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Abstract: In this paper we have proposed an improved approach to extract rare association rules. The association rules
which involve rare items are called rare association rules. Mining rare association rules is difficult with sin-
gle minimum support (minsup) based approaches like Apriori and FP-growth as they suffer from “rare item
problem” dilemma. At high minsup, frequent patterns involving rare items will be missed and at low minsup,
the number of frequent patterns explodes. To address “rare item problem”, efforts have been made in the lit-
erature by extending the “multiple minimum support” framework to both Apriori and FP-growth approaches.
The approaches proposed by extending “multiple minimum support” framework to Apriori require multiple
scans on the dataset and generate huge number of candidate patterns. The approach proposed by extending the
“multiple minimum support” framework to FP-growth is relatively efficient than Apriori based approaches,
but suffers from performance problems. In this paper, we have proposed an improved multiple minimum sup-
port based FP-growth approach by exploiting the notions such as “least minimum support” and “infrequent
leaf node pruning”. Experimental results on both synthetic and real world datasets show that the proposed
approach improves the performance over existing approaches.

1 INTRODUCTION

Data mining represents techniques for discovering
knowledge patterns hidden in large databases. Several
data mining approaches are being used to extract in-
teresting knowledge (G. Melli and Kitts, 2006). Like,
association rule mining techniques (R. Agrawal and
Swami, 1993) (Agrawal and Srikanth, 1994) discover
association between the entities, clustering techniques
(Xu, 2005) to group the unlabeled data into clusters
such that there exists high inter similarity and low in-
tra similarity between the clusters, classification tech-
niques (Weiss and Kulikowski, 1991) to identify the
different classes existing in categorical labeled data.

It can be observed that most of the data min-
ing approaches discover the knowledge pertaining to
frequently occurring entities. However, real-world
datasets are mostly non-uniform in nature contain-
ing both frequent and relatively infrequent or rarely
occurring entities. (Referring an entity as either fre-
quent or rare is a subjective matter depending on the
user and/or type of application etc.) In literature, it
has been reported that rare knowledge patterns i.e.,
knowledge pertaining to rare entities may contain in-

teresting knowledge useful in decision making pro-
cess (Weiss, 2004) (B. Liu and Ma, 1999). The rare
knowledge patterns are more difficult to detect be-
cause they present in fewer data cases. In the litera-
ture, research efforts are being made to investigate ef-
ficient approaches to extract rare knowledge patterns
like rare association rules and rare class identification
(Weiss, 2004).

In this paper, we have proposed an improved ap-
proach to extract rare association rules. Association
rule mining (Agrawal and Srikanth, 1994) is a popular
knowledge discovery technique and has been exten-
sively studied in (J. Hipp and Nakhaeizadeh, 2000).
The basic model of association rule mining is as fol-
lows. Let I = {i1, i2, ..., in} be a set of items. Let
T be a set of transactions (dataset), where each trans-
action t is a set of items such thatt ⊆ I. A pattern
(or an itemset) X is a set of items{i1, i2, ..., ik} (1≤
k ≤ n) such that X⊆ I. Pattern containingk num-
ber of items is called k-pattern. An association rule
is an implication of the form, A⇒ B, where A⊂ I,
B ⊂ I and A ∩ B = /0. The rule A⇒ B holds in T
with support s, if s% of the transactions in T contain
A ∪ B. Similarly rule A ⇒ B holds in T withcon-
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fidence c, if c% of transactions in T that support A
also support B. Given T, the objective of association
rule mining is to discover all association rules that
have support and confidence greater than the user-
specified minimum support (minsup) and minimum
confidence (minconf). The patterns which satisfy the
minsup value are called frequent patterns. The rules
that satisfy the minsup value and minconf value are
called strong rules.

Rare association rule refers to an association rule
forming between frequent and rare items or among
rare items. Rare associations may contain useful
knowledge. For example, consider the set of items
{bread, jam, bed, pillow} being sold in a super mar-
ket. It can be observed that the items in the set{bread,
jam} are frequently purchased items while the items
in the set{bed, pillow} are infrequently or rarely pur-
chased items. Even though{bed, pillow} contains
rare items, it is interesting as it may generate more
revenue in this case.

Mining rare association rules is an issue, because
single minimum support (minsup) based approaches
like Apriori (Agrawal and Srikanth, 1994) and FP-
growth (H. Jiawei and Runying, 2004) suffer from
“rare item problem” dilemma (Mannila, 1997). That
is, at high minsup value, frequent patterns involving
rare items could not be extracted as rare items fail to
satisfy the minsup value. To facilitate participation of
rare items in generating frequent patterns, the minsup
value has to be set low. However, low minsup may
result in combinatorial explosion of frequent patterns.

