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Abstract: This paper proposes a new representation space, called thecluster space, for data points that originate from
high dimensions. Whereas existing dedicated methods concentrate on revealing manifolds from within the
data, we consider here the context of clustered data and derive the dimension reduction process from cluster
information. Points are represented in the cluster space by means of their a posteriori probability values
estimated using Gaussian Mixture Models. The cluster space obtained is the optimal space for discrimination
in terms of the Quadratic Discriminant Analysis (QDA). Moreover, it is shown to alleviate the negative impact
of the curse of dimensionality on the quality of cluster discrimination and is a useful preprocessing tool for
other dimension reduction methods. Various experiments illustrate the effectiveness of the cluster space both
on synthetic and real data.

1 INTRODUCTION

Data mining and knowledge discovery are concerned
with detecting relevant information or knowledge in
data. Structures or clusters constitute such type of
information and their detection, performed with the
goal of better understanding the data that is being an-
alyzed, represents an active research area of data min-
ing. Therefore two aspects become important here:
structure detection - the algorithms - and structure
understanding - by humans. The importance of both
these aspects has led our work to concentrate on pro-
viding a cluster-driven dimension reduction method
capable of jointly accounting for both these aspects.

Reducing the dimensionality of the data is a prob-
lem that is capturing more and more attention of the
data mining and machine learning communities due
to the necessity of understanding data in fields like
image analysis, information retrieval, bioinformatics,
market analysis. Dimension reduction is motivated
by: 1) the supposition that data lies in spaces of lower
dimensionality than the original spaces; 2) the need of
reducing the computational load of high-dimensional
data processing and 3) the necessity of visualizing
data.

In many datasets, data is naturally organised into
clusters. Taking the field of information retrieval and
given a query, a document’s relevance to the query can
be associated to the document-cluster membership (a

document is more relevant to a query if it belongs to
the same cluster). In such a context, when reducing
the dimensionality of the data, cluster preservation
becomes critical for efficient retrieval. However, the
preservation of clusters, despite its importance in nu-
merous fields, has still received only little attention.

1.1 Motivation and Contributions of the
Paper

We consider to be given a set ofN data pointsX =
{x1,x2, ...,xN} that are assumed to come from a mul-
timodal distribution, that is, they are organised intoK
clusters.

Problem. We search for a new representation
spaceS - the cluster space - that can discriminate
and emphasize clusters in case they exist.

Data points are considered to originate from aD-
dimensional spaceRD where each pointxi is rep-
resented by theD-dimensional feature vectorxi =
{x1

i ,x
2
i , ...,x

D
i } for all i = 1..N. Generally, the num-

ber of clustersK is (a lot) smaller than the number of
original dimensionsD.

Existing dimension reduction methods are blind
to the structure of the data making identification of
clusters in reduced spaces difficult. Nevertheless, the
need for structure preserving during the process of re-
duction is important as, apart from a continuous in-
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spection of the reduced space, recovering the struc-
tures existing in the original space is of importance in
a number of applications: medecine (recovering the
groups of diseases), information retrieval (recovering
the groups of information (image, text)) etc.

Therefore, we propose an embedding in the clus-
ter space, where point coordinates are calculated by
means of their relative distances to each of the clus-
ters. The algorithm starts with a first step of clus-
tering. Once the cluster information is collected in
the original space using a Gaussian Mixture Model,
the discriminant functions provide the coordinates of
points in thecluster space. Moreover, considering
that the estimation of the GMM parameters is opti-
mal, the cluster space represents the optimal space for
discrimination.

The next section revisits related work. Section 3
formally defines thecluster space. Experiments on
artificial and real data and comparisons with other di-
mension reduction methods are described in Section
4. The paper ends with discussions and conclusions
in Section 5.

