, 2009), . . . This confirms that
service scalability, adaptability, security and avail-
ability are important issues that need additional re-
search. Solutions being described in the white papers
referenced above are not complex, but it seems ap-
propriate to propose advanced solutions to these prob-
lems, and this is our main objective in this proposal.
We can not develop an entire cloud system, since this
demands a lot of time and effort (and the solutions
developed by Amazon, Google, Microsoft, IBM and
other companies will have been highly improved in
the meantime). So, our objective will be centered
in proposing complementary solutions that could be
easily included in such commercial products or that
could be directly used by the client companies dis-
cussed above.

2 MAIN RESEARCH GOALS

As already mentioned in the introduction, there
are several types of dynamic distributed systems
and all of them have received special coverage in
the last years. However, and with a few excep-
tions (Mostéfaoui et al., 2005; Baldoni et al., 2007),
there have not been any theoretical surveys about how
to adapt the classical solutions for static systems to
these new environments, and about how to formally
characterize the latter. Thus, there are many things
of interest in this research line, from both theoreti-
cal and practical points of view. Every application
running in a dynamic system shares some amount
of information among its system nodes. This im-
plies that the consistency protocols already developed
for static systems could be improved and adapted for
these dynamic environments, where node connectiv-
ity cannot be always guaranteed. To this end, an ini-
tial basis could be provided by interconnection proto-

cols for communication systems (Álvarez et al., 2008)
(needed for supporting some consistency model when
previously isolated node groups are re-joined, a fre-
quent event in a dynamic system) or some reconcili-
ation protocols (Asplund et al., 2007) that have been
recently published. This need of scalability and adap-
tation to highly variable workloads has been identi-
fied by the most important companies in the field of
web service technologies and operating systems, driv-
ing them to propose the cloud computing systems al-
ready discussed in the introduction. This shows that
there are not good solutions (at least, demanding a low
or moderate computing effort) for these problems and
that additional research is needed in this area. Thus,
some of their persistence mechanisms are still very
basic (Amazon, 2009) (providing a shared-disk image
where multiple copies of the information are stored)
or they provide an interface very close to the web
services (Google, 2009; Microsoft, 2009) but with-
out relational support (losing thus general function-
ality).On the other hand, in order to improve scala-
bility, the general principle (Helland and Campbell,
2009) consists in relaxing consistency while increas-
ing the degree of asynchrony, using consistency and
concurrency control mechanisms that are very opti-
mistic. Such principle could be also used in a dynamic
system, improving application performance, but re-
laxing the consistency provided to the users. These
are going to be the main goals of our study:

Theoretical Study and Classification of Differ-
ent Types of Dynamic Systems and Mechanisms
Needed for Migrating Algorithms from Static to
Dynamic Systems.Although there have been some
results (Mostéfaoui et al., 2005; Baldoni et al., 2007)
in this area, such classifications could still be refined
and the support suggested to each identified class
could also be extended, evaluating which kinds of
algorithms designed for static systems could be mi-
grated to a dynamic one.

Study, Design and Prototyping of Process and
Persistent Data Management Strategies Providing
Adaptability and Scalability. Regarding adaptabil-
ity and scalability, the meta-protocol (Ruiz-Fuertes
et al., 2007) that allows the coexistence of multiple
replication protocols in the same middleware. On this
support, it will be necessary to design and to imple-
ment a module of load and performance analyses that
chooses at every moment the most suitable protocol
for the current system characteristics. But we must
extend such support to guarantee a greater scalabil-
ity. To this end, it will be necessary to evaluate which
replication strategies will be most appropriate, what
type of transactional support could be provided and
what consistency degree could be maintained. The

ON THE STUDY OF DYNAMIC AND ADAPTIVE DEPENDABLE DISTRIBUTED SYSTEMS

185



proposed solutions in “cloud systems” use relaxed
strategies in those three variants and they do not al-
ways consider replication.