To address “rare item problem”, efforts have been
made in the literature by extending the “multiple min-
imum support” framework to both Apriori and FP-
growth approaches. In this framework, each item is
specified a minsup value called minimum item sup-
port (MIS) and frequent patterns are discovered if a
pattern satisfies the lowest MIS value of an item in it.

The approaches (B. Liu and Ma, 1999) (Kiran and
Reddy, 2009) proposed by extending “multiple mini-
mum support” framework to Apriori require multiple
scans on the dataset and generate huge number of can-
didate patterns.

In (Ya-Han Hu, 2004) an approach called Condi-
tional Frequent Pattern-growth (CFP-growth) is pro-
posed by extending the “multiple minimum support”
framework to FP-growth. In this approach the MIS
value of each item is used to construct MIS-tree in-
stead of FP-tree. From the MIS-tree, compact MIS-
tree is derived with the items having support values
greater than the lowest MIS value among all items in
transaction dataset (the details are discussed in Sec-
tion 2).

The CFP-growth approach improves performance

over Apriori based approaches. However, it suffers
from performance problems. To generate frequent
patterns involving rare items, it carries out computa-
tion involving those items which do not generate any
frequent patterns. In this paper, we propose an im-
proved CFP-growth approach referred as Improved
Conditional Frequent Pattern-growth (ICFP-growth)
approach by exploiting the notions such as “least min-
imum support” and “infrequent leaf node pruning”.
The notion “least minimum support” is used to con-
sider only those items which generate frequent pat-
terns and the notion “infrequent leaf node pruning” is
used to prune the leaf nodes belonging to infrequent
items, so that the size of compact MIS-tree can be
reduced. Experimental results on both synthetic and
real world datasets show that the proposed approach
improves the performance over CFP-growth.

The paper is organized as follows. In Section
2, we discuss the mining of frequent patterns using
CFP-growth approach. In Section 3, we present the
proposed ICFP-growth approach and the algorithm to
mine frequent patterns. In Section 4, we present the
experiment results conducted on synthetic and real
world datasets. In the last section we discuss con-
clusions and future work.

2 CFP-GROWTH APPROACH

We first define the terms “minimum item support”
and “sorted closure property”. Next, we briefly
explain the CFP-growth approach along with the
performance problem.

Minimum Item Support. In multiple minimum sup-
port based frequent pattern mining, each item is spec-
ified with a minsup value called minimum item sup-
port (MIS). Frequent items are the items having sup-
port greater than or equal to their respective MIS val-
ues. Infrequent items are the items having support
less than their respective MIS values.

Frequent pattern is a pattern that satisfies the low-
est MIS value of the item in it. (See Equation 1.)

S(i1, i2, ..., ik) ≥ min

(

MIS(i1),MIS(i2)
...,MIS(ik)

)

(1)

where S(i1, i2, · · · , ik) represents the support for an
itemset{i1, i2, · · · , ik} and MIS(i j ) represents the
minimum item support for itemi j .

Sorted Closure Property. The frequent patterns dis-
covered using multiple minsup values follow “sorted
closure property”. The “sorted closure property”
says, if asorted k-pattern〈 i1, i2, ..., ik 〉, for k ≥
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2 and MIS(i1) ≥ MIS(i2) ≥ ... ≥ MIS(ik), is frequent,
then all of its subsets involving item having lowest
MIS value (i1) need to be frequent and the subsets in-
volving rest of the itemsi j , where j≥ 2, need not nec-
essarly be frequent patterns. So the multiple minsup
based frequent pattern mining algorithms have to con-
sider both frequent and infrequent items (complete set
of items I) to generate further frequent patterns.

For example, consider a transaction dataset in-
volving three itemsi1, i2 and i3, each having MIS
values 5%, 10% and 20% respectively. If a sorted 3-
pattern{i1, i2, i3} has support 6% then it is a frequent
pattern. In this frequent pattern, the supersets of item
i1 i.e., {{i1}, {i1, i2}, {i1, i3}} are to be frequent.
However, the supersets of itemsi2 andi3, say{i2, i3}
may still be infrequent by having support as 8%. For
this pattern to be frequent, the support it should have
is 10% (min(10%, 20%)).

The CFP-growth approach extends “pattern-
growth” methodology to multiple minimum support
values.

In this approach, it is assumed that the information
regarding the MIS values for the items will be the pro-
vided by the user prior to its execution. The MIS-tree
is constructed as follows. First, the items are sorted in
descending order of their MIS values, sayL1 and their
frequency values are set at zero. Next, a root node of
the tree is constructed by labeling with ”null”. Next,
for each transaction in the dataset the following steps
are performed to generate MIS-tree. They are:

1. The items in each transaction are sorted inL1 or-
der. Next, update the frequencies of the items
which are present in the transaction by increment-
ing the frequency value of the respective item by
1.

