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Abstract: Important information from unstructured text is typically entered manually into knowledge bases, resulting 
in limited quantities of data.  Automated information extraction from the text could assist with this process, 
but the technology is still at unacceptable accuracies.  This task therefore requires a suitable user interface to 
allow for correction of the frequent extraction errors and validation of proposed assertions that a user wants 
to enter into a knowledge base.  In this paper, we discuss our system for semi-automatic database population 
and how it handles the issues arising in content extraction and populating a knowledge base.  The main 
contributions of this work are identifying the challