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Abstract: Virtual screening has become an essential step in the early drug discovery process. Generally speaking, it 
consists in using computational techniques for selecting compounds from chemical libraries in order to 
identify drug-like molecules acting on a biological target of therapeutic interest. In the present study we 
consider virtual screening as a particular form of the KDD (Knowledge Discovery from Databases) 
approach. The knowledge to be discovered concerns the way a compound can be considered as a consistent 
ligand for a given target. The data from which this knowledge has to be discovered derive from diverse 
sources such as chemical, structural, and biological data related to ligands and their cognate targets. More 
precisely, we aim to extract filters from chemical libraries and protein-ligand interactions. In this context, 
the three basic steps of a KDD process have to be implemented. Firstly, a model-driven data integration step 
is applied to appropriate heterogeneous data found in public databases. This facilitates subsequent extraction 
of various datasets for mining. In a second step, mining algorithms are applied to the datasets and finally the 
most accurate knowledge units are eventually proposed as new filters. We present here this KDD approach 
and the experimental results we obtained with a set of ligands of the hormone receptor LXR. 

1 INTRODUCTION 

In silico drug discovery covers diverse 
computational techniques for capturing, integrating 
and analyzing biological and chemical data from 
diverse sources. Many programs address the issue of 
identifying drug-like molecules by calculating the 
docking energies of ligands bound to biological 
targets. Indeed, virtual screening is recognized today 
as a very promising process in early drug discovery 
process because it provides an excellent cost-to-
efficiency ratio (Jorgensen 2004; Köppen 2009). 
However high-throughput virtual screening methods 
are still under-exploited due to the computing cost of 
the current docking programs. One way to overcome 
such limitations is to couple multiple techniques in a 
funnel-like filtering process in which fast selection 
methods are used first for discriminating candidates 
that can be quickly recognized as consistent for 
being passed to the next step of the funnel. Filters 
that can be used for this first fast selection step are 
classically grouped into two categories. On one 

hand, the structure-based methods involve 
computing either geometrical matching between 
target and ligand, or a combination of features 
characterizing the binding mode of ligand to target 
(pharmacophore, Finn et al. 1998). These methods 
require that the 3D structure of the target is known. 
On the other hand, the ligand-based methods rely on 
a representative set of reference structures, known to 
be biologically active on the target, and compute 
structure-activity relationships based on various 
molecular descriptors. Both categories (structure-
based and ligand-based) of methods result in a 
ranked list of screened compounds.  

Actually, the design of a virtual screening filter 
can be considered as a particular case of the KDD 
(Knowledge Discovery from Databases) approach. 
The knowledge to be discovered concerns the 
discrimination between good and bad ligands for a 
given target, i.e. a classification problem. The data 
to be mined for knowledge extraction are chemical, 
structural and biological data related to the ligands 
and their cognate targets. Indeed the powerful KDD 
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paradigm (Fayyad et al. 1996) provides a consistent 
way to address a virtual screening issue. It stresses 
the importance of data integration as a first 
preparation step and allows diverse mining 
algorithms to be applied on several selected subsets 
of the integrated data. Knowledge units can be 
extracted from these datasets to derive activity 
prediction models. Once validated, such prediction 
models can be used as a novel type of virtual 
screening filters. Since they are produced along a 
KDD process, these filters will be called here 
“knowledge-based” filters.  

The KDD approach presented in this paper 
concerns the definition of new virtual screening 
filters in a drug discovery context. Special emphasis 
is brought to the data integration step since the 
ligand descriptor space is huge and complex. 
Current programs are able to rapidly calculate 
hundreds of molecular descriptors corresponding to 
1D, 2D and 3D physico-chemical descriptors. In 
most data analysis contexts, data integration efforts 
yield a simple matrix of data because most data 
mining algorithms accept as input unique tables 
where the data are represented as objects displaying 
specific values for given properties. However, a 
single table representation hardly reflects the 
complexity of biological and chemical data related 
to Protein-Ligand Interaction (PLI) data. Our 
approach is thus rather based on an entity-
relationship data model. An integrated database is 
then produced from which various sets of data can 
be easily extracted for mining as in Karp et al. 
(2008). Interestingly, this architecture revealed to be 
useful for solving the multiple-instance learning 
problem that arises when considering simultaneously 
the descriptors of the ligands and their 3D 
conformations.  