2. A branch is created for each transaction such that
nodes represent the items, level of nodes in a
branch is based on the sorted order and the count
of each node is set to 1. However, in construct-
ing the new branch for a transaction, the count of
each node along a common prefix is incremented
by 1, and nodes for the items following the pre-
fix are created, linked accordingly and their values
are set to 1.

To facilitate tree traversal, an item header table
is built so that each item points to its occurrences
in the tree via a chain of node-links. From the item
frequencies, the respective support values are calcu-
lated. Using the lowest MIS value among all the items
(MIS), the tree-pruning process is performed on the
item header and MIS-tree to remove the items hav-
ing support less than the lowest MIS value among
all items. After tree-pruning, tree-merging process is
performed to generate the compact MIS-tree.

Table 1: Transaction dataset.

TID Items
1 bread, jam
2 bread, jam, ball
3 bread, jam, pen
4 bread, jam, pencils
5 bread, bat, ball
6 bed, pillow
7 bed, pillow
8 ball, bat
9 ball, bat
10 ball, bat

The compact MIS-tree is mined as follows. Each
item in L1 is considered as a suffix pattern, next its
conditional pattern base, which is a set of prefix-
paths in the MIS-tree is constructed and mining is per-
formed recursively on such a tree. The pattern growth
is achieved by the concatenation of the suffix pattern
with the frequent patterns generated from the condi-
tional pattern.

For the dataset shown in Table 1, the extraction
of frequent patterns using CFP-growth algorithm is
illustrated using Example 1. For ease of explaining
this example we refer the support and MIS values of
the items in terms of support counts and MIS counts.

Example 1. For the transaction dataset shown in
Table 1, the itemset I ={bread, ball, jam, bat, pil-
low, bed, pencil, pen}. Let the MIS values (in
count) for bread, ball, jam, bat, pillow, bed, pen-
cil and pen be 4, 4, 3, 3, 2, 2, 2 and 2 respec-
tively. Now, using the MIS values for the items,
the CFP-growth approach sorts the items in de-
scending order of their MIS values and assigns the
frequency value of zero to every item. Thus,L1
contain{{bread:0}, {ball:0}, {jam:0}, {bat:0},
{pillow:0}, {bed:0}, {pencil:0}, {pen:0}}. In the
first scan of the dataset shown in Table 1, the first
transaction “1: bread, jam” containing two items
is scanned inL1 order i.e.,{bread, jam} and the
frequencies of items “bread” and “jam” are up-
dated by 1 inL1. Next, a first branch of tree is con-
structed with two nodes,〈bread: 1〉 and〈jam: 1〉,
where “bread” is linked as a child of the root and
“jam” is linked as a child of “bread”. The second
transaction “2: bread, jam, ball” containing three
items “bread, ball, jam” inL1 order and the fre-
quencies of the items are updated by incrementing
by 1. Next, the items in second transaction, or-
dered inL1, will result in a branch where “bread”
is linked to root, “ball” is linked to “bread” and
“jam” is linked to “ball”. However, this branch
shares the common prefix, “bread”, with the ex-
isting path for first transaction. Therefore, the
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count of “bread” node is incremented by 1 and
new nodes are created for items “ball and jam”
such that “ball” is linked to “bread” and “jam” is
linked to “ball” and their node values are set to
1. The process is repeated until all the transac-
tions are completed. A node link table is built for
traversal. The constructed MIS-tree is shown in
Figure 1. Next, CFP-growth identifies the lowest
MIS value among all the items i.e., 2 and try to
remove the items whose support value is less than
2. From the node table, first, item “pencil” is re-
moved. Next, tree pruning is preformed on MIS-
tree to remove all the nodes pertaining to item
“pencil”. Next, the item “pen” is removed from
the node-link table and MIS-tree. After that, tree-
merging is performed to merge the branches. The
final and compact MIS-tree is shown in Figure 1
with bold letter and think lines.
Mining the constructed MIS-tree is shown in Ta-
ble 2 and is summarized as follows. Start from
the last item in the item header table i.e., “bed”,
as the suffix item. Then construct its conditional
pattern base for this suffix item is as follows. In
the MIS-tree shown in Figure 1, “bed” occurs in
one node. The path formed from this node is
〈pillow, bed: 2〉. Therefore, considering “bed” as
suffix, its corresponding prefix paths are〈pillow:
2〉, which form its conditional pattern base. Its
conditional MIS-tree contains only a single path,
〈pillow: 2〉. The single path generates all the
combinations of frequent patterns{pillow, bed:
2}. Next, by considering every item one after
another in the ascending order of their MIS val-
ues, the corresponding conditional pattern bases
and conditional MIS-tree are constructed to gen-
erate all frequent patterns are generated. The fi-
nally generated frequent patterns are{{bread},
{ball}, {jam}, {bat}, {pillow}, {bed}, {bread,
jam}, {bat, ball}, {pillow, bed}}.