2 RELATED WORK

Many different approaches were proposed for the em-
bedding high-dimensional data into low-dimensional
spaces. Among the coordinate-based methods, the
linear method of Principal Components Analysis is
the most commonly used. It tries to linearly capture as
much as possible from the variance in the data. Meth-
ods based on pairwise distance matrices were de-
signed either: 1) to preserve as faithfully as possible
the original Euclidean interpoint distances (Multidi-
mensional Scaling (MDS) (Borg and Groenen, 2005),
Sammon Mapping (Sammon, 1969) - which increases
the weight given to small distances) or 2) to pre-
serve non-linear transformation of distances (Nonlin-
ear MDS (Borg and Groenen, 2005)) or 3) to un-
fold data that lies on manifolds (Isomap (Tenenbaum
et al., 2000), Curvilinear Component Analysis (CCA)
(Demartines and Hérault, 1997), Curvilinear Distance
Analysis (CDA) (Lee et al., 2000)).

Manifolds are non-linear structures where two
points, even if close with respect to the Euclidean
distance, can still be located far away on the man-
ifold. Isomap and CDA use thegeodesicdistance,
that is, the distance over the manifold and not through
the manifold. Both CCA and CDA weight the dis-
tances in the output space and not in the input space
like MDS, Isomap or Sammon Mapping do. Differ-
ent from Isomap, which is a global method, Locally
Linear Embedding (Roweis and Saul, 2000) is a lo-

cal method which tries to preserve the local structure
- the linear reconstruction of a point from its neigh-
bours. Similar to LLE, Laplacian Eigenmaps (Belkin
and Niyogi, 2002) build a neighborhood graph and
embed points with respect to the eigenvectors of the
Laplacian matrix. Stochastic Neighbour Embedding
(Hinton and Roweis, 2002) rather than preserving
distances, preserves probabilities of points of being
neighbours of other points. The methods presented
are not capable of projecting new testing points in the
reduced space, since the embedding has to be recom-
puted each time a new point is added.

In the introduction we discussed the importance
of preserving cluster information in reduced spaces.
Clustering is generally approached through hierarchi-
cal or partitional methods. Hierarchical clustering
generates a tree (a dendrogram) with each node be-
ing connected to its parent and with nodes at lower
levels being more similar than nodes at higher lev-
els. Partitional methods partition the data into differ-
ent clusters by doing a hard assignement - each point
belongs to exactly one cluster. Soft clustering, on the
other side, assigns to each point different degrees of
belonging to clusters. The most common example of
soft clustering is the probabilistic Gaussian Mixture
Model, which assumes that data comes from a mix-
ture of gaussians with different covariance matrices.

The idea of representing points in the space of the
clusters was discussed in (Gupta and Ghosh, 2001)
and in (Iwata et al., 2007). In (Gupta and Ghosh,
2001) the authors propose a Cluster Space model in
order to analyze the similarity between a customer
and a cluster in the transactional application area. The
solution uses hard clustering on different datasets and
then maps the results of the different clustering algo-
rithms into a common space, the cluster space, where
analysis is further performed to model the dynam-
ics of the clients. In (Iwata et al., 2007) a Paramet-
ric Embedding is proposed that embeds the poste-
rior probabilities of points to belong to clusters in a
lower-dimensional space using Kullback-Leibler di-
vergence (here posterior probabilities are considered
to be given as input to the algorithm). Our approach
differs from the above ones in that it proposes a solu-
tion that captures the discriminant information in the
embedding space.

3 CLUSTER SPACE

Let us consider that the dataset is grouped into clus-
ters and model it using a full Gaussian Mixture Model
(F-GMM). F-GMM makes the general assumption
that clusters follow Gaussian distributions and they
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have different general covariancesΣΣΣk.
GMM models the data as a mixture of Gaussians

of the form:

p(xi) =
K

∑
k=1

πkN (xi | µµµk,ΣΣΣk) (1)

The a posteriori probabilities in the GMM are
given as follows:

p(k|xi) =
πkN (xi | µµµk,ΣΣΣk)

∑ j π jN (xi | µµµj ,ΣΣΣ j)
(2)

Applying the logarithm to thea posterioriproba-
bilities from (2) gives:

log p(k|xi) = log
πkN (xi | µµµk,ΣΣΣk)

∑ j π jN (xi | µµµj ,ΣΣΣ j)

= log πk−
D
2

log(2π)−
1
2

log |ΣΣΣk|

−
1
2
(xi −µµµk)

