
DOES FISHER INFORMATION 
CONSTRAIN HUMAN MOTOR CONTROL? 

Christopher M. Harris 
SensoriMotor Laboratory 

Centre for Theoretical and Computational Neuroscience, Centre for Robotics and Neural Systems 
University of Plymouth, Plymouth, Devon PL4 8AA, U.K. 

Keywords: Fisher information, Cramer-Rao bound, Fisher metric, Movement control, Minimum variance model, 
Proportional noise, Signal dependent noise. 

Abstract: Fisher information places a bound on the error (variance) in estimating a parameter. The nervous system, 
however, often has to estimate the value of a variable on different occasions over a range of parameter 
values (such as light intensities or motor forces). We explore the optimal way to distribute Fisher 
information across a range of forces. We consider the simple integral of Fisher information, and the integral 
of the square root of Fisher information because this functional is independent of re-parameterization of 
force. We show that the square root functional is optimised by signal-dependent noise in which the standard 
deviation of force noise is approximately proportional to the mean force up to about 50% maximum force, 
which is in good agreement with empirical observation. The simple integral does not fit observations. We 
also note that the usual Cramer-Rao bound is ‘extended’ with signal-dependent noise, but that this may not 
be exploited by the biological motor system. We conclude that maximising the integral of the square root of 
Fisher information can capture the signal dependent noise observed in natural point-to-point movements for 
forces below about 50% of maximum voluntary contraction. 

1 INTRODUCTION 

A fundamental function of the nervous system is to  
internally represent the values or ‘intensities’ of 
external quantities that belong to a ratio scale. This 
occurs in the sensory domain, such as representing 
the brightness of a light, or in the motor domain such 
as representing a desired force or limb position. For 
motor control, the internal representation of force is 
ultimately determined by the collective firing rates 
of a population of stochastic neurons (the motor 
neuron pool). Behavioural choices are made on the 
basis of these internal representations, and it seems 
likely that their neural organisations should come 
under strong natural selection and become 
optimised. But what is optimal? 

If we consider only a single point along a scale 
(eg. a specific desired force), sayθ , then the 
population of neurons (eg. motor neurons) should 
generate an unbiased estimate θ̂  of θ . This estimate 
will be noisy because of the stochastic firing of 
neurons (and other sources) resulting in a probability 

distribution )ˆ( θθp of estimates aroundθ . The 

variance of this estimation, ( )22 ˆ)( θθθσ −=  must 

be bound by the Fisher information, )(θI , according 
to the Cramer-Rao limit:  
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The bound can be met by an efficient network of 
N neurons, whose unbiased estimate θ̂  has a 
Gaussian distribution.    

However, how should a finite network estimate a 
range of values max0 θθ ≤≤ ? By this, we mean that 
the same network is required to estimate different 
values max0 θθ ≤≤ on different occasions (ie. 
separated sufficiently in time so that estimates are 
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stochastically independent). It is obviously possible 
to organise the network to provide an unbiased 
estimate θ̂ of each max0 θθ ≤≤ , but how should the 
network resources be distributed across the range 

max0 θθ ≤≤ ? What is an optimal arrangement? 
Human motor control provides an interesting 

problem in this respect for three reasons. First, the 
physiology of motor control is reasonably well 
understood. In particular, the estimator and its error 
are measurable as mean output force and variance 
(or a filtered version such as effector position), 
which can be approximated as the sum of individual 
motor unit forces (Fuglevand et al., 1993). Second, 
output force is stochastic with the property that noise 
is signal-dependent with the standard deviation 
roughly proportional to the mean (proportional 
noise) (Schmidt e al., 1979; Galganski et al., 1993; 
Enoka et al., 1999; Laidlaw et al., 2000; Jon et al 
2001; Hamilton et al., 2004; Moritz et al., 2005). 
Third, there is a considerable literature on optimal 
control of human movement (eg. Nelson 1983; 
Hogan 1984; Uno et al, 1989). In particular, 
minimising motor output variance under the 
constraint of proportional noise provides a good fit 
to observed movement data (Harris & Wolpert, 
1998), which implies that Fisher information may be 
relevant to motor control. 

2 FISHER FUNCTIONALS 

Intuitively, we may be tempted to argue that an 
overall figure of merit, J , should be the integral  

∫=
max

0
)(

θ
θθ dIJ  (3)

which would appear to maximise the Fisher 
information assuming independent estimations at all 
points in the range max0 θθ ≤≤ . However, this is 
really quite arbitrary, as in general, the Fisher 
informations of two estimates maqy not be 
independent, so that increasing )( iI θ may 
reduce )( jI θ  )( ji ≠ . Thus, we need to consider 
some functional: 

( )∫=
max

0
)(

θ
θθ dIJ F  (4)

that ‘trades-off’ Fisher information across the range. 
Fundamentally, we need a biological plausible 
functional (.)F .  