The performance problem in the CFP-growth
approach is as follows. The CFP-growth constructs
compact MIS-tree involving the items having support
greater than the lowest MIS value among all the items.
The intuition behind this selection process is that no
frequent pattern will have support less than the lowest
MIS value among all the items. However, by consid-
ering the lowest MIS value among all items this ap-
proach considers certain infrequent items which will
never generate any frequent patterns. This results in
increased memory and runtime requirements. We il-
lustrate this scenario in Example 2.

Example 2. Let the set of items{U, V, W, X,
Y, Z} have support values{10%, 8%, 6%, 4%,
2%, 1%} respectively. Let the respective MIS val-
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Figure 1: MIS-tree. The compact MIS-tree is represented
with bold letters (first six rows in the table) and the corre-
sponding think lines and circles in the tree.

ues be{9%, 9%, 7%, 4%, 3%, 2%}. Since the
lowest MIS value is 2%, any frequent pattern will
have support not less than 2%. Therefore, CFP-
growth considers set of items{U, V, W, X, Y} for
generating frequent patterns. The CFP-growth do
not consider item Z for generating frequent pat-
terns because its support (1%) is less than lowest
MIS value among all items (2%). However, it can
be observed that the infrequent item Y will never
generate any frequent pattern. The reason is that
any pattern involving item Y can have support at
most equivalent to 2%, which is less than the MIS
value of Y i.e., 3%.

3 PROPOSED APPROACH

In this section, we first present the basic idea of the
proposed approach. Next, the algorithm is discussed.
Subsequently, we discuss how the proposed approach
is different from CFP-growth approach.

3.1 Basic Idea

In the proposed approach, we exploit the following
notions: “least minimum support” and “infrequent
leaf node pruning”.
Least Minimum Support. The frequent patterns
mined using multiple minsup values follow “sorted
closure property”. According to “sorted closure prop-
erty”, all the supersets involving the item having low-
est MIS value should be frequent in a frequent pattern.
So in every frequent pattern, frequent item represents
the item having the lowest MIS value. Therefore, it
can be argued that every frequent pattern will have
support greater than or equal to lowest MIS value
among all the frequent items. Thus, if we remove
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Table 2: Mining the MIS-tree by creating conditional pattern bases in CFP-growth.

Item MIS Conditional Conditional Frequent patterns
pattern base MIS-tree generated

bed 2 {{pillow: 2}} 〈pillow: 2〉 {pillow, bed: 2}
pillow 2
bat 3 {{bread, ball: 1}, 〈ball:4〉 {ball, bat: 4}

{ball:3}}
jam 3 {{bread,ball: 1}, 〈bread:4〉 {bread, jam: 4}

{bread: 3}}
ball 4 {{bread: 2}} 〈bread:2〉 {bread, ball: 2}

all the items whose support is less than the lowest
MIS value of the frequent item, no frequent pattern
will be missed. This notion is called “least minimum
support” (LMS) and it refers to the lowest MIS value
among all the frequent items. The significance of this
notion is illustrated in Example 3.

Example 3. Continuing with the Example 2, it
can be observed that the set of items{U, X} are
frequent items. The lowest MIS value among
these items is 4%. Therefore, using LMS value
as 4%, the proposed approach prunes the set of
items{Y, Z} and considers{U, V, W, X} for fre-
quent pattern mining.

Let I be the set of all items in the transaction
dataset. Let C be the set of items considered by
CFP-growth approach for mining frequent patterns.
Let F be the set of items considered by ICFP-growth
approach for mining frequent patterns. Then, the
relation between I, C and F is as follows: F⊆ C⊆ I.

Infrequent Leaf Node Pruning: In the process of
mining compact MIS-tree using conditional pattern
bases, the suffix item (or pattern) represents the item
having lowest MIS value. So if a suffix item is an
infrequent item, based on “sorted closure property”,
it can be said that all the prefix paths of the respec-
tive suffix item will also be infrequent. Therefore, the
ICFP-growth approach skips the construction of con-
ditional pattern bases for the infrequent suffix items.
In the compact MIS-tree, the leaf nodes belong to in-
frequent items have no significance because its prefix
paths (conditional pattern bases) are not used. The re-
sultant MIS-tree will still preserve the transaction de-
tails pertaining to frequent patterns even if we prune
the leaf nodes belonging to infrequent items. There-
fore, we propose that “infrequent leaf node pruning”
is performed such that every branch ends with the
node of a frequent item. We illustrate the “infrequent
leaf node pruning” in Example 4.