The proposed KDD methodology has been tested 
on three targets corresponding to three distinct 3D 
conformers of the same protein. The challenge 
addressed here is to combine various sets of ligand 
descriptors, pertaining to both structure-based and 
ligand-based methods. Section 2 describes the 
biological background of this study; the proposed 
KDD approach is presented in section 3; section 4 
reports on the results of the conducted experiment. 
The last section concludes on the advantages and 
perspectives of this approach. 

2 PREDICTION OF LIGAND 
ACTIVITY FOR DRUG 
DISCOVERY  

Several    programs   exist   for   both   ligand-   and  

structure-based screening methods (Kirchmair et al. 
2008) and recent developments confirm that 
combining results from different methods leads to 
better docking performance (Feher 2006). Several 
combination methods have been proposed among 
which the recent VSM-G approach that designs the 
hit identification process as a funnel of several 
progressive screening programs (Beautrait et al. 
2008). It is composed of a rigid geometrical docking 
program (SHEF, Cai et al. 2008) followed by a 
flexible docking program (GOLD, Jones et al., 
1997), both programs acting obviously as structure-
based filters. Since the number of false positive hits 
is still very high, one direction for improving VSM-
G is to develop knowledge-based filters. This should 
reduce the number of false positive hits that are 
finally retained.   

The KDD approach presented in this paper is 
tested with a collection of molecules known for their 
activity towards a particular biological target, the 
Liver X Receptor (LXR). The LXR receptor is an 
attractive target for the development of new 
therapeutic agents in the treatment of 
cardiovascular-related diseases (Lala, 2005). Reports 
on structural characterization of the LXR receptor 
reveal a great plasticity of the ligand binding pocket, 
which is able to accommodate ligands with different 
shapes and sizes (Farnegardh et al. 2003). We 
consider in this study three distinct 3D 
conformations of the LXR target (codes: 1P8D, 
1PQ6, and 1PQ9) obtained by X-ray 
crystallography. 

3 MODEL-DRIVEN DATA 
INTEGRATION AND MINING  

Our methodology is composed of four main steps: 
(i) building a data model for PLI data taking into 
account user requirements and existing resources; 
(ii) specifying a workflow for collecting data from 
the different resources leading to the specification of 
specific wrappers for populating a relational DB; 
(iii) writing queries on the data model for each 
identified user requirement; (iv) applying a mining 
program to the retrieved dataset. The last two steps 
can be iterated upon analysis of the extracted 
knowledge units. 

Figure 1 presents the entity-relationship data 
model of the PLI database. The model contains five 
entities namely Protein, Ligand, P_L_Interaction, 
Protein_Conformer, and Ligand_Conformer, 
connected with relevant relationships. A protein is 
described by several attributes (e.g. Name, 

A KDD APPROACH FOR DESIGNING FILTERING STRATEGIES TO IMPROVE VIRTUAL SCREENING

147



 

Sequence, Size) available in the UniProtKB protein 
knowledge base. A set of physical and chemical 
attributes are computed by specific programs from 
each ligand with respect to its chemical formula. A 
protein may have a known interaction with a ligand. 
Each PLI is documented either in the PDB (Protein 
Data Bank; Berman et al. 2000), Pubmed or IntAct 
databases by a set of characteristics (e.g. EC50, Kd). 
The Protein_Conformer and Ligand_Conformer 
entities contain topological descriptors of 3D 
conformations for each protein and each ligand. 
These include Spherical Harmonic (SH) coefficients 
which describe the shapes of the target binding site 
and of the ligand for easy comparison (Cai et al., 
2008). 

