
DESIGNING A SYSTEM FOR SEMI-AUTOMATIC POPULATION
OF KNOWLEDGE BASES FROM UNSTRUCTURED TEXT

Jade Goldstein-Stewart
U.S. Department of Defense, U.S.A.

Ransom K. Winder
The MITRE Corporation, Hanover, MD, U.S.A.

Keywords: Information Extraction, Content Analysis, Knowledge Base Population, Human-Computer Interaction,
Graphical User Interface.

Abstract: Important information from unstructured text is typically entered manually into knowledge bases, resulting
in limited quantities of data. Automated information extraction from the text could assist with this process,
but the technology is still at unacceptable accuracies. This task therefore requires a suitable user interface to
allow for correction of the frequent extraction errors and validation of proposed assertions that a user wants
to enter into a knowledge base. In this paper, we discuss our system for semi-automatic database population
and how it handles the issues arising in content extraction and populating a knowledge base. The main
contributions of this work are identifying the challenges in building such a semi-automated tool, the
categorization of extraction errors, addressing the gaps in current extraction technology required for
databasing, and the design and development of a usable interface and system, FEEDE, to support correcting
content extraction output and speeding up the data entry time into knowledge bases. To our knowledge, this
is the first effort to populate knowledge bases using content extraction from unstructured text.

1 INTRODUCTION

With the rapid growth of digital documents, it is
necessary to be able to extract identified essential
information at a particular time and create
knowledge bases to allow for retrieval and reasoning
about the information. Unfortunately, database
entry is time consuming. If automatic processes
could extract relevant information, such methods
could automatically populate “knowledge” bases
based on document information. For such
knowledge bases to be useful, the end user must
trust the information provided, i.e., it must have a
high enough degree of accuracy and/or provide a
means to correct and validate the information.

In the past two decades research has been
dedicated to the automatic extraction of text entities,
relations, and events. While the best precision
scores for entity extraction are in the 90s (Grishman,
1996), precision for relations is typically less than
40%, and events have an even lower precision.
Through the Automatic Content Extraction (ACE)

program, an ontology has been developed to
characterize the types of extraction, and annotation
guidelines have been developed to cover ambiguous
cases. For example, in the sentence, “the family
went to McDonald’s” is McDonald’s a facility, an
organization, or both? Is the definition of a facility a
place that is locatable on a map?

In ACE, entities can be people, organizations,
locations, facilities, geographical/social/political
entities, vehicles, or weapons, and their mentions are
the textual references to an entity within a document.
These can be a name (“Ben Smith”), a representative
common noun or noun phrase called a nominal (“the
tall man”), or a pronoun (“he”). Although good
scores have been achieved in entity tagging, there is
cause to doubt the extensibility of systems trained
for this task (Vilain, 2007). Also, because an entity
can be referred to multiple times, an entity
potentially has many mentions, and mentions of the
same entity are said to be coreferenced. The best
extractor scores for coreferencing entity mentions
are in the range of 60-80% (Marsh, 1998). Since

88
Goldstein-Stewart J. and Winder R. (2009).
DESIGNING A SYSTEM FOR SEMI-AUTOMATIC POPULATION OF KNOWLEDGE BASES FROM UNSTRUCTURED TEXT.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 88-99
DOI: 10.5220/0002307500880099
Copyright c© SciTePress

relations or events can involve referents of multiple
entities, the likelihood of accurately extracting all
arguments of a relation or event is low.

Using ACE terminology, a relation is defined as
an ordered pair of entities with an asserted
relationship of a specific interesting type (“ACE
English,” 2005). So a relation can be thought of as a
four tuple: <entity1, relation, entity2, time>. For
example, “Scott was a member of ACM for four
years” contains a relation where the first entity is
“Scott,” the second entity is “ACM,” and the time is
a duration of “four years.” This relation has a type
of “Organization Affiliation” and has a subtype of
“Membership.”

An event is defined as a specific occurrence
involving participants and a “trigger” word that best
represents the event (e.g., “attacked” in “The rebels
attacked the convoy yesterday”) (“ACE English,”
2005). Despite this broad definition, ACE limits its
events to a set of types and subtypes that are most
interesting. For example, “Jen flew from Boston to
Paris” contains a “travel” event, defined as an event
that captures movement of people, that is, a change
of location of one or more people. The captured
arguments of the event would be the travelling entity
“Jen,” the origin “Boston,” and the destination
“Paris.” Like relations, events can have associated
time values (“Working Guidelines,” 2007).

In an examination of a leading rule-based
commercial extractor on 230 annotated internal
documents, it was able to identify the “ORG-
AFF/Membership” relation with a precision of 47%
(meaning that 47% of the times it identified this
relation, the relation existed in the data). The recall
was also 47% meaning that 53% of the membership
relations in the data were missed by the system. For
those relations that were identified, the first entity,
the person, was identified with 71% precision,
meaning that 29% of the items that the system
returned were incorrect. For the second entity, the
organization, the precision was 85%. After the
company improved the results, the new relation
identification improved to 70% while it remained the
same for the two entity arguments. A member of
this company suggested that this score was
considered “very good” for relations and was unsure
that much more improvement could be obtained.

Unfortunately, relations and events are often the
key assertions that one needs in a knowledge base in
order to identify information about people and/or
organizations. Due to the high error rate in
extraction technology, rather than introducing errors
into the knowledge base, a preferred solution might
be semi-automatic population of a knowledge base,
involving the presentation of extracted information

to users who can validate the information, including
accepting, rejecting, correcting, or modifying it
before uploading it to the knowledge base. This
interface must be designed in a manner that supports
the users’ workflow when doing this task. Ideally,
the interface would speed up significantly the time
to enter data in the knowledge base manually. Since
extractor recall tends to be less than 60%, besides
correcting precision errors that the extractor makes,
the interface must have the ability for users to add
information missed by the extractor (recall errors).