Example 4. Continuing with the Example 2 and
Example 3, let the MIS-tree derived after per-
forming a single scan on the dataset contain three

branches, say〈U, V〉, 〈V, W〉 and〈W, X〉. Among
the set of items{U, V, W, X}, we know that
items V and W are infrequent items. First, let
us consider the item W, having relatively lowest
MIS value for pruning. In the MIS-tree gener-
ated, the branch〈U, V〉 do not contain any item
W and hence no pruning is performed. In the sec-
ond branch〈V, W〉, there exists leaf node with
item W. Therefore, pruning is performed to gen-
erate a new branch〈V〉. In the third branch〈W,
X〉, though there exists node of the item W, it is
not the leaf node. So no pruning is performed.
Thus the resulted MIS-tree contains〈U, V〉, 〈V〉
and〈W, X〉. Next, select another infrequent item
i.e., V for pruning. In the newly generated MIS-
tree, the branch〈U, V〉 contains the leaf node V.
So pruning is performed to create a new branch
〈U〉. In the second branch〈V〉, the node V is a
leaf node. So the node is pruned from compact
MIS-tree. Since no node exists in the branch the
branch is deleted. In the third branch,〈W〉, exists
no node with the item V. So no pruning is per-
formed. Thus the final resulted MIS-tree contains
only two branches〈U〉 and〈W, X〉.

3.2 The Algorithm

The ICFP-growth pre-assumes that for every item,
user specifies the MIS values priori to its execution.
Therefore, using the priori information i.e., MIS val-
ues of the items, the frequent patterns are generated
with a single scan on the dataset. The proposed algo-
rithm generalizes the CFP-growth algorithm for find-
ing frequent patterns. This approach involves three
steps. They are constructing the MIS-tree, extracting
compact MIS-tree and mining the compact MIS-tree
to mine frequent patterns. We now discuss each of
these steps in detail.

3.2.1 Constructing MIS-tree

The construction of MIS-tree in ICFP-growth algo-
rithm is shown in Algorithm 1 and described as fol-
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lows. The ICFP-growth algorithm accepts transaction
dataset (Trans), Itemset (I) and minimum item support
values (MIS) of the items as input parameters. Using
the input parameters, the ICFP-growth creates an ini-
tial MIS-tree which is similar to MIS-tree created by
CFP-growth (Lines 1 to 7 in Algorithm 1). (Refer to
Section 2 for knowing the construction of initial MIS-
tree using CFP-growth approach.)

3.2.2 Extracting Compact MIS-tree

Next, starting from the last item in the item-header ta-
ble (i.e., item having lowest MIS value) perform tree-
pruning operating by calling MisPruning procedure
(See, procedure 3) to remove the infrequent items
from the item-header table and MIS-tree. After one
item is pruned, move to immediate next item in item-
header table and perform tree-pruning. However, stop
tree-pruning process when the frequent item is en-
countered. The MIS value of this frequent item rep-
resents the LMS value. Let the resultant item header
table be MinFrequentItemHeaderTable. The items in
this header table may contain both frequent and in-
frequent items having support greater than the low-
est MIS value among all frequent items. The items
in the header table are referred as “quasi-frequent
items”. Call MisMerge procedure (See, procedure
4) to merge the tree. Finally, call InfrequentLeafN-
odePruning procedure (See, procedure 5) to prune the
infrequent leaf nodes in the MIS-tree. The resultant
MIS-tree is the compact MIS-tree.

3.2.3 Mining Frequent Patterns from Compact
MIS-tree

Mining the frequent patterns from the compact MIS-
tree is shown in Algorithm 6. The process of min-
ing the compact MIS-tree in ICFP-growth is almost
same as mining the compact MIS-tree in CFP-growth.
However, the variant between the two approaches is
that before generating conditional pattern base and
conditional MIS-tree for every item in the header of
the Tree, the ICFP-growth approach verifies whether
the suffix item in the header of the Tree is a frequent
item (Line 2 in Algorithm 6). If an suffix item is not
a frequent item (or pattern) then the construction of
conditional pattern base and conditional MIS-tree are
skipped. The reason is as follows. In every frequent
pattern, the item having lowest MIS value should be
a frequent item (sorted closure property). In con-
structing the conditional pattern base for a suffix item,
the suffix item represents the item having lowest MIS
value. Therefore, if the suffix item is an infrequent
item then all its prefix-paths (the patterns in which it

Algorithm 1. MIS-tree (Tran:transaction dataset, I:
itemset containingn items, MIS: minimum item sup-
port values forn items).

