
AN EVOLUTIONARY APPROACH FOR ROBUSTNESS TESTING

Thaise Yano, Eliane Martins
Institute of Computing, State University of Campinas, P.O.Box 6176, 13083-970, Campinas, SP, Brazil

Fabiano L. de Sousa
National Institute for Space Research, São José dos Campos, SP, Brazil

Keywords: Robustness testing, Protocol testing, Evolutionary testing.

Abstract: In this paper we present an evolutionary testing approach to automatically generate robustness test sequences to
test a communication protocol, modeled as an extended finite state machine (EFSM). The model represents the
normal situation as well as in presence of faults, which makes the model too large to be treated by conventional
test case generation approaches, because of the risk of combinatorial explosion. To cope with this problem,
we use a testing approach based on test purposes. To search sequences that satisfy the test purposes, we use
two evolutionary algorithms: the Generalized Extremal Optimization (GEO) and a Genetic Algorithm (GA).
For the moment, only the control flow part of the model is taken into account. Results show that the approach
is viable and potentially useful to consider data flow part of complex EFSM models.

1 INTRODUCTION

Robustness testing intends to determine whether a
system has an acceptable behavior in presence of in-
valid inputs or stressful environmental conditions. We
consider the model based testing approach for the
robustness testing of communication protocol mod-
eled as an extended finite state machine (EFSM).The
model represents the protocol behavior in the nor-
mal situation (nominal specification) as well as in the
presence of faults. The nominal specification is ex-
tended in order to incorporate the faults and stressful
conditions. The input and output domain of the model
are increased, respectively, by events representing in-
valid or inopportune inputs and extra output, such as
error messages or exceptions. After this integration,
the size of the increased specification becomes very
large. In conventional test generation approaches,
large state space can cause the combinatorial explo-
sion problem. To cope with this problem, we test the
robustness using an approach based on test purposes.
A test purpose defines specific parts of a system to be
tested. A test purpose consists of a set of events to be
performed or a set of states to be reached. They are
determined by practical needs or by system certifica-
tion requirements. In this paper, we propose applying
evolutionary algorithms (EA) to find test sequences

that satisfy the test purposes which represent the ro-
bustness aspects of a protocol. The test cases are de-
rived from the protocol specification modeled as an
EFSM and, for the moment, only the control flow part
is taken into account. The automated test data gener-
ation from an EFSM is an open research problem.

In the context of robustness testing, evolutionary
algorithms have been applied to derive test scenarios
that would violate critical requirements of the system
(Schultz et al., 1993; Briand et al., 2005; Del Grosso
et al., 2005). In contrast to these works, we derive the
test cases from the simulator of a communication pro-
tocol and do not use any reachability technique.

Two evolutionary algorithms are used: Genetic
Algorithm (GA) and Generalized Extremal Optimiza-
tion algorithm (GEO) (De Sousa et al., 2003). GEO
is a recently proposed EA that has been shown to be
a competitive alternative to the GA in many applica-
tions (De Sousa et al., 2007; Abreu et al., 2007), being
at the same time much easier to set to be applied on a
given problem than the GA. This work presents a new
application of GEO for software testing. In contrast
to most works, a discrete encoding of the design vari-
ables is used in our implementation, instead of binary
values. The performance of these EAs are compared
with a “blind” random search approach.

The remainder of this paper is organized as fol-

277
Yano T., Martins E. and de Sousa F. (2009).
AN EVOLUTIONARY APPROACH FOR ROBUSTNESS TESTING.
In Proceedings of the International Joint Conference on Computational Intelligence, pages 277-280
DOI: 10.5220/0002294102770280
Copyright c© SciTePress

lows. Section 2 presents the EAs applied in this work.
Section 3 presents our approach for robustness testing
and some experiments. Section 4 remarks some con-
clusions and future works.

2 EVOLUTIONARY
ALGORITHMS

Genetic Algorithm (GA) is one of the evolutionary al-
gorithms most used and known nowadays. The main
steps of a generic GA consist of selecting individuals
with higher fitness for the next population and evolv-
ing individuals with crossover and mutation opera-
tors during a given number of generations. We use a
GA with one-point crossover (a single point to recom-
bine two individuals), simple mutation (one value that
represents an individual is changed), selection by the
roulette wheel scheme (individuals are chosen propor-
tional to its fitness) and integer codification.

The Generalized Extremal Optimization (GEO)
algorithm (De Sousa et al., 2003) is an evolutionary
algorithm based on a model of natural evolution (Bak
and Sneppen, 1993). The main steps of GEO are pre-
sented below. Firstly, the population of N design vari-
ables is initialized randomly with uniform distribu-
tion. In the second step, for each variable is associated
a fitness value, given by ∆i = Fi− re f . Fi is the value
of the objective function when the variable is mutated
to other value muti of the variable domain and re f is
a given value of reference (e.g., zero). After the ∆i
calculation, the value of the variable i returns to its
original one. This process is repeated to all variables.
In the next step, all variables are ranked by their fit-
ness value. The first position (k = 1) of the ranking
belongs to the least adapted variable and the last posi-
tion (k = N) to the best adapted one. For a maximiza-
tion problem, the highest value of ∆i means k = 1 and
the lowest value means k = N. A variable j is selected
to be mutated according to the probability distribution
P∼ k−τ, where k is the rank of the variable j and τ a
free control parameter. If the stopping condition is not
achieved, the algorithm returns to second step.