In this paper, we describe the challenges faced in
this task and define the design for our system,
FEEDE – Fix Extractor Errors before Database
Entry. We also discuss the required elements as
defined by our end users, the interface’s design, and
an examination of the extractors used to populate it
with initial content to be authenticated. Given the
daunting task of manually entering all important
information in a knowledge base from unstructured
text, we believe this effort is important to save users
time, both a valuable commodity in this information
age as well as being enterprise cost saving.

To our knowledge, this is the first research effort
on developing an interface using content extraction
from unstructured text for populating knowledge
bases. It has only been in the past year (“Automatic
Content Extraction,” 2008) that the automatic
extraction community has started to focus on text
extraction for the purpose of populating databases.
In 1996, there was an interface effort for structured
data (metadata) (Barclay, 1996). Furthermore, since
content extraction efforts have not been focused on
the database issue, they are missing certain items
that are important for such endeavours. A recent
survey of extraction elements important to our users
revealed that only 25 out of the 47 requested (53%)
were in the ACE guidelines.

2 CONTENT EXTRACTION FOR
DATABASING ISSUES

ACE provides specifications for tagging and
characterizing entities, relations and events in text,
as well as some other features. For entities, the key
attributes are type and subtype. Mention categories
are also important attributes, determining the
specificity of the entities, such as a pronoun referent
to an entity name. Relations and events also feature
types and subtypes as well as arguments—two for
relations, where the order matters, and potentially
many different arguments for events where the
allowed set depends on the event type. Although
quite extensive, the ACE guidelines (“ACE

DESIGNING A SYSTEM FOR SEMI-AUTOMATIC POPULATION OF KNOWLEDGE BASES FROM
UNSTRUCTURED TEXT

89

English,” 2005) and temporal annotation guidelines
TimeX2 (Ferro, 2005) were not designed for
databasing and are missing key items necessary for
this purpose. The omissions include:
1. Insufficient data elements from current available

extractors to cover what our users want.
Therefore new extractors must be developed,
which requires requirements gathering, definitions
and guidelines. Some have been developed for
the highest priority items.

2. In the ACE guidelines, values/traits or contact
information for people cannot be associated with
people (e.g., “John is 6 ft tall”).

3. Nested events do not exist. This is particularly an
issue with source attribution. Items attributed to
people or a new source are not linked. An
example is “According to John, Jane travelled to
France.” The fact is not necessarily true, but John
states it. Since no such extractor existed, we
developed one which linked assertions to people.

4. No mechanism in ACE covers group
participation. For example, “Anne and John
attended Stanford. In spring 2005, the two
decided to travel to Europe.” ACE does not
contain a way to reference “two” to Anne and
John, although this is a frequent language pattern.

5. ACE lacks a meaningful primary entity name
(PEN) for entities. We define an entity’s PEN to
be its longest named mention in the document
(nominals, titles and pronouns are excluded).

6. ACE lacks descriptors, that is nominals that can
define the entity in the context. These important
descriptions include titles (e.g., professor), careers
(e.g., lawyer), and important roles (e.g., witness).
This allows for a distinction between terms that
are more of interest than others. We care more
that an individual is “prime minister” than about
the description of “a man in a green hat.” A
simple initial solution for distinguishing these is
to have an exhaustive gazetteer of all words in
each category that are considered descriptors.

7. ACE lacks sufficient time normalization.
Databases can allow one to visualize items linked
with temporal information and reason over
temporal items, if entries have time stamps. The
only available temporal normalizer was
TIMEXTAG (Ferro, 2005), which did not have
sufficient coverage for our purposes. To develop
the temporal normalizer, a group of 5 potential
users developed grounding rules for key temporal
expressions. Users independently mapped all
items and then met to come to consensus when
there was disagreement. An ambiguous example
is “late January,” which maps to 21st-31st January.

We hope to make this temporal normalizer
available to the public soon.

8. While time tagging guidelines include a
methodology for sets, they still need to capture the
number of members in the set and how often
something occurs. For example, a tag for “the
past three winters” has no way of representing
“three” and a tag for “twice a month” has no way
of representing “twice.” The knowledge base and
database need a way to support this information.

This list indicates that much research and
development is required before extraction is at a
sufficient level for populating knowledge bases.

Table 1: Results using value-scorer for RB, ST, and ST2
extractors on newswire data.

 ST RB ST2
Entities 72.2 72.8 73.1
Entity Mentions 84.6 84.0 84.8
Relations 26.2 24.7 27.3
Events 17.8 N/A N/A

Table 2: Results for entities in newswire data, where P is
precision and R is recall.

 ST RB ST2
Unweighted P 49.8 51.9 51.3
Unweighted R 53.5 58.5 57.1
Unweighted F1 51.6 55.0 54.1

Table 3: Results for relations for all three systems and
events for ST, where P is precision and R is recall.

 ST
Rel.

RB
Rel.

ST2
Rel.