2.1 Re-Parameterization 

A network of motor units must cope with a variety 
of different ‘environments’ including the effects of 
other muscles, changing geometry of multi-jointed 
limbs, changing loads, fatigue etc.. The effect of 
motor units in the ‘real’ world will therefore vary. If 
the optimization were not independent of these 
different contexts, then any optimization procedure 
would force a particular metric that may not be 
suitable for the current context.  This requirement 
tightly constrains (.)F  and implies that J should be 
independent of re-parameterization ofθ . 

Denote a new metric by )(θφ , which is 
differentiable, θθφφ dd )(′= , then we require  

( ) ( )∫∫ ==
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Fisher information transforms according to: 
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2
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so the simple functional in (3) would not be 
invariant to the transformation in (5). However, the 
square root of Fisher information would be 
invariant: ( ).(.) ⇒F . We therefore consider the 
functional 

∫=
max

0
)(

θ
θθ dIJ . (7)

2.2 Signal-Dependent Noise 

If we assume a Gaussian estimator, it has been 
proposed that the functional (7) at the Cramer-Rao 
bound is equivalent to  

∫=
max

0 )(
1θ

θ
θσ

dJ  (8a)

and also equivalent to 

∫ ′
∝

max
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θ
θ

d
D

J  (8b)

where D′  (“d-prime”) is the well-known 
psychophysical discrimination quantity derived from 
signal detection theory (Nover et al., 2005), which 
can also be viewed as a measure of channel capacity 
(Harris, 2008). In general (8) is only true if )(θσ is a 
constant (signal-independent noise). Equation (4), 
and hence (7), imply that )(θI may not be constant, 
and that we must consider the case when the 
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estimator variance is allowed to change with the 
parameter, that is signal-dependent noise: 

≠)(θσ constant. As we see next, this affects Fisher 
information. 

Assume the standard deviation of the noise on 
the estimate, )(θσ , to be a deterministic function of 
the signal mean, so that distribution of the estimate 
has only one parameter: 

)(2/)ˆ( 22

2)(
1)ˆ( θσθθ

πθσ
θθ −−= ep  (9)

Taking logs, we have  
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and the Fisher information is 
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or the sum of two components: 

)()()( θθθ depind III +=  (10b)

For signal-independent noise, )(θσ ′ is zero and the 
traditional result 2/1 σ== indII is obtained. With 
signal dependent noise (SDN), however, there is 
more information to be had, which in principle could 
be very large when )(θσ ′ is high. If the estimator 
‘knows’ a priori the signal-dependent function 

)(θσ , then an estimation of θ can be made purely 
on the estimated variance, assuming )(θσ is 
invertible. This is the origin of 22 /2 σσ ′=depI . 
Theoretically SDN offers more information than 
signal-independent noise, but it is not clear whether 
the nervous system can extract this additional SDN 
Fisher information. Therefore we introduce the cost 
functional  

( )∫ +=
max

0
.

θ
θχ dIIJ depindF  (11)

where  χ is an ‘explanatory’ constant. For 0=χ , no 
SDN Fisher information is extracted, and for 

1=χ the full amount is extracted. 
 
 

3 OPTIMAL NETWORKS 

3.1 Architecture 

The unbiased estimation is a stochastic signal θ̂ that 
is the weighted sum of N independent stochastic 
signals iz  (neurons). Each neuron only fires when 
its individual threshold, iθ , is exceeded, otherwise it 
is switched off and generates no noise. When 
switched on, we assume all neurons are binary and 
fire with a fixed unit mean firing rate and a fixed 
variance 2

zσ : 

∑
=
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We make a continuous approximation for large N, 
such that )(θρ is the density of neurons with  
thresholds in the region ),( θθθ d+ , where 

∫=
max

0
)(

θ
θθρ dN  (13)

and )(θw is the weight of the units in ),( θθθ d+ . For 
an unbiased estimator with meanθ , we require 

∫=
θ

θθθρθ
0

)()( dw  

or 

)(
1)(
θ
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w

=  (14)

The variance of the estimator will be given by the 
sum of variances of the neurons above threshold: 

∫=
θ

θθθρσθσ
0

222 )()()( dwz  (15)

3.2  Euler-Lagrange Equation 

The general performance index from (10) and (11) is 
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Our variational problem is to maximise J with 
respect to )(θσ , subject to the constraint that we 
have a finite number of neurons at our disposal (13). 