3 THE PROPOSED APPROACH

Robustness testing in this paper consists in verifying
whether the protocol has an acceptable behavior in
presence of unexpected inputs that can be caused by
bugs in parts of the host systems or links. We aim to
test whether the error detection and recovery mech-
anisms were implemented according to the specifica-

tion. The evolutionary approach proposed here for ro-
bustness testing is described below. According to the
specification, a model is built to represent the protocol
behavior. For the test generation process, the model is
simulated given a test sequence. Note that it is not the
implementation under test but only an executable ver-
sion of the protocol model (simulator). The simulator
code is manually instrumented in order to track the
triggered transitions by a test sequence. In order to
reduce test effort and costs, the test selection is based
on test purposes. As we focus on robustness testing,
the test purposes are the transitions corresponding to
unexpected inputs (Ttarget). The EA generates test se-
quences seq trying to cover Ttarget . The instrumented
simulator takes seq as input and produces the transi-
tions triggered by seq. The test purposes coverage is
evaluated by the EA through the objective function
that encodes the test criterion. After the stopping cri-
terion of the evolutionary algorithm is achieved, the
best test sequence found during the search is returned.

The behavior model used in our approach is
an EFSM composed of states, input events, output
events, variables, parameters and a state transition
function. The function takes the current state and an
input event, verifies if the associated guard is satisfied
and, in affirmative case, the transition is triggered, re-
turning output events and bringing the machine to the
next state. The guard is a logical expression involving
conditions on parameters and variables.

Each individual of the population in GA is
represented by a test sequence defined as seq =
{e1,e2, . . . ,eN}, where ei is a input event and N is
the sequence size, considering EFSM as the protocol
model. While in GEO, the test sequence represents
the entire population. Note that each ei represents a
design variable. The set of transitions to satisfy the
test purposes is Ttarget = {t1, t2, . . . , tw}, where ti ∈ T .
The objective function to be optimized is defined as:

Maximize F(seq) = c/|Ttarget | (1)

where |Ttarget | is the cardinal number of Ttarget and
c = |Ttriggered∩Ttarget | is the number of triggered transitions
(Ttriggered) in common with Ttarget .

As an example of how a generated sequence could
trigger a set of transitions in a EFSM and how the value
of the objective function is calculated, consider the ma-
chine M1 shown in Figure 1. If the test sequence is cho-
sen to have size 4, there will be 4 design variables to
be operated by GEO or GA. If the test sequence gen-
erated by one of these algorithms is seq = {e,a,d,c} it
will trigger the set Ttriggered = {t1, t5, t7}. Considering c
the unexpected input, the set of transitions to satisfy the
test purposes is Ttarget = {t3, t4, t7} and the objective func-
tion value associated with the test sequence seq will be
1/3 = 0.3333.

IJCCI 2009 - International Joint Conference on Computational Intelligence

278

Figure 1: Example: (a) EFSM M1; (b) test sequence.

3.1 Experiments

To illustrate the application of the proposed approach for ro-
bustness testing, the Wireless Transaction Protocol (WTP)
is used as the software under test. The protocol simulator
is generated by the SMC1 (State Machine Compiler) tool.
SMC takes an EFSM and, in turn, generates a source code
of the machine in Java.

The performance of GEO, GA and random testing (RT)
on generating test sequences to cover the transitions corre-
sponding to the unexpected inputs of the protocol are com-
pared. In order to adequate the EAs for the problem being
tackled, it is necessary to tune their free parameters. To set
the parameters of GEO and GA, 10000 function evaluations
were used as stopping criterion. Note that the RT has no free
parameters to be tuned. Independently of the test sequence
size, the performance of GEO does not present much dif-
ferences for τ ≥ 4, then τ = 4 is used to perform the com-
plete experiments. For the genetic algorithm implementa-
tion, as described in Section 2, we use a Java framework
called JGAP2. The best results were obtained with pop of
100, pc of 0.4 and pm of 0.01. The tuning process of GA
took approximately 20 minutes for each sequence size. It
demanded more time than GEO that took around 6 minutes
for each sequence size. It was used a Pentium 4 with 3.00
GHz and 1 GB of RAM memory.

Two experiments were performed to: i) determine the
effectiveness of the approach for test case generation; ii)
determine the effect of Ttarget and test sequence size on the
algorithms performance.