ST
Events

Unweighted P 34.8 32.8 39.9 2.2
Unweighted R 22.1 24.1 26.3 1.9
Unweighted F1 27.0 27.8 31.7 2.0

Besides the missing key components, as
mentioned the accuracy of content extraction is too
low for automatic population of databases and
perhaps at levels that could frustrate users. The
ACE 2005 value results (an official ACE measure)
for newswire documents are presented in Table 1 for
three participating systems, two statistical (ST and
ST2) and one rule-based (RB). The scores for
entities and relations/events are presented in Tables
2 and 3, respectively. We present ACE 2005 since it
had more participation on the relations task than
ACE 2007, and ACE 2008 did not evaluate events.
Analysis indicates only slight performance increases
for systems in 2007 and 2008. These results were
computed using the ACE 2005 evaluation script on
each extractor’s documents compared to reference
documents tagged by humans. In the script’s
unweighted scores, a relation or event is considered

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

90

Table 4: Common extraction errors and how the interface handles them.

Error Type Error Solution Type Solution
Entity Label Type/Subtype

Error
Preprocessing Perform string matches for the primary entity name (or any named mention)

of entities. If one matches with an entity of interest of different
type/subtype, present to User.

Entity
Error

Misspelled by
Doc Author

Interface User corrects by typing in the interface. This applies to punctuation and
capitalization errors too.

Entity
Error

Too Much/Little
Extracted

Preprocessing Compare entity of interest primary entity names to text of other entities. If
there is significant crossover, offer the entity of interest as possibility to
User for assertions involving such entities.

Entity
Error

Too Much/Little
Extracted

Interface User can add missing information or delete extraneous information.

Relation/
Event

Argument Error Preprocessing All proximate entities (mentions within X words) to relation/events should
also be offered as alternatives for the actual relation/event.

Relation/
Event

Argument Error Interface User examines this relation/event and evidence to recognize an incorrect
argument and must either ignore, modify or add a new relation/event.
Modifying includes selecting a new argument from a drop-down menu list
with possible entities for that argument.

Relation/
Event

Type/Subtype
Error

Interface User observes this error in the evidence and must either ignore, modify or
add new relation/event. Relation/event types can be selected by drop-down
menu.

Relation/
Event

Spurious
Relation/Event

Interface User observes this relation is spurious in the evidence and can ignore (hide)
the relation/event.

Relation/
Event

Missing
Relation/Event

Interface If User can recognize this error by viewing the document, new
relation/event can be added in the interface. Adding information is
supported in the interface by menus with a list of allowed relations/events.

Coreference Spurious
Coreferences

Interface User must recognize in evidence that entity mention and primary entity
name are different and must either ignore, modify or add new
relation/event.

Coreference Missing
Coreferences

Preprocessing All proximate entities (mentions within X words) to relations/events should
be offered as possibilities (with low confidence) for the actual
relation/event arguments.

Coreference Split Entities Interface When validating, the user can assign the same knowledge base id to the two
entity chains and then the data will be merged in the knowledge base.

to be located in a system-tagged document if there
are no missing reference arguments and no attribute
errors. Precision equals the number of these
mappable pairs over the total number the extractor
found. Recall equals the number of these mappable
pairs over the total number in the reference text.
These are combined to produce an F1 score.

 Note that any error present in the data would
need to be fixed by a user that chose to utilize that
piece of information in the knowledge base. Thus
the trade-off between precision and recall has great
significance for the task, as a higher precision would
imply less user correction of errors in extracted data,
but also requires more manual entry of missing
assertions, while a higher recall implies the reverse.

Given the low precision and recall as shown by
the ACE 2005 results for relations, we believe it is
essential to have an effective user interface to allow
users to correct the information extracted incorrectly
from the documents (precision errors) as well as to

enter missed information (recall errors). Though the
results available for events are not as
comprehensive, these scores are even lower than
those for relations.

In terms of the interface, we define effective as
(1) intuitive, (2) easy to use, (3) minimizing mouse
clicks, (4) following the workflow, (5) faster than
manual entry, (6) tailored to user requirements and
preferences, and (7) assisting and guiding the user in
completing the task of creating entries for the
knowledge base.

Since there are so many potential extraction
errors and the knowledge base requires vetted
information, the user must validate all information
before it is uploaded. Table 4 displays a list of
common problems encountered in extraction.
Solutions to these issues either require action to be
performed by the interface in pre-processing before
the information is presented to the end user or in the
interface itself, essentially assisting the end user in

DESIGNING A SYSTEM FOR SEMI-AUTOMATIC POPULATION OF KNOWLEDGE BASES FROM
UNSTRUCTURED TEXT

91

making corrections based on observations of the
evidence.

Something else important to the interface that is
absent from ACE is confidence levels in the
information. We use an extractor confidence, if
provided, as a factor into the confidence score
presented to the user. Pronominal references lower
the confidence since their accuracy is only
approximately 80%. We also use evaluation
knowledge about relations and events as a
component in the final confidence score. Other
factors that could be included might be based on the
contextual source; this includes weak attribution,
conditional terms, hypothetical statements, or future
tense.

Confidence levels indicate to the user whether
this assertion has a good chance of being correct,
i.e., it helps to focus items they might choose to
validate. It is important to note that as we add more
information that essentially second-guesses what the
extractor has produced, it becomes necessary to
distinguish between what is believed and what is
not, and confidence plays a role here too.

3 ERROR ANALYSIS

Because relations and events are the most commonly
desired pieces of information to be gleaned from a
document, we provide examples of the types of
errors observed involving relations and events,
drawing from results achieved on the 2005 ACE
evaluation. Since the most interesting attributes are
type and subtype, in this section we only record
attribute errors in these. This change would increase
the results in Table 3 by less than 13%. These
results are still low and indicate that there are many
items that need to be corrected for total accuracy.
Here we further examine a leading statistical
extractor (ST) and a leading rule-based extractor
(RB). Event results were only available for ST.