Adaptation and Improvement of Existing Consis-
tency Protocols for Static Systems in Order to use
them in Dynamic Systems. Considering some ex-
isting results (́Alvarez et al., 2008), it seems appro-
priate to select FIFO or causal consistency models
in dynamic systems, thus allowing the usage of sim-
ple interconnection protocols for those subgroups that
remained in isolation and are currently rejoining in
order to compound a bigger system. Other solu-
tions (Asplund et al., 2007) are based on the usage
of reconciliation strategies, choosing which updates
could be accepted and which others should be re-
jected or adapted. Interconnection and reconciliation
strategies have evolved independently. Their combi-
nation has not yet been studied. More recently, it
has been proposed theeventually consistentmodel for
large scale distributed systems (Vogels, 2009). Our
proposal tries to combine their best characteristics
in those settings where such approach would make
sense. Moreover, the theoretical results provided in
the context of our first objective will also affect this
study of consistency protocols.

Analysis, Design and Prototyping of a Dependable
Middleware System for Dynamic Environments.
The static solutions taken as a basis for dependable
middleware development would be placed in modules
that could be replaced by other appropriately tailored
for dynamic settings. The resulting system should be
able to provide a good support for both static and dy-
namic systems. Multiple mechanisms for ensuring se-
curity should be also supported by this middleware.

Extension and Dynamization of Integrity Support
and Usage in Replicated Systems.It has been stud-
ied the integrity constraint management in replicated
databases (Lin et al., 2009); However, another pos-
sible extension consists in including dynamic con-
straints (i.e., triggers) in our management, and also
constraints of arbitrary generality. Up to now, only
built-in constraints declared in the database schema
have been maintained by the system. Another ex-
tension could be based on migrating our mechanisms
to other kinds of replication protocols. For instance,
(Asplund et al., 2007) analyzed the consistency-
availability trade-off in partitionable systems, with a
constraint-based consistency management. A last ex-
tension could consist in the evaluation and measure-
ment of the resulting (in)consistency degree. Par-
tial database replication is another field where our
proposed mechanisms could be used. since partial
replication is needed in dynamic systems with lim-
ited resources of computing power and storage capac-

ity. There have not been any important results in this
field, up to now.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish MEC
under research grant TIN2006-14738-C02.

REFERENCES

Álvarez, A., Arévalo, S., Cholvi, V., Fernández, A., and
Jiménez, E. (2008). On the interconnection of mes-
sage passing systems.Inf. Process. Lett., 105(6):249–
254.

Amazon (2009). Amazon elastic compute
cloud (amazon ec2). Accessible in URL:
http://aws.amazon.com/ec2/.

Asplund, M., Nadjm-Tehrani, S., Beyer, S., and Galdámez,
P. (2007). Measuring availability in optimistic
partition-tolerant systems with data constraints. In
DSN, pages 656–665.

Baldoni, R., Bertier, M., Raynal, M., and Piergiovanni,
S. T. (2007). Looking for a definition of dynamic dis-
tributed systems. InPaCT, volume 4671 ofLNCS,
pages 1–14. Springer.

Google (2009). What is google app engine? Ac-
cessible in URL: http://code.google.com/appengine/
docs/whatisgoogleappengine.html.

Helland, P. and Campbell, D. (2009). Building on quick-
sand. InCIDR.

Lin, Y., Kemme, B., Patiño-Martı́nez, M., Jiménez-Peris,
R., and Armendáriz-Iñigo, J. E. (2009). Snapshot iso-
lation and integrity constraints in replicated databases.
In ACM TODS. To appear.

Microsoft (2009). Azure services platform. Accessible in
URL: http://www.microsoft.com/azure/default.mspx.

Mostéfaoui, A., Raynal, M., Travers, C., Patterson, S.,
Agrawal, D., and Abbadi, A. E. (2005). From static
distributed systems to dynamic systems. InSRDS,
pages 109–118.

Ruiz-Fuertes, M. I., de Juan-Marı́n, R., Pla-Civera, J.,
Castro-Company, F., and Muñoz-Escoı́, F. D. (2007).
A metaprotocol outline for database replication adapt-
ability. In OTM Workshops (2), volume 4806 ofLNCS,
pages 1052–1061. Springer.

Vogels, W. (2009). Eventually consistent.Commun. ACM,
52(1):40–44.

Wiesmann, M. and Schiper, A. (2005). Comparison of
database replication techniques based on total order
broadcast.IEEE Trans. Knowl. Data Eng., 17(4):551–
566.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph,
A. D., and Kubiatowicz, J. (2004). Tapestry: a re-
silient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications,
22(1):41–53.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

186