For the sake of clarity, denote the estimator 
variance by )()( 2 θσθ =V , and denote the derivatives 
by θθ ddVV /)( ≡′ and 22 /)( θθ dVdV ≡′′ . We then 
have 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
+=

max

0 2

2

2
1θ

θχ d
V
V

V
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Also, from (14) and (15), we have 

)(

2

θρ
σ zV =′  

Thus the constraint (13) becomes  
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=
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θ
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N

z
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Equations (17) and (18) form an isoperimetric 
variational problem with the Lagrangian: 
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where λ is a constant Lagrange multiplier. A 
necessary condition for an extremal solution is given 
by the Euler-Lagrange equation: 
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3.3 Solutions 

3.3.1 0=χ ; ∫=
max

0
)(

θ
θθ dIJ  

We first consider the case when no depI is extracted 
)0( =χ  from the square root functional 

∫=
max

0
)(

θ
θθ dIJ  (7). The Lagrangian is 

VV ′
+=
λ

2/1
1L , and the Euler Lagrange equation is  

constant
4 2/3

3
=−=

′′
′

λ
VV

V  (21)

This has a solution: ( )22/12 )1(1)()( θθσθ cbaV −−=≡ , 
where cba ,,  are constants [this is a more general 
solution than previously described by Harris (2008)]. 
Substituting into (7), it can be shown graphically or 
by taking derivatives with respect to b and c, that a 
maximum is obtained for max/1 θ=c and 1=b , so that  

( )2/1
max )/1(1)( θθθσ −−= a  (22)

and is plotted in figure 1 (lower curve). For small θ , 
we have the asymptotic relationship: 

θθσ ∝)( , (23)

which is proportional noise. This is very similar to 
observations for forces below about 50% of 
maximum. We note that (22) implies a singularity in 

)(θρ as 0→θ , which is physiologically impossible 
as it would require infinite resources. One way to 
avoid this is to make ε−=1b , where ε a small 
positive constant.  This renders )(θρ finite but at the 
cost of introducing a small variance (and loss of 
information) at the origin. We can find the constant 
a in (22) from the normalization constraint (18). 
Differentiating (22) and substituting into (18) we 
have 

( )∫ −−
=

−

max

0 2/1
max

max
2

2

/1
1θ

θ
θθ

θσ
d

bN
a z . (24)

And 

( )))/1()( 2/1
max bw −−∝ −θθθ  (25a)

( ) 12/1
max ))/1()(

−− −−∝ bx θθρ  (25b)

which shows that the optimal weights increase with 
force (ie. stronger units are recruited) and that the 
number of units decreases. Thus the size principle 
emerges as the optimal strategy. 

3.3.2 0=χ ; ∫=
max

0
)(

θ
θθ dIJ  

It is interesting to examine the simple functional 

∫=
max

0
)(

θ
θθ dIJ  for 0=χ . The Lagrangian is 

VV ′
+=
λ1L , and the Euler Lagrange equation is  

constant
4 2

3
=−=

′′
′

λ
VV

V . (26)

This has a solution of the form  

)exp()( θθ baV =  (27)

where ba, are positive constants. From the constraint 
(18), we have  

( ))exp(11
max22

θ
σ

b
ab

N

z
−−=  (28)
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Figure 1: Plot of optimal noise )(θσ against mean force 
θ  as a proportion of maximum. Bottom curve shows the 
optimal solution (22) for the square-root functional (7). 
Note linear asymptote for forces below 50% maximum 
similar to empirical observations. Top curve shows the 
optimal solution (27) for the simple functional (3). Note 
the large offset at origin which is not observed 
empirically.  

and we note that  ba,  are not uniquely determined.  
Therefore   

( )
2max )exp(11

z

bNb
ab

J
σ

θ =−−= , (29)

which is unbounded because b can be made 
arbitrarily large. For a motor system there must be 
an upper limit on variance:  

)exp()( maxmaxmax θθ baV =  (30)

corresponding to all motor units being recruited. 
This will place a limit on b.  The upper curve in 
figure 1 shows this optimal relationship when 
equated for the same constraints [(18) and (30)] as in 
the optimal relationship for the square-root 
functional (22). Signal-dependent noise is still 
required, but there is a large variance at zero force. 
This is not observed in empirical data. 
 When we examine how Fisher information is 
distributed across the range (figure 2), we see that 
the simple functional leads to an approximately 
constant )(θI , whereas the square-root functional 
places more information at smaller forces with  
approximately θθ /1)( ∝I . 

3.3.3  0>χ  

Now consider the full functional with signal 
dependent Fisher information:  

∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝
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max

0 2

2

2
1θ

θχ d
V
V

V
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Figure 2: Plots of Fisher information )(θI . Curve 1 shows 

)(θI optimised for simple functional (3) (upper curve in 
fig.1). Curve 2 shows )(θI when optimised for square-
root functional (7) (lower curve in fig.1).  

For any monotonically increasing function (.)F  (as 
we are considering here), the problem is not well-
posed because J can be made arbitrarily high by 
increasing )(θV ′  with no counteracting penalty in the 
constraint (18). Indeed, if )(θV contained a step 
function then ∞→′ )(θV at the step and there would 
be no penalty at the step since 0)(/1 →′ θV . 