In the tables below, we examine the frequency of
specific error types independently. Consider the
sentence “British Prime Minister Tony Blair left
Hong Kong.” This contains a relation of
type/subtype “PHYS/Located.” The extent of the
first argument is “British Prime Minister Tony
Blair,” while the head of the first argument is “Tony
Blair.” The extent and head of the second argument
are both “Hong Kong.” It is the head—a more
specific piece of text—that determines whether two
mentions in separately tagged documents map to one
another. There is potential for error with any of these
elements. Table 5 shows the cases where relations

(and events) are tagged with the wrong type or
subtype, while Table 6 shows span errors for the full
arguments of relations and their heads.

Table 5: Relation and event type/subtype error rates
observed for newswire documents if other requirements
for finding relation or event are filled.

 Relations Tagged w/
Incorrect Type/Subtype

Events Tagged w/
Incorrect Type/Subtype

ST 16.6% 11.4%
RB 18.5% N/A

Table 6: Argument span error rates observed across
relation mentions. The upper results exclude cases of
mismatched relation type/subtype, while the lower results
ignore the relation type/subtype and just evaluate the head
and extent spans.

 Arg1 Head
Span

Arg2 Head
Span

Arg1 Extent
Span

Arg2 Extent
Span

ST 2.5% 4.6% 26.9% 13.1%
RB 4.9% 8.0% 22.2% 14.8%
ST 3.4% 3.8% 25.3% 12.2%
RB 5.4% 7.8% 22.9% 16.1%

Considering cases where relations are potentially
identified but are tagged with an incorrect type or
subtype, the extractors comparably misidentify the
types of relations in the reference corpus at rates of
16.6% and 18.5% for ST and RB, respectively.

Turning to the relation’s arguments, their
mentions can have errors in the span of their extent
(text tagged as being the full argument entity) and
head (the key text that defines the argument entity).
For both extractors the error rates for extent spans
are higher for the first argument than for the second.
Head span errors are lower for both extractors, but
because relations that do not have overlapping heads
will be classified as spurious, it is not surprising that
the feature which is the criterion for mapping
relations between reference and system-tagged
documents has a low error rate when examined.

As Table 7 shows, ST misses 66.9% of these
specific relation mentions and RB misses 72.8%. If
the relations themselves are considered, as opposed
to their specific mentions, then 74.0% of relations
are missed by ST and 70.7% of relations are missed
by RB. When considering relations as opposed to
relation mentions, some of this error is propagated
from errors in entity coreferencing. If perfect entity
coreferencing is assumed, then the number of
missing relations drops to 60.6% for ST and 59.3%
for RB, which is still a high number in both cases.
These numbers are still quite high if we permit
relations to be recognized that are unmatched with a
reference relation and have the appropriate

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

92

arguments but a different type/subtype, 52.1% for
ST and 50.1% for RB. While the advantage in terms
of recall belongs to RB, the extraction results on
relations are highly errorful, and even when
accounting for errors, the precision and recall are
quite low, indicating that human validation is
necessary for relations. Examining the spurious
relations, these make up a significant portion of the
returned results. Even presuming perfect entities and
ignoring tag mismatches, more than a fourth of
returned relations are spurious for either ST or RB.

Table 7: Rates of missing and spurious relations. STa/RBa
results consider cases of mismatched type/subtype missing
or spurious, while STb/RBb results ignore type/subtype.

 Missing
Relations
(Perfect-Coref.)

Missing
Relations

Missing
Relation
Mentions

STa 60.6% 74.0% 66.9%
RBa 59.3% 70.7% 72.8%

STb 52.1% 68.9% 60.2%
RBb 50.1% 64.1% 65.6%
 Spurious

Relations
(Perfect-Coref)

Spurious
Relations

Spurious
Relation
Mentions

STa 40.1% 59.1% 44.8%
RBa 52.9% 60.2% 65.5%

STb 27.2% 51.0% 33.6%
RBb 42.2% 51.1% 56.3%

Table 8: Rates of missing and spurious events. The STa
results consider cases of mismatched type/subtype missing
or spurious, while the STb results ignore type/subtype.

 Missing Events
(Perfect-Coref.)

Missing
Events

Missing
Event Mentions

STa 84.8% 87.6% 87.8%
STb 82.9% 86.0% 87.6%
 Spurious Events

(Perfect-Coref.)
Spurious
Events

Spurious
Event Mentions

STa 82.4% 85.7% 84.0%
STb 80.1% 83.8% 83.7%

Table 9: Error rates (in %) for spurious and missing
arguments for all ST events where “a” results consider
cases of mismatched type/subtype missing or spurious,
while “b” results ignore type/subtype. Arguments assigned
the wrong role are considered found in the results marked
with an *. Numbers in the parentheses include arguments
of missing or spurious events in their counts.

 Missing
Args

Missing
Args*

Spurious
Args

Spurious
Args*

a 54.6 (76.2) 51.0 (74.4) 30.1 (52.3) 24.7 (48.6)
b 62.4 (74.1) 55.2 (69.1) 41.7 (48.1) 30.4 (38.1)

Table 8 displays the results for missing and
spurious events. These occur at very high rates, with

87.8% of specific event mentions missed and 87.6%
of events missed. Even when perfect entity
coreferencing is assumed, the percent of events
missed only drops to 84.8%. As for spurious event
mentions, these make up 84.0% of tagged event
mentions and 85.7% of tagged events. Once again
assuming no errors with entity coreferencing only
drops the percentage of spurious events to 82.4%.
Table 5 reveals that only 11.4% of events are
potentially tagged with the wrong type/subtype. If
this restriction is ignored, scores for missing and
spurious events improve only marginally.