3.1.1 Experiment 1

For robustness testing, the effectiveness of the algorithms is
given in terms of the number of executions of the objective
function necessary to cover the test purposes (Texception) that
represent the robustness properties to be tested. Texception is
the 25 transitions that correspond to the exceptions speci-
fied in the WTP documentation. In other terms, we count
the number of executions of the model necessary to satisfy
the test purposes. Measures of the effectiveness were taken
for different test sequence sizes: 32, 64 and 128. The aver-
age of the best results was obtained in the 20 runs and the
maximum number of function evaluations was 100000 for
each run. The computing time of each run was less than 5
seconds for both GA and GEO.

Figure 2 shows the comparison among GEO, GA and
RT for the coverage of Texception with sequence size of 64
and 128. From Figure 2 it can be seen that GEO and GA
have a similar performance and they clearly outperform RT.

1Available in http://smc.sourceforge.net.
2Available in http://jgap.sourceforge.net/

In this experiment, RT did not completely cover Texception.
The evolutionary algorithms have better performance to sat-
isfy the test purposes with sequence size of 128.

Figure 2: Texception coverage with different sequence sizes.

3.1.2 Experiment 2

Another experiment was performed to verify the effect of
test sequence size and target transitions set size on the per-
formance of the algorithms. Different sets of transitions
Ttarget were randomly selected, differently from Texception.
The cardinal number of Ttarget varied from 5 to 25, with in-
crement of 5. The experiment used sequences of size 32,
64 and 128. The maximum number of function evaluations
was 100000 for each run. Twenty runs of each algorithm
were performed for each combination of sequence size and
target transitions set. Figures 3 and 4 show some results.

The results showed that the cardinality of Ttarget influ-
ences directly the performance of the algorithms. For higher
values of |Ttarget |, the algorithms present more difficulty to
generate test sequence. This occurs because the objective
function becomes more difficulty to be satisfied with more
transitions to be covered, since its definition is related to
|Ttarget |.

The performance of all algorithms improves as the test
sequence size increases. Higher test sequence size increases
the probability of an uncovered transition to be found as
new paths are generated since the machine returns to the
initial state (reversible).

Figure 3: Different Ttarget with sequence size of 32.

The problem of finding test sequence is more complex
when |Ttarget | is bigger and the sequence size is smaller.
The difference between the performance of the EAs and RT
is very clear. Moreover, GEO has better performance than

AN EVOLUTIONARY APPROACH FOR ROBUSTNESS TESTING

279

Figure 4: Different Ttarget with sequence size of 64.

GA in this case. Although we need further experiments to
perform a thorough analysis of the behavior of the EAs for
different models, these preliminary results let us deduce that
they can substitute RT for model-based test sequence gen-
eration. The experiments shown that test sequence size is
also worth to be considered for optimization.

4 CONCLUSIONS

In this paper an evolutionary approach for robustness testing
was presented. Evolutionary algorithms were used to gener-
ate the test sequences to cover a test purpose, which consist
of the unexpected inputs of a communication protocol. The
evolutionary algorithms, GEO and GA, were efficient to re-
solve that problem. Both algorithms clearly outperform the
random testing, mainly in more complex problems, as ex-
pected. The results indicate that GEO is competitive with
GA for this problem. Of course, further experiments are
necessary to assure this claim.

In addition to the control flow, the data flow inherent of
the EFSM need to be considered.

The use of a multi-objective function is under way. The
goal is not only to maximize the transition coverage, but
also to minimize the test sequence size.

ACKNOWLEDGEMENTS

This research is supported by CAPES and CNPq.

REFERENCES

Abreu, B. T., Martins, E., and Sousa, F. L. (2007). Gener-
alized extremal optimization: a competitive algorithm
for test data generation. In 21st Brazilian Symposium
on Software Engineering, João Pessoa, Brazil.

Bak, P. and Sneppen, K. (1993). Punctuated equilibrium
and criticality in a simple model of evolution. Physical
Review Letters, 71(24):4083–4086.

Briand, L. C., Labiche, Y., and Shousha, M. (2005). Stress
testing real-time systems with genetic algorithms. In

GECCO 2005: Proc. of Conf. on Genetic and Evo-
lutionary Computation, pages 1021–1028, New York,
NY, USA. ACM.

De Sousa, F. L., Ramos, F. M., Paglione, P., and Girardi,
R. M. (2003). New stochastic algorithm for design
optimization. AIAA Journal, 41(9):1808–1818.

De Sousa, F. L., Soeiro, F., Neto, A. S., and Ramos,
F. M. (2007). Application of the generalized extremal
optimization algorithm to an inverse radiative trans-
fer problem. Inverse Problems in Science and Eng.,
15(7):699–714.

Del Grosso, C., Antoniol, G., Penta, M. D., Galinier, P., and
Merlo, E. (2005). Improving network applications se-
curity: a new heuristic to generate stress testing data.
In GECCO 2005: Proc. of Conf. on Genetic and Evo-
lutionary Computation, pages 1037–1043, New York,
NY, USA. ACM.

Schultz, A. C., Grefenstette, J. J., and Jong, K. A. (1993).
Test and evaluation by genetic algorithms. IEEE
Expert: Intelligent Systems and Their Applications,
8(5):9–14.

IJCCI 2009 - International Joint Conference on Computational Intelligence

280