 
Figure 1: The entity-relationship model of the PLI 
database. 

The overall KDD strategy is figured out in Figure 2. 
On the left, the original resources for the data 
relative to PLI are represented together with the 
main data flows for collecting relevant data 
concerning a list of targets of interest and a list of 
drug-like molecules. This leads to instanciate the 
PLI database (Figure 2, centre) for a given virtual 
screening problem. 
Once the PLI database is ready, the users can 
retrieve various datasets in order to design 
knowledge-based filters for virtual screening (Figure 
2, right). At this stage of the work, the SQL view 
definition mechanism may constitute a powerful 
way for retrieving data sets to be mined. A typical 
dataset is composed of various ligands (set of 
objects) with their values for different descriptors 
(set of attributes), including a class attribute (active / 
inactive, or binding / not binding). Mining 
algorithms can then exploit such datasets in order to 
produce prediction models such as decision trees 
(DTs). Interestingly, the KDD process adapted to the 

 
Figure 2: KDD process for designing knowledge-based 
filters in a virtual screening context. 

virtual screening problem facilitates the exploration 
of the ligand descriptor space by selecting various 
descriptor sets and by evaluating the quality of the 
subsequent prediction models.  

4 EXPERIMENTAL RESULTS 

4.1 Instanciating the PLI Database 

The PLI database was constructed according to a 
relational data model straight derived from the 
entity-relationship model shown in Figure 1. Data 
related to the three LXR conformers were imported 
from the PDB entries named 1P8D, 1PQ6 and 1PQ9 
and used to fill the Protein_Conformer table. In 
particular, the structural descriptors of the binding 
pocket of each LXR conformer, including their SH 
coefficients, were computed and inserted in this 
table. A total of 222 LXR ligands were retrieved 
from the literature (Spencer et al., 2001; Bennett et 
al., 2008; Janowski et al., 1999) and inserted in the 
Ligand table. Their activity towards the LXR target 
was stored in the Protein_Ligand_Interaction table. 
The distinction between active and inactive ligands 
was based here on the transactivation (EC50) value 
found in the papers cited above. It was arbitrarily 
assumed that an active molecule is any molecule for 
which the transactivation value has been found 
lower than a given threshold of 1μM (micromole per 
liter). This criterion yielded 157 active versus 65 
inactive ligands in the database. About 20 possible 
conformers were generated for each ligand by a 
specific program (OpenEye Suite) in order to fill the 
Ligand_Conformer table with computed 3D 
structural descriptors of ligand conformers. 
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4.2 Datasets 

Three sets of descriptors were considered for all the 
222 ligands from the database. (i) The SAR 
descriptor set includes the classical ligand 
descriptors used for Structure-Activity Relationship 
analysis (Winkler 2002). This set corresponds to 
twenty-two attributes of the Ligand table. (ii) The 
CONF descriptor set includes six attributes 
corresponding to six 3D structural descriptors of 
ligand conformers stored in the Ligand_Conformer 
table. (iii) The SAR-CONF descriptor set is the union 
of the SAR and CONF descriptor sets (28 attributes). 
A class attribute (active/inactive) is added to each 
descriptor set.  

In the CONF and SAR-CONF datasets several 
3D conformers are associated with the same ligand. 
This leads to a multiple-instance learning problem 
(Maron & Lozano-Perez 1998) since the ligand 
conformers can be considered as distinct instances of 
the ligand, sharing common ligand properties (SAR 
descriptors and activity) but having specific 
conformer descriptors (CONF descriptors). To solve 
this problem we decided to select for each ligand the 
best-matching conformer towards each of the three 
LXR target conformers. This selection was based on 
the highest similarity score calculated with the 
SHEF program (Cai et al. 2008) between the SH 
coefficients of the ligand conformer on one hand, 
and of the binding pocket of the LXR conformer on 
the other hand. Finally three single-instance CONF 
(respectively SAR-CONF) descriptor sets were 
obtained, one for each LXR conformer. 