These numbers are so high mainly due to the
difficulty in capturing all reference arguments, a
requirement for finding events. Note that events are
chiefly defined by their arguments. Examining
event arguments more closely, we discover that the
error rate for missing arguments is about 54.6%.
This error rate increases dramatically though if the
totals are allowed to include the missing arguments
of completely missing events, rising into the 70s.
With regard to spurious arguments, they make up
30.1% of the arguments identified. This number can
rise into the 50s if the arguments of completely
spurious events are included in the totals. These
numbers are presented in Table 9. While results
improve when restrictions on event type/subtype and
argument role are slackened, they still remain
significantly high.

Apart from type, subtype, and arguments, events
in ACE are defined by attributes ignored in these
results such as tense, genericity, modality, and,
perhaps most importantly, polarity. The last of these
tells whether or not the event is positive or negative,
which means essentially whether or not the event
happened. Excluding tense, the scores for these are
high, but this is due to the tagger consistently
tagging all events with a particular value (its most
common). Therefore, the scores for these values are
meaningless, which is particularly significant for
polarity, as it essentially changes the entire meaning
of an event. Considering this as well as the low
recall and precision of both events and their
constituent parts, it is clear that these also cannot be
accurately mediated by automatic means alone but
require human validation and correction.

4 SYSTEM, DATABASE, AND
INTERFACE

An analysis of the issues involved in bringing
together these different approaches gave rise to a list
of challenges that must be dealt with in order to

DESIGNING A SYSTEM FOR SEMI-AUTOMATIC POPULATION OF KNOWLEDGE BASES FROM
UNSTRUCTURED TEXT

93

achieve a successful outcome for the project. Table
10 lists these challenges and a description of each.
Among these are issues directly related to content
extraction discussed earlier (Challenges #1-5) as
well as extraction issues for text sets that present
special challenges and require special extractors to
be trained to handle them (Challenge #6). An
example of the latter might be text that is completely
capitalized. This section addresses other challenges
related to the interface needed for correcting the
extracted information as well as database population.

Our system is designed around the extraction of
assertions (relations/events) about people from
unstructured text (e.g., newswire documents). These
assertions can come from a batch of documents or a
single document. In the case of a batch, there may
be redundant repetitive data. For example, in a
batch of documents about UK politics, many may
state that Gordon Brown is a member of the Labour
Party in Britain. Users may (1) want to be able to
enter this information (with source) only once to
allow them to concentrate on the entry of novel
information or (2) enter this data many times for use
as supporting information. If the user wants to enter
the data only once, the system tries to first present
the extracted candidates mostly likely to be accurate.
This eliminates text snippets that have a pronominal
reference since coreference chains can be
determined with an F1 score of approximately 80%
(Harabagiu, 2001). For example, “he is a member of
the Labour Party” would be automatically be
assigned a lower confidence score than “Gordon
Brown is a member of the Labour Party.”

Another issue is that all events and relations are
treated as facts by ACE. We prefer to label them
assertions and to assign a source to the assertion, if
provided. In a case like “Michael said” or “BBC
reported,” Michael or BBC would be tagged as the
source. When presenting content to a user in the
interface, it is important for them to know the
trustworthiness of a relation or event, and thus it is
important in populating the knowledge base. So in
this interface and database definition, a field for
source attribution to an entity is available for all
events and relations. Since no software existed for
source attribution, code was written to provide this
functionality.

The system is designed to allow users to set
preferences to specify which types of data to extract,
correct, and validate. For example, one user may be
interested in social network information, such as
family and friends. Another user might be interested
in the travel of key sports figures.

Since extracted information is often incorrect,
the system must also have a mode for correction and

validation of information. This is done through drop
down text menus in the hope that the user can
quickly select a correct entity or relation. If the
entity was missed by the extractor or misspelled due
to author error, the user has the option to edit it.
Since extractors frequently miss information (“NIST
2005,” 2005), the system also requires a mode for
entering information missed by the extractors.

Table 10: List of challenges.

Challenge Description
1. Accuracy of
content extraction

The accuracy of extractors unaided is
prohibitively low on key assertions.

2. Precision/recall
trade-off

High precision means less User
correction, but more manual entry.
High recall means the reverse.

3. Current extractors
lack appropriate
inventory

47 data elements map to entities,
relations, and events, but 20 elements
are missing from or lack suitable
ACE version.

4. User definitions
don’t match ACE

Definitions differ between terms in
ACE and how Users define them.

5. Temporal
anchoring and
normalization

Extracting time tags and resolving
them with source date. Some cases
are complex or highly ambiguous.

6. Data specific
challenges

Extracting from data sources that
present special challenges when
compared to the majority of texts.

7. Primary entity
name selection

Detecting the most appropriate
primary entity name, and allowing
Users to choose primary entity names
and effectively use them.

8. Disambiguating
entities with KB

Assisting User in merging entity with
existing record or creating a new one.

9. Accuracy of
coreference
resolution

Detecting if two phrases refer to the
same entity, including a related issue
of coreferencing “sets” of people.

10. Mapping from
one schema to
another

Converting User specification to
extractor output and this output to the
knowledge base data model.

11. Building
successful interface
& prototype

Developing an interface that allows
easy entry, efficient correction and
data verification.