1: Let L represent the set of items sorted in nonde-
creasing order of their MIS values.

2: create the root of a MIS-tree, T, and label it as
“null”.

3: for each transaction t∈ Trando
4: sort all the items in t inL order.
5: count the support values of any item i, denoted

as S(i) in t.
6: Let the sorted items in t be [p|P], where p is the

first element and P is the remaining list. Call
InsertTree([p|P], T).

7: end for
8: for j=n-1; j ≥ 0; –j do
9: if S[i j ] < MIS[i j ] then

10: Delete the itemi j in header table.
11: call MisPruning(Tree, L[i j ]).
12: else
13: break; //come out of pruning step.
14: end if
15: end for
16: Name the resulting table as MinFrequentItem-

HeaderTable.
17: Call MisMerge(Tree).
18: Call InfrequentLeafNodePruning(Tree).

Procedure 2. InsertTree ([p|P, T).

1: while P is nonemptydo
2: if T has a child N such that p.item-

name=N.item-namethen
3: N.count++.
4: else
5: create a new node N, and let its count be 1.
6: let its parent link be linked to T.
7: let its node-link be linked to the nodes with

the same item-name via the node-link struc-
ture;

8: end if
9: end while

Procedure 3. MisPruning (Tree,i j ).

1: for each node in the node-link ofi j in Treedo
2: if the node is a leafthen
3: remove the node directly;
4: else
5: remove the node and then its parent node

will be linked to its child node(s);
6: end if
7: end for
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Procedure 4. MisMerge (Tree).

1: for each itemi j in the MinFrequentItemHead-
erTabledo

2: if there are child nodes with the same item-
name thenthen

3: merge these nodes and set the count as the
summation of these nodes’ counts.

4: end if
5: end for

Procedure 5. InfrequentLeafNodePruning(Tree).

1: choose the last but one itemi j in MinFrequen-
tItemHeaderTable. That is, item having second
lowest MIS value.

2: repeat
3: if i j item is infrequent itemthen
4: using node-links parse the branches of the

Tree.
5: repeat
6: if i j node is the leaf of a branchthen
7: drop the node-link connecting through

the child branch.
8: create a new node-link from the node

in the previous branch to node in the
coming branch.

9: drop the leaf node in the branch.
10: end if
11: until all the branches in the tree are parsed
12: end if
13: choose itemi j which is next in the order.
14: until all items in MinFrequentItemHeaderTable

are completed

represents the item having lowest MIS value) will also
be infrequent.

After mining frequent patterns, the method give
in (Agrawal and Srikanth, 1994) can be used to find
association rules.

4 EXPERIMENTAL RESULTS

4.1 Experimental Details

In this section, we present the performance compari-
son of CFP-growth and ICFP-growth approaches. We
are not comparing the ICFP-growth with MSApri-
ori and IMSApriori approaches. The reason being
that, CFP-growth is relatively efficient than MSApri-
ori approach (Ya-Han Hu, 2004). The IMSApriori ap-
proach uses “iterative level-wise search” to discover

Algorithm 6. ICFP-growth (Tree: MIS-tree, L: set
of quasi-frequent items, MIS: minimum item support
values for the items in L).

1: for each itemi j in the header of the Treedo
2: if i j is a frequent itemthen
3: generate patternβ = i j ∪ α with support =

i j .support;
4: constructβ’s conditional pattern base and

β’s conditional MIS-tree Treeβ.
5: if Treeβ 6= /0 then
6: call CpGrowth(Treeβ, β, MIS(i j ).
7: end if
8: end if
9: end for

Procedure 7. CpGrowth(Tree,α, MIS(α)).

1: for eachi j in the header of Treedo
2: generate patternβ = i j ∪ α with support =

i j .support.
3: constructβ’s conditional pattern base and then

β’s conditional MIS-treeTreeβ.
4: if Treeβ 6= /0 then
5: call CpGrowth(Treeβ, β, MIS(α)).
6: end if
7: end for

frequent patterns. So, the CFP-growth is relatively ef-
ficient than IMSApriori approach.

We have evaluated the performance of proposed
approach by considering two kinds of datasets: syn-
thetic and real world datasets. The synthetic dataset
T10.I4.D100K, is generated with the data generator
(Agrawal and Srikanth, 1994), which is widely used
for evaluating association rule mining algorithms. It
contains 1,00,000 number of transactions, 886 items,
maximum number of items in a transaction is 29 and
the average number of items in a transaction is 12.
Another dataset is a real world dataset referred as re-
tail dataset. It contains 88,162 number of transac-
tions, 16,470 items, maximum number of items in a
transaction is 76 and the average number of items in
each transaction is 5.8.