4.3 Construction of Decision Trees 

The mining experiments reported in this paper were 
carried out with the Weka machine learning program 
(Witten & Frank 2005) which includes an 
implementation of the J48 version of the C4.5 
program for building Decision Trees (DTs) relying 
on the divide and conquer principle. The J48 
program was run with the default parameters. The 
DTs were evaluated by a 10-fold stratified 
validation. 

There are at least two reasons for using a DT-
type mining algorithm for this experimentation. 
Firstly, we want to produce explicit activity 
prediction models in which the discriminative 
descriptors are made available to the domain 
experts. Secondly, the values taken by the 
descriptors in the datasets are not binary but rather 
numeric, which excludes in a first approach any 
symbolic   data   mining   algorithm  such  as  those  

searching for frequent itemsets or association rules. 

4.4 Evaluation of the Prediction 
Models and Discussion 

Applying the J48 program on the SAR and SAR-
CONF datasets, using as class attribute the 
active/inactive attribute defined in section 4.1, failed 
to produce any consistent DT (no descriptor in the 
DT). The results simply lead to predicting the major 
class in all cases, resulting in an estimation of the 
maximal percentage of incorrectly classified 
instances of 32 %. Conversely, DTs were obtained 
with the CONF datasets for each LXR conformer 
using the same active/inactive class attribute. The 
observed performances are presented in Table 1. 

Table 1: Performance of the DTs predicting the activity of 
a ligand conformer with each LXR conformer. FN: False 
Negative; FP: False Positive; TP: True Positive. 

 DTCONF 
LXR conformer 1P8D 1PQ6 1PQ9 

#descriptors in the DT 2 2 4 

#FN / #FP 4 / 65 6 / 61 2 / 65 

% incorrectly classified 
instances 

31% 30% 30% 

Weighted average of TP 
rates 

0.69 0.7 0.7 

The accuracy of the prediction is very low for 
the three DTs. About 30% of the instances are 
incorrectly classified, which is very close to the 
maximal percentage of incorrectly classified 
instances. The number of false positive instances is 
high (61 to 65). Obviously, these results show that 
the considered descriptor sets cannot accurately 
predict ligand activity towards any of the three LXR 
conformers.  

Since it is generally assumed that the activity is 
related to the binding, we decided to explore the 
capacity of the various descriptor sets to 
discriminate between binding and not binding 
ligands. Indeed the ultimate screening filter used in 
the VSM-G funnel is a flexible docking program 
that evaluates a docking score taking into account 
the flexibility of both target and ligand conformers. 
This flexible docking step requires powerful 
computing capacities to be conducted on large sets 
of molecules (about one hour is required on one 
processor core for docking one molecule on one 
target which means about 3 days for one thousand of 
molecules on a cluster of 16 bi-quad nodes). We 
therefore   used   the   same   datasets   and   simply 
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Table 2: Performance of the DTs predicting the docking of a ligand conformer with a given LXR conformer. Abbreviations 
are the same as in Table 1. 

 DTSAR DTCONF DTSAR-CONF 
LXR conformer 1P8D 1PQ6 1PQ9 1P8D 1PQ6 1PQ9 1P8D 1PQ6 1PQ9 
#docking / #not docking (in the 
dataset) 

201/21 184/38 115/106 201/21 184/38 115/106 201/21 184/38 115/106 

#descriptors (in the dataset)  22 22 22 6 6 6 28 28 28 

#descriptors in the DT 1 7 7 1 2 4 1 6 5 

#FN / #FP 9 / 9 6 / 11 8 / 13 3 / 12 7 / 16 7 / 13 6 / 9 9 / 11 7/ 13 

Incorrectly classified instances 8% 7.6% 9.5% 6.7% 10% 9% 6.7% 9% 9% 

Weighted average of TP rates 0.9 0.92 0.91 0.93 0.90 0.91 0.93 0.91 0.91 

replaced the active/inactive class attribute with a 
docking/not docking class attribute. This 
information was produced for each ligand towards 
each LXR conformer with the Glide software 
(Halgren et al. 2004). The docking score was 
converted to a binary class attribute based on a 
docking score threshold. 