12. Measurement of
success

Measuring usability aspects of
effectiveness, efficiency and User
satisfaction.

The system must be able to select for any entity
its primary entity name (PEN) from the list of names
in the document (Challenge #7). As far as we are
aware, there have been no evaluations or research on
how easy this task is, but here we define the PEN as
the longest named mention of an entity in the
document. For example, the PEN for David
Beckham, the English footballer, would be “David
Robert Joseph Beckham.” This name then has to be

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

94

resolved with names currently existing in the
knowledge base. The user has the option of creating
a new entry for this name or adding the information
to entities that already exist. Once this is
determined, the system stores this name (and
knowledge base id) in case it should arise in future
documents. This software has been written but has
not yet been evaluated. The user may want to
change the display name to be different from the
PEN, so the system has a method to allow for this
and to link the PEN with the display name.

The user also has the option of stating a specific
interest in information that appears about a particular
person. Suppose a person is interested in Michael
Jackson, the English footballer. Once Michael
Jackson has a knowledge base identification number,
the user can select him as an entity of interest (EOI).
EOIs are separated in the user interface for the user.
Documents contain many entities (typically about
50-100 per document) and if the user is only
focusing on a few, having them as EOIs, makes
them easy to find. Other entities that are assigned a
knowledge base id, but not chosen as an EOI are
referred to as resolved entities and are accessible
from the interface as well. A resolved entity can be
easily converted to an EOI, especially since it
already has a knowledge base id.

The system stores a list of names that it has
found in documents associated with a user’s EOIs.
For Beckham it could have both “David Beckham”
and “David Robert Joseph Beckham.” It compares
these names with new documents to offer knowledge
base ids for entities that have previously been seen
by the system and assigned an id by the user.

With a content related database, entity
disambiguation is required when adding information
from new documents (Challenge #8). If Michael
Jackson, the English footballer, is an entity of
interest, the user will have to determine that the
information in the document being presented is his
or her Michael Jackson. For example, “Michael
Jackson” could be the singer, the American
linebacker, the English footballer, the British
television executive, or the former Deputy Secretary
of the U.S. Department of Homeland Security.

The first time that the user has an entity Michael
Jackson and goes to validate an assertion about
Michael Jackson, the system returns the various
named entities already in the knowledge base as well
as any stored information that would assist the user
to determine a match for this person. The user
chooses whether to add the information to one of
these existing entities or to create a new one.
Selection or the creation of a knowledge base id is

required for every entity in the assertion when the
user chooses to validate an assertion as every entry
in the knowledge base must have an identification
number to determine its uniqueness.

Related to this disambiguation issue is entity
coreferencing, an arena where extractors experience
difficulty (good performance with names, moderate
with pronouns, and poorest with nominals). There
are also some inherent limitations with ACE in this
regard, such as an inability to deal with sets of
people (Challenge #9). For example, in “Ron met
Joy after class, and they went to the store,” ACE
cannot coreference “they” to “Ron” and “Joy.” This
requires the development of software to extract
possibilities other than those currently available.

All data is stored in an intermediary database
before being uploaded to the main knowledge base.
This allows the user to stop in a middle of a session
and return before committing the data to the
knowledge base (which is designed for manual
entry). The architecture of our system that makes
use of the FEEDE service is shown in Figure 1.
Additionally because the schemas used for ACE and
the corporate knowledge base are different, they
must be mapped to one another (Challenge #10).

Figure 1: System architecture.

Figure 2: Overview of basic intermediary database
structure.

DESIGNING A SYSTEM FOR SEMI-AUTOMATIC POPULATION OF KNOWLEDGE BASES FROM
UNSTRUCTURED TEXT

95

Figure 3: Example mock-up of the correction interface where a relation between two entities is selected and different
mentions of this relation are presented to the user with corresponding textual evidence in the panels to the right. Note: The
actual interface exists, and its appearance is very similar to this mock-up.

Although extraction from unstructured text has
low accuracy, extraction from the headers can be
done with high accuracy. Extraction of items such
as the document source, title, date and other key
information save the user from manually entering
this information. This data is extracted and presented
to the user when uploading validated data. In
particular, the document date is also required for
temporal normalization, to resolve items such as “in
February” if the year is not provided.

5 INTERMEDIARY DATABASE

The intermediary database is a relational database.
When the documents are processed, the information
extraction is stored in this database awaiting
validation by the user. Thus it is populated with
entities, relations, events, and time expressions, each
with varying degrees of confidence. It is not
intended for long-term but rather temporary storage
of extracted information from documents so that a
user can verify, correct, and validate content
extraction results. Only the user validated or entered
results are used to populate the main knowledge
base after the user chooses to upload them to the

knowledge base. A basic schema for the database is
shown in Figure 2. Links without prongs indicate
“has one” while crow’s feet indicate “has many.”
Entity-mentions have one entity, relation-mentions
have two entity-mentions, and event-mentions and
entity-mentions have a many-to-many relationship.
Following this schema, each entity entry in the
knowledge base (KB-Entity) can have any number
of entities (and variants on its name) associated with
it across document sets. Each of these entities in turn
can have any number of mentions in a document.
Each mention can be part of any number of relation-
mentions or event-mentions, each of which refers to
a single relation or event. Relation and event-
mentions can also be associated with any number of
time-mentions, each referring to a single time-entity,
grounded to a timeline with defining time-points.