TΣΣΣ−1
k (xi −µµµk)

− log ∑
j

π jN (xi | µµµj ,ΣΣΣ j)

(3)

Equation (3) can be related to the quadratic dis-
criminant function (see (Hastie et al., 2001) for the
Quadratic Discriminant Analysis) given by:

δk(xi) = −
1
2

log |ΣΣΣk|−
1
2
(xi −µµµk)

TΣΣΣ−1
k (xi −µµµk)+ log πk

(4)
whereπk, µµµk andΣΣΣk are estimated from the train-

ing data, in a supervised context, and new (testing)
points are assigned to the cluster for which the value
of the discriminant functionδk from (4) is the highest
according to:

argmax
k

δk(xi) (5)

To capture the discriminant information in the di-
mension reduction process, we propose the following
definition of thecluster space:

Definition 1. The cluster space is a common space
S = {ck

i } with point coordinates cki given by the values
of the discriminant functions:

ck
i = δk(xi) (6)

To obtain the values of the discriminant functions
and therefore of the coordinates in thecluster space,
in an unsupervised context, the priorsπk, meansµµµk
and covariancesΣΣΣk can be estimated with a GMM.
The initialization of GMM may be performed with
any clustering algorithm such as partitional or hier-
archical clustering, graph-based clustering etc. The
quality of the embedding is sensitive to a wrong esti-
mation of the mixture parameters, therefore this ini-
tialisation step is important. Subspace clustering may

be a good choice, especially for high-dimensional
data.

The log-scaling of the probabilities that appears in
the equation of the discriminant function from (4) is
important in thecluster spaceas it corresponds to the
Mahalanobis distance valueDM between each point
and each cluster center:

δk(xi) = −
1
2

log |ΣΣΣk|−
1
2

(xi −µµµk)
TΣΣΣ−1

k (xi −µµµk)
︸ ︷︷ ︸

D2
M

+log πk

(7)
The Mahalanobis distance from a point to a cluster

is the distance of that point to the center of the cluster
divided by the width of the ellipsoid along the direc-
tion of the point. As the Mahalanobis distance takes
into account the shapes of the clusters through the co-
variance matricesΣΣΣk, it is well suited for thecluster
spaceas it allows the capturing of cluster information
contained not only in the interdistances between clus-
ters but in their shapes too. Thus, a point close to a
cluster in the Euclidean sense may be very far away
in the Mahalanobian sense.

The dimensionality of thecluster spaceis given
by the number of assumed clustersK. Each pointxi
is thus represented byK coordinatesck

i (coordinate
of point xi in dimensionk) which correspond to the
distances of the pointxi to the center of clusterk.

Thecluster spacegiven by equation (6) is the op-
timal space for discrimination in the framework of
QDA given that the parameters of the GMM (πk, µµµk
andΣΣΣk) are optimally estimated.

Thecluster spacecan also be used as a gauge for
clustering tendency since the more the clusters are
separated, the larger the distances to the other clus-
ters will be. Therefore the density of points around
boundaries is a good indicator of class separability. A
high density indicates a weak separation between the
clusters, a low density indicating a high separability.
Thus, further algorithms may be designed that use the
cluster spaceas a mean for cluster tendency evalu-
ation by analyzing the distribution of points around
boundaries.

3.1 The Algorithm

The algorithm for finding the cluster space is pre-
sented in Table 1. The algorithm takes as input the
datasetX and the number of clustersK and provides
as output the new coordinates in the cluster spaceS .
In Step 1 the priorsπk, meansµµµk and covariances
ΣΣΣk are estimated using the Expectation-Maximization
(EM) algorithm. The values of the discriminant func-
tionsδk(xi) in Step 2 are given by Equation (7). Fi-
nally, in Step 3, the coordinates of points in the new
spaceS are given by the values computed in Step 2.
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Table 1: The algorithm for the Cluster Space.