4.2 Experiment 1

In this experiment, we present the results pertaining to
construction of compact MIS-tree by only exploiting
the “least minimum support” notion and not consider-
ing the “infrequent leaf node pruning” notion. In the
next subsection, we discuss the results by exploiting
both notions.

For this experiment, we need a method to assign

AN IMPROVED FREQUENT PATTERN-GROWTH APPROACH TO DISCOVER RARE ASSOCIATION RULES

49



 400

 500

 600

 700

 800

 900

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

LMS

ICFP-growth

CFP-growth

2(a)

It
e

m
s
 p

a
rt

ic
ip

a
te

d

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 0.1  0.105  0.11  0.115  0.12  0.125  0.13  0.135  0.14

LMS

ICFP-growth

CFP-growth

2(b)

It
e

m
s
 p

a
rt

ic
ip

a
te

d

Figure 2: Number of items participated at different LMS values in (a) Synthetic and (b) Retail datasets.
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Figure 3: The size of the compact MIS-tree at different LMS values in (a) Synthetic and (b) Retail datasets.

MIS values to items in the dataset. We use the sup-
ports of the items in the dataset as the basis for as-
signing MIS values. Specially, we use the following
formulas:

MIS(i j) =











M(i j ) i f M(i j ) > LMS
LMS else i f M(i j ) < LMS

and S(i j) > LMS
LMIS else











(2)

M(i j) = S(i j)−SD

where,SD is a user-specified support difference
value varied between 0% to 1%,S(i j) refers to sup-
port of an item equal to f(i j )/N, (f(i j ) represents fre-
quency of i j and N is the number of transactions
in a transaction dataset), LMS corresponds to user-
specified lowest minimum support value, which rep-
resents lowest MIS value of a frequent item and
LMIS corresponds to user-specified least minimum
item support value, which represents the lowest MIS
value among all items in the transaction dataset. The
LMS value will be always be greater than or equal to
LMIS value.

For both T10.I4.D100k and Retail datasets, the
SD and LMIS values are set at 0.1% and 0.1% re-
spectively. By varying the LMS values, the com-

pact MIS-tree is constructed using the proposed ap-
proach. It can be observed that in the CFP-growth
approach there is no scope to vary LMS values. (In
order to make the chosen MIS value to represent the
LMS value, the items which are having support values
less than the LMS value are converted into infrequent
items.)

Both Figure 2(a) and Figure 2(b) show the number
of items participated in generating frequent patterns at
different LMS values in both T10.I4.D100k and Re-
tail datasets. It can be observed that as the LMS value
increases the number of items which have participated
in generating the frequent patterns also got reduced in
ICFP-growth approach. However, in CFP-growth the
number of items participating in generating frequent
patterns remains the same.

Both Figure 3(a) and Figure 3(b) provide the in-
formation regarding the size of compact MIS-tree
generated at different LMS values in both datasets. It
can be observed that as the LMS value increases the
size of the compact MIS-tree gets reduced in ICFP-
growth approach. The reason being that the num-
ber of items participating in generating frequent pat-
terns also get reduced. However, the size of the com-
pact MIS-tree generated by CFP-growth do not get
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Figure 4: Runtime for generating compact MIS-tree at different LMS values in (a) Synthetic and (b) Retail datasets.

5(a)

 300

 310

 320

 330

 340

 350

 360

 370

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

ru
n

ti
m

e
 (

s
e

c
)

LMS

ICFP-growth

CFP-growth

 230

 240

 250

 260

 270

 280

 290

 300

 0.1  0.105  0.11  0.115  0.12  0.125  0.13  0.135  0.14

ru
n

ti
m

e
 (

s
e

c
)

ICFP-growth

CFP-growth

5(b)
LMS

Figure 5: Runtime for generating compact MIS-tree and frequent patterns at different LMS values in (a) Synthetic and (b)
Retail datasets.

reduced. The reason is that CFP-growth fails to prune
the items which will not generate any frequent pat-
terns.

Both Figure 4(a) and Figure 4(b) provide the in-
formation regarding the “runtime” taken to generate
compact MIS-tree at different LMS values in both
datasets. It can be observed that the ICFP-growth re-
quires relatively more runtime than CFP-growth ap-
proach. The reason is ICFP-growth approach has
to prune relatively more number of items from the
header table and MIS-tree as compared with CFP-
growth.