4 DISCUSSION 

The error of an unbiased estimator is bound by 
Fisher information, )(θI ,  (the Cramer Rao bound 
see (1). This bound can be met by an estimator with 
a Gaussian distribution (and some other 
distributions, see Frieden, 2004). However, when we 
wish to make estimations of a parameterθ  over a 
range of parameter values, max0 θθ ≤≤ , there is no 
straightforward bound. Obviously, if the error of 
estimation at any parameter value is unaffected by 
the error at any other value, then the best policy 
would be to maximise )(θI at eachθ . For the 
nervous system, this could not occur because of the 
limited resources in any neural estimator. Reducing 
the error of estimation requires devoting more 
neurons to the task, and given a finite population, 
error cannot be reduced arbitrarily across the range, 
and a trade-off would be required, (even though all 
individual estimations may be at the Cramer-Rao 
bound).  This leads to the notion that we need to 
maximise some functional of Fisher information: 

( )∫=
max

0
)(

θ
θθ dIJ F  (see sect. 2), but what is nature’s  

functional? 

IJCCI 2009 - International Joint Conference on Computational Intelligence

418



 

Although, Fisher information has been examined  
from the viewpoint of population coding of sensory 
information (eg. Seung & Sompolinsky, 1993; 
Brunel & Nadal, 1998), or in characterising neural 
activity (Toyoizumi et al., 2006), it is equally 
applicable to biological  motor systems. Here the 
pool of motor units are required to estimate the 
desired force (or behavioural motor output).  It is 
biological desirable to minimise output variance 
(Harris & Wolpert, 1998), and as in any statistical 
system, this must be limited by the Fisher 
information. Motor force is stochastic, and is the 
sum of individual forces generated by numerous 
motor units. The distribution of inter-spike intervals 
of motor neurons tend to have low coefficients of 
variability (Clamman, 1969), and consequently the 
distributions of firing rates are complex, but not 
Gaussian. However, provided there is sufficient 
recruitment of motor units with some degree of 
independence (ie. there are many degrees of 
freedom), then the central limit theorem assures us 
that total force should be asymptotically Gaussian.  

We postulate that the organisation of motor units 
should be independent of any re-mapping of the 
desired output force (at least in the short term). Such 
remapping will occur, for example, during co-
contraction of an antagonistic muscle which affects 
the output force of the agonist muscle. An analogous 
argument for re-parameterization independence has 
been made in physics (Calmet & Calmet 2005), and 
leads to the square root functional: 

∫=
max

0
)(

θ
θθ dIJ . Using variational calculus, we 

can find analytically the )(θI  that maximises this 
functional. To do this, we have assumed that all 
motor neurons fire at a fixed rate when recruited. 
We believe this is a reasonable approximation as 
forces, not close to zero, are generated by many 
saturated motor neurons. 

We find that the optimal distribution of neuron 
thresholds and weights leads to signal-dependent 
noise (SDN): ( )2/1

max )/1(1)( θθθσ −−= a , which to a 
good approximation is proportional noise for forces 
below 50% maximum (see fig.1 bottom curve). This 
is in good agreement with observation (see 
introduction). For larger forces, the SDN becomes 
accelerative. There is little empirical data at such 
large forces, but there is some suggestion of 
accelerative increase (Slifkin & Newell, 1999). This 
type of SDN also requires a size principle to emerge 
with larger forces requiring the recruitment of units 
that are stronger (higher weights) and larger 
thresholds, which again is consistent with 

observation (Henneman, 1967). It is worth noting 
that this organisation requires that Fisher 
information falls away rapidly with increasing force 
according to a power function (fig.2). Hence, there is 
relatively negligible information at large forces and 
it is possible that there is no strong drive to optimise 
such large forces. In summary, observed force is 
consistent with optimising the square-root Fisher 
functional, and not consistent with maximising 
simple Fisher integral (3) (see fig.1). 

An intriguing issue arises when we consider 
signal-dependent noise since the Cramer-Rao bound 
is extended (Section 2.2). With SDN, the amount of 
information can be raised well beyond the 
conventional bound for a Gaussian distribution by 
increasing  )(θσ ′  and keeping )(θσ low (10). The 
reason for this gain is that the degree of estimator 
error is itself a measure of the parameter. In other 
words signal-dependent noise is beneficial in its own 
right. Maximising the full Fisher information would 
be achieved by step–like functions in the SDN 
relationship and not by observed SDN. Moreover, 
observed slopes tend to be of the order of a few 
percent. Thus from (10) we see that the additional 
information )(θdepI  is a negligible fraction of 

)(θindI . Nevertheless, it remains to be explored 
whether the nervous system exploits the full Fisher 
information.   
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