Input : X = {x1,x2, ...,xN}, i = 1..N, xi ∈ R
D,

K-number of clusters
Output : S = {ck

i }, i = 1..N, k = 1..K
Step1: Estimate the priorsπk, meansµµµk and

covariancesΣΣΣk.
Step2: Compute the discriminant functions

δk(xi)
Step3: ck

i = δk(xi)

4 EXPERIMENTS

4.1 Artificial Data

Experiment 1. We generate artificial data from 3
Gaussians in 3 dimensions as shown in Fig.1. The
Gaussians are given byN 1(µµµ1,ΣΣΣ1) of 200 points,
N 2(µµµ2,ΣΣΣ2) of 200 points,N 3(µµµ3,ΣΣΣ3) of 200 points
with µµµ1 = [0 0 0], µµµ2 = [1.5 0 0], µµµ3 = [1.5 0 1] and
the covariances:

ΣΣΣ1 = ΣΣΣ2 =





0.01 0 0
0 1 0
0 0 0.01




, ΣΣΣ3 =





1 0 0
0 0.01 0
0 0 0.01





(8)
Results.We see in Figure 1 that algorithms like PCA
(d) and MDS (f) are not capable of separating the 3
clusters that are well separated in (a). In thecluster
space(b) the clusters are well separated. A further
dimension reduction in this space using Isomap with
a Manhattan distance shows in (c) that the clusters
are separated. Isomap (e) also gives good results but
is dependent on the number of neighbours given to
build the fully connected graph (in such cases - of well
separated clusters - the number of neighbours should
be quite high).

Experiment 2. The choice ofK (the number of clus-
ters, and implicitly the dimension of the cluster space)
plays an important role on the quality of the embed-
ding in the cluster space. Figure 2 presents two cases
when the number of chosenK is different from the
number of real clusters in the data. The goal is to
confirm that the choice ofK does not force unclus-
tered data to be clustered.K is kept fixed (K = 3) and
the number of clusters varies. We choseK = 3 to be
able to visualize the results in a 3D space.

Results. In the first example of Figure 2, (a) and (c),
K is higher than the number of clusters and we ob-
serve that a higherK does not force clusters to break.
This is an important aspect since the embedding, even
if based on an initial clustering, should not artificially

create structures that do not exist inside the data itself.
Using a soft clustering like GMM avoids forcing clus-
ters to break, like it would happen in a hard clustering
approach (k-means). In the second example, (b) and
(d), K is lower that the number of clusters and we
observe that two of the clusters are embedded in the
same plane but they are however kept separated. In
conclusion, the choice ofK is important but a num-
ber of situations work well even with different val-
ues. However, as observed during experimentation, a
lower K influences more drastically the quality than
a higherK, thus using higher estimates forK is pre-
ferred.

4.2 Real Data

Experiment 1. We give a first example using the
Wine dataset from the UCI Machine Learning Repos-
itory. The dataset contains 3 clusters with 178 data
points in a 13-dimensional space. The embedding of
the dataset in a 3-dimensional space is showed in Fig-
ure 3. For evaluation we estimated the Mean Average
Precision (MAP), the purity of the clustering obtained
with k-means and the error of thek-Nearest Neigh-
bour withk = 5. Results appear in Table 2.

Results. We observe that the cluster space captures
all clusters well as opposed to other dimension reduc-
tion method like PCA or Sammon. The new represen-
tation space also allows for a clear visualization in a
3-dimensional space.

Experiment 2. One of the main application of the
cluster space can be seen as a preprocessing step
for further data analysis. The cluster space is use-
ful as a preprocessing step especially when a lower-
dimensional space of dimension 2 or 3 is desired for
example for visualization. In this case, a dimension
reduction in the cluster space can be performed us-
ing a metric that preserves the geometry of theclus-
ter spaceespecially cluster separability. To illustrate
this we use a high-dimensional dataset (MNIST digit
dataset originally embedded in a 784-dimensional
space). Features are extracted from the data with PCA
and the dimension reduction methods that we imply in
the following apply in this space. The examples pre-
sented in Figure 4 show that the preprocessing in the
cluster space helps Isomap to separate clusters in the
2-dimensional space.