Both Figure 5(a) and Figure 5(b) provide the in-
formation regarding the “runtime” taken to construct
compact MIS-tree and generate frequent patterns at
different LMS values in both datasets. In this exper-
iment the ICFP-growth takes relatively less runtime
than CFP-growth approach. It can be noted that even
though ICFP-growth takes more time for constructing
compact MIS-tree over CFP-growth approach, over-
all it takes less time to extract frequent patterns. The
reason is the ICFP-growth approach skips construc-
tion of conditional pattern bases for the suffix items
(or patterns) which are infrequent.

4.3 Experiment 2

In this experiment, we present the results by exploit-
ing both “least minimum support” and “infrequent
leaf node pruning” notions.

The experiment is conducted as follows. In this
experiment, the MIS value for the each item is fixed
equal to a random number between 0.1% to 1% of
the number of transactions in the dataset. We ran-
domly select some percentage of items which vary
from 0% to 20% and made them infrequent by setting
MIS values greater than their support values. By fix-
ing LMS values at 0.1% and 0.25%, we compute the
size of compact MIS-tree by varying percentage of in-
frequent items under both the approaches. The corre-
sponding results are shown in Figure 6(a) and Figure
6(b) for the datasets T10.I4.D100k and Retail datasets
respectively. The results show that the size of the
compact MIS-tree remains the same at different per-
centage values of infrequent items under CFP-growth
approach, whereas the size of the compact MIS-tree
reduces significantly at different percentage values of
infrequent items under ICFP-growth approach. The
reason is the ICFP-growth approach pruned the leaf
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Figure 6: Compact MIS-tree sizes at different percentage ofinfrequent items in (a) Synthetic and (b) Retail datasets.

nodes belonging to infrequent items.

5 CONCLUSIONS AND FUTURE
WORK

To extract rare association rules, efforts are being
made in the literature by extending the “multiple min-
imum support” framework to FP-growth approach. In
this paper, we have proposed an improved FP-growth
approach with “multiple minimum support” frame-
work by exploiting the notions such as “least min-
imum support” and “infrequent leaf node pruning”.
The proposed approach reduces the memory for con-
structing conditional frequent pattern tree and runtime
for generating frequent patterns. The experimental re-
sults on both synthetic and real world datasets show
that the proposed approach improves the performance
over the existing approaches.

As a part of future work, we are going to inves-
tigate appropriate methodology for assigning confi-
dence values in a dynamic manner to generate rare
association rules. We are also going to investigate
appropriate methodology for automatic calculation of
MIS values for the items.

ACKNOWLEDGEMENTS

The work has been carried out with the support from
Nokia Global University Grant.

REFERENCES

Agrawal, R. and Srikanth, R. (1994). Fast algorithms for
mining association rules. InInternational Conference
on Very Large Databases.

B. Liu, W. H. and Ma, Y. (1999). Mining association rules
with multiple minimum supports. InACM Special In-
terest Group on Knowledge Discovery and Data Min-
ing Explorations.

G. Melli, R. Z. O. and Kitts, B. (2006). Introduction to
the special issues on successful real-world data min-
ing applications. InACM Special Interest Group on
Knowledge Discovery and Data Mining Explorations,
volume 8, Issue 1.

H. Jiawei, P. Jian, Y. Y. and Runying, M. (2004). Min-
ing frequent patterns without candidate generation: A
frequent-pattern tree approach. InACM SIGMOD
Workshop on Research Issues in Data Mining and
Knowledge Discovery.

J. Hipp, U. G. and Nakhaeizadeh, G. (2000). Algorithms for
association rule mining a general survey and compar-
ision. In ACM Special Interest Group on Knowledge
Discovery and Data Mining, Volume 2, Issue 1.

Kiran, R. U. and Reddy, P. K. (2009). An improved multiple
minimum support based approach to mine rare asso-
ciation rules. InIEEE Symposium on Computational
Intelligence and Data Mining.

Mannila, H. (1997). Methods and problems in data mining.
In International Conference on Database Theory.

R. Agrawal, T. I. and Swami, A. (1993). Mining association
rules between sets of items in large databases. InACM
Special Interest Group on Management Of Data.

Weiss, G. M. (2004). Mining with rarity: A unifying frame-
work. In ACM Special Interest Group on Knowledge
Discovery and Data Mining Explorations.

Weiss, S. and Kulikowski, C. A. (1991). Computer systems
that learn: Classification and prediction models from
statistics. InNeural Nets, Machine Learning, and Ex-
pert Systems. Morgan Kaufmann.

Xu, R. (2005). Survey of clustering algorithms. InIEEE
Transactions on Neural Networks.

Ya-Han Hu, Y.-L. C. (2004). Mining association rules with
multiple minimum supports: A new algorithm and a
support tuning mechanism. InDecision Support Sys-
tems.

KDIR 2009 - International Conference on Knowledge Discovery and Information Retrieval

52