6 INTERFACE DESIGN

The correction/validation interface (a mock-up
shown in Figure 3) that lies atop the intermediary
database must allow for easy entry of missed
information as well as efficient correction and
verification of extracted data. The interface must

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

96

make it as easy as possible for users to enter items
not found by extractors into the database. This
requires an examination of user workflow and the
minimization of time required for the critical steps in
extracting assertions (Challenge #11). Of paramount
importance here is maximizing the efficiency,
efficacy, and satisfaction of the users with the
interface (Challenge #12), three properties of
usability that should be independently considered
(Frokjaer, 2000).

This interface has the following basic flow of
content that is extracted from a corpus of documents.
Because information presented to the user is “entity
centric,” meaning that a user specifies entities of
interest (EOIs) and the interface provides the
relevant entities as well as related relations and
events that involve those entities, the first part of this
content flow from a set of documents is the list of
entities (EOIs if the user has already specified
these). Additionally, taken from a list of entities that
appear as arguments to relations and events
involving the EOIs, a list of secondary entities is
also populated.

When a specific entity is selected in the
workspace, the flow progresses to information about
the entity from the document corpus. This
information requires user validation. These are
relations and events, with associated fields for
arguments and other attributes (time, source-
attribution, et al). Each of these pieces of evidence
is also given a confidence (from high to low
depending on textual and source factors) and an
indication of whether the content is already validated
and present in the KB (the two boxes to the left of
relations in Figure 3). The shading of the boxes
allows the user to quickly scan the data. Dark blue
in the first box indicates that the information is not
present in the main knowledge base and dark blue in
the second box indicates that there is high extractor
confidence in that information, suggesting that the
user might want to examine that item first for
validation. Tracking and displaying the presence or
absence of the information in the knowledge base is
important, as the users are often only interested in
entering new information.

In the second piece of evidence, “he” is
coreferenced with “Ronaldo.” Because the user is
validating at an entity level, the PEN is the name
present for each field that represents an entity, not
the entity mention’s referent in the particular piece
of text. The user then verifies relations and events
by checking the textual evidence to the right of the
relations, as well as the larger context for each on
the far right if necessary. In the cases where the
referent in the text evidence does little to clarify who

the entity is (as with a pronoun), then other mentions
of the entity can be indicated, as shown with the
underlining in the 2nd evidence example in Figure 4.

Because there are potentially multiple mentions
of the same relation or event in the document
corpus, the user can specify whether to see one or all
of these at once. Each item the user desires to have
entered in the main knowledge base must be
checked and validated (the check circle on the right
of the text). This information can be ignored if
incorrect or corrected to form an accurate
relation/event. Each of the arguments to the
relation/event must be present in the knowledge
base. The interface is structured so that arguments
to relations and events can be modified via drop-
down menus or typing in text fields. Some of these
are accessed by clicking “more info.” When the
relation or event has been corrected, if necessary,
and is present in the material, then the user validates
it for entry into the knowledge base. Otherwise
there is no validation or a different relation or event
can be validated if corrections significantly changed
the relation or event.

Figure 4: Close-up example of evidence.

Figure 3 also shows the implicit task flow as one
looks from left (document sets and entity lists) to the
right (extracted content to be corrected and textual
evidence). The selected relation can be expanded
(as in Figure 3 with the “member of” relation) to
reveal the different instances of the relation in the
text and the evidence that support it.

The interface also provides a convenient way to
find out more information about entities, helping in
disambiguating them. By simply leaving the mouse
cursor over an entity in the workspace, the interface
will generate a pop-up display about the entity,

DESIGNING A SYSTEM FOR SEMI-AUTOMATIC POPULATION OF KNOWLEDGE BASES FROM
UNSTRUCTURED TEXT

97

including information on its knowledge base
identity, its type, and when it was last updated.

7 DATABASE FIELDS FOR
RELATIONS

Given the attributes present in ACE in addition to
those we add to extend it, we can present a picture of
what fields are necessary to store sufficient
information in our database. As an example, the list
of fields, along with definitions, for the relation-
mention type follows. First we describe the fields
necessary for the relations to interact with the
knowledge base. Fields that must contain a value
are marked as (R) for “Required.”
• account_id (R) = Unique identification of the user

looking at the relation, which is used to identify
who validated and committed it.

• validated_date = Time the relation was validated
by the user.

• committed_date = Time the relation was
committed to the knowledge base by the user.

• modified_date (R) = Last time the relation was
modified by the user or an updated extraction.

• comments = Comments by the user on the
information.

• user_confidence = How certain the user is that
this relation holds based on trustworthiness and
ambiguity of the source text.

What follows next is a list of fields necessary for
thorough relation-mention definitions in the
database.
• doc_id (R) = Unique identification of the

document where relation was found.
• extractor_info (R) = Features used to do the

extraction, which determine the extractor used,
the version, its parameter settings, etc.

• evidence (R) = Text of the document where the
relation was found.

• evidence_start (R) = Beginning index of the
relation in the evidence.

• evidence_end (R) = End index of the relation in
the evidence.

• paragraph_start = Beginning index of the
paragraph snippet.

• paragraph_end = End index of the paragraph
snippet.

• arg1_entity_mention_id (R) = Unique mention of
the subject of the relation in the relevant
document.

• arg2_entity_mention_id (R) = Unique mention of
the object of the relation in the relevant document.

• relation_type_id (R) = Uniquely determined by
extracted type and subtype, this corresponds to a
specific relation type that can be inserted into the
knowledge base.

• tense = When the relation occurs with respect to
the document. This can be past, present, future, or
unspecified.

• attributed_to = A reference to a person source or
document source in the document for this relation
mention.