 The results are summarized in Table 2. The 
DTSAR, DTCONF, and DTSAR-CONF decision trees 
correspond to the SAR, CONF, and SAR-CONF 
description sets respectively. It appears clearly that 
the accuracy of docking prediction is globally much 
more satisfying than the accuracy of activity 
prediction was (Table 1). Less than 10% of the 
instances are incorrectly classified and the number 
of false positives is much lower (9 to 16). The 
accuracy figures of the DTs obtained with the three 
types of descriptor sets towards the three LXR 
conformers are very close one to the other. A 
possible comparison criterion is the number of 
attributes used in each DT, assuming that more 
efficient DTs use less attributes for the same 
accuracy. With such an hypothesis, the DTsCONF 
perform better than the DTsSAR and DTsSAR-CONF for 
the three LXR conformers. For illustration, Figure 3 
shows the docking DTCONF obtained for the 1PQ6 
LXR conformer. The contribution of all these 
suggested filters has now to be evaluated upon 
screening a large molecule database against the 
considered targets. In particular it will be interesting 
to compare the efficiency of the VSM-G screening 
funnel with and without these additional filters. 

The discrepancy observed between the activity 
and the docking prediction models raises the 
question of the differences that exist between 
binding and activity. Indeed, a retrospective analysis 
of the 222 molecules of our dataset reveals that for 
each target conformer (i) some active ligands are 
found unable to dock and (ii) some inactive ligands  

DreidingEnergy <= 239:     yes  

DreidingEnergy > 239 

    |   VdWSurface <= 705:  yes  

    |   VdWSurface > 705:    no 

Figure 3: Docking DTCONF for the 1PQ6 LXR conformer. 

are docked. This apparent paradox can be explained 
by the fact that activity information is captured from 
functional biological tests in which the protein can 
adopt different conformations in addition to the three 
ones tested in the present study. Moreover, 
functional tests are designed for active compounds 
and cannot distinguish between binding and not 
binding inactive compounds. 

5 CONCLUSIONS AND 
PERSPECTIVES 

Our methodology for data integration and mining 
includes the rigorous construction of an integrated 
database in which data are collected from various 
resources. Careful design of such a database 
facilitates data preparation and selection upstream 
various data mining procedures when searching for 
significant hidden patterns. Moreover, it may help 
solving the multiple-instance learning problem by 
providing rapid access to the information required 
for converting a dataset into a single-instance one. 

We have illustrated our approach with PLI data 
in a specific context of drug discovery. We have 
shown how the KDD methodology enables an actual 
exploratory data mining approach, leading to the 
choice of the best prediction models given three 
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types of descriptor sets. In our case, the suggested 
KDD approach succeeded in unifying the ligand- 
and structure-based approaches for virtual screening. 
The prediction models based on the CONF 
descriptor set can now be tested as knowledge-based 
filters in the VSM-G screening funnel upstream the 
flexible docking step in order to reduce the number 
of molecules to test with the docking software. 

We see two main directions for future work. 
Firstly, we plan to use relational data mining 
methods for mining relational data and producing 
more expressive regularities (Finn et al., 1998; 
Dzeroski & Lavrac, 2001; Page & Craven, 2003). 
This would allow taking into account the chemical 
groups composing a ligand as well as atom-specific 
attributes. Secondly, we want to explore various 
definitions of ligand activity together with sets of 
relational descriptors for producing improved 
activity prediction models.  
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