In high-dimensional spaces, estimating all the pa-
rameters necessary for a full covariance model is dif-
ficult due to the sparsity of the data. Multiple so-
lutions are possible. One is provided byparsimo-
nious models. Multiple parsimonious models have
been proposed with varying complexities according
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(a) Original data (b) Cluster space (c) Isomap in the CS

(d) PCA (e) Isomap on the original data (f) MDS

Figure 1: Artificial data from 3 gaussians in 3 dimensions reduced using dimension reduction methods: a) Original data
projected in the 3 dimensions; b) Data projected in thecluster spaceusing an EM with full covariances,K = 3 and the
Euclidean distance; c) Data from b) reduced using Isomap with the Manhattan distance and 30 neighbours to build the graph;
d) PCA in the original space; e) Isomap in the original space with the Euclidean distance and 30 neighbours; f) MDS in the
original space with the Euclidean distance.

(a) Original data - 2 clusters (b) Original data - 4 clusters

(c) Cluster space - 2 clusters (d) Cluster space - 4 clusters

Figure 2: Examples on the quality of the embedding in thecluster spacefor cases when the assumed number of clustersK
(hereK = 3) is different from the real number of clusters.
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Table 2: Evaluation of the Wine dataset.

Wine Orig PCA Sammon Isomap CS
Purity 67.42 70.22 69.29 69.28 84.83
MAP 0.6433 0.6422 0.6429 0.6424 0.8499
kNN 69.66 69.66 69.66 68.54 94.94

(a) Wine-Sammon (b) Wine-PCA (c) Wine-Cluster Space

Figure 3: Dimension reduction for Wine with different methods.

to the specific models (intracluster and intercluster)
of the covariance matrices chosen: full different co-
variances, full common covariance, spherical covari-
ance (see (Fraley and Raftery, 2002) for a review). A
second solution is given by truncated Singular Value
Decomposition (T-SVD). The covariance matrix is ill-
conditioned in high-dimensional spaces. The estima-
tion of the inverse matrix can be resolved by using T-
SVD with the firstt eigenvectorsΣΣΣ−1

t =UT
t D−1

t Ut . A
third solution, that we applied, is possible by first de-
noising the high-dimensional data with a method such
as PCA, and further start the analysis in this reduced
space.

5 DISCUSSION AND
CONCLUSIONS

The current construction of thecluster spaceleads to
the representation of the data in a lower-dimensional
space that emphasizes clusters. However, at least two
issues still need to be addressed to make this construc-
tion generic:

• the presence of clusters is mapped onto the choice
of an initial parameterK, directing both the mod-
eling of the data and the dimensionality of the re-
sulting cluster space. We have shown with differ-
ent experiments (Figure 2) that our process is not
drastically sensitive to a wrong estimation of this
parameter (higher values are to be preferred).

• our model is based on clustering, and therefore the
initialization of cluster centers is very important.
However, due to the sparsity of high-dimensional

spaces, a correct unsupervised initialization re-
mains an open issue. We wish to further inves-
tigate methods for subspace clustering whose per-
formances overcome those of traditional cluster-
ing algorithms as our results in the present reside
on outputs ofk-means in the initialization of the
EM.

One advantage of the model is that new points
can be projected in thecluster space(as long as they
do not represent new clusters), their embedding be-
ing computed from the distances to all the clusters.
The model can be further developed to estimate the
parameters of the GMM in a supervised manner.

In this paper, we proposed a new representation
space for embedding clustered data. Typically, the
data is mapped onto the space of dimensionalityK
whereK is given by the number of clusters and the co-
ordinates are given by the values of the discriminant
functions estimated in an unsupervised manner. We
call this reduced space thecluster space. This space
is optimal for discrimination in terms of QDA when
the parameters of the GMM are optimally estimated.
The cluster space is a good preprocessing step before
applying other dimension reduction methods. In con-
clusion, the model that we propose is designed with
the goal of embedding data into a low-dimensional
space - thecluster space- where structure is to be
preserved (e.g. cluster emphasis and separability).
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(a) Isomap in the CS (b) Isomap (c) PCA

(d) Isomap in the CS (e) Isomap (f) PCA

Figure 4: Dimension reduction for 1000 MNIST digits (1, 3, 6,7) and 1000 MNIST digits (0, 1, 4, 6).
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