• polarity = TRUE if assertion is so stated and
FALSE when it does not hold (NOTE: this is not
part of the ACE guidelines for relations). Most
users prefer to enter positive assertions only, so
the default value is TRUE.

• source_confidence = Likelihood that this relation
holds given conditional statements (e.g. may,
believe, probably, etc.) and can be attributed to
the writer of the document or some entity in the
document or a combination of the two.

• extractor_confidence = How certain the extractor
is that this relation holds based on its own metrics.

• system_confidence = A measure calculated by the
system based on extractor confidence and its own
internal knowledge.

• hidden = Set by the user, TRUE when the user
wishes to hide the relation and FALSE otherwise.

• inKB = TRUE when the relation is in the
knowledge base, FALSE otherwise.

With these fields, the relations are fully defined
and prepared to be inserted into the final knowledge
base.

8 DISCUSSION

In this paper we have discussed a design for an
interface to aid in the process of populating a
knowledge base with corrected and validated
knowledge originating from text sources that
combines the benefits of both human users and
automated extractors in order to make the process
more efficient. We also examined the basic
structure needed for the interface’s underlying
temporary database and the properties necessary for
the information to possess in order to disambiguate
and fully describe entities.

Also examined was the performance of two
extractors, one rule-based and the other using
statistical methods. The key point of this
examination is to demonstrate that the extractors are
very prone to errors and that in order to populate a
knowledge base with what they produce a human

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

98

being is still required to examine and validate text,
even if facilitated by the interface and extractors’
guidance. This interaction in the interface remains
the most crucial element in ensuring that the process
will be brisk, successful, and have minimal errors.

We expect that this system will save users
significant time over manual entry of information
into the knowledge base. Users have experimented
with the prototype system and really like it. Their
stated expectation is that this will save them lots of
time. Our intention is to speed up the data entry
process by 50%, which preliminary studies indicate
is the case. We are currently working to improve our
interface based on the user feedback and performing
experiments on the amount of time saved using this
process.

ACKNOWLEDGEMENTS

We would like to thank all of our team members and
consultants for their advice and numerous
contributions to this project.

REFERENCES

ACE (automatic content extraction) English annotation
guidelines for entities version 5.6.1. (2005). Retrieved
May 7, 2008 from: http://projects.ldc.upenn.edu/ace/
docs/English-Entities-Guidelines_v5.6.1.pdf

ACE (automatic content extraction) English annotation
guidelines for events version 5.4.3. (2005). Retrieved
May 7, 2008 from: http://projects.ldc.upenn.edu/ace/
docs/English-Events-Guidelines_v5.4.3.pdf

ACE (automatic content extraction) English annotation
guidelines for relations version 5.8.3. (2005).
Retrieved May 7, 2008 from:
http://projects.ldc.upenn.edu/ace/ docs/English-
Relations-Guidelines_v5.8.3.pdf

Automatic content extraction 2008 evaluation plan.
(2008). Retrieved 2009 from: http://www.nist.gov/
speech/tests/ace/2008/doc/ace08-evalplan.v1.2d.pdf

Barclay, C., Boisen, S., Hyde, C., & Weischedel, R.
(1996). The Hookah information extraction system,
Proc. Workshop on TIPSTER II (pp. 79-82). Vienna,
VA: ACL.

Evaluation scoring script, v14a. (2005). Retrieved
September, 25, 2008, from: ftp://jaguar.ncsl.nist.gov/
ace/resources/ace05-eval-v14a.pl

Ferro, L., Gerber, L., Mani, I., Sundheim, B., & Wilson,
G. (2005). TIDES-2005 standard for the annotation of
temporal expressions, Technical Report, MITRE.
Retrieved June 3,2008 from:http://timex2.mitre.org/ an
notation_guidelines/2005_timex2_standard_v1.1.pdf

Frokjaer, E., Hertzum, M., & Hornbaek, K. (2000).
Measuring usability: are effectiveness, efficiency, and

satisfaction really correlated? Proc. ACM CHI 2000
Conference on Human Factors in Computing Systems
(pp. 345-352). The Hague: ACM Press.

Grishman, R., & Sundheim, B. (1996). Message
understanding conference – 6: A brief history. Proc.
16th International Conference on Computational
Linguistics (COLING) (pp. 466-471). Copenhagen:
Ministry of Research, Denmark.

Harabagiu, S., Bunescu, R., & Maiorano, S. (2001). Text
and knowledge mining for coreference resolution.
Proc. 2nd Meeting of the North America Chapter of the
Association for Computational Linguistics (NAACL-
2001) (pp. 55–62). Pittsburgh: ACL.

Marsh, E., & Perzanowsi, D. (1998). MUC-7 evaluation of
IE technology: overview of results. Retrieved 2009
from: http://www.itl.nist.gov/iaui/894.02/
related_projects/muc/proceedings/muc_7_toc.html

NIST 2005 automatic content extraction evaluation
official results. (2006). Retrieved May 7, 2008 from:
http://www.nist.gov/speech/tests/ace/2005/doc/
ace05eval_official_results_20060110.html

Vilain, M., Su, J., & Lubar, S. (2007). Entity extraction is
a boring solved problem—Or is it? HLT-NAACL –
Short Papers (pp. 181-184). Rochester: ACL.

Working guidelines ACE++ events. (2007). Unpublished
Internal Report.

DESIGNING A SYSTEM FOR SEMI-AUTOMATIC POPULATION OF KNOWLEDGE BASES FROM
UNSTRUCTURED TEXT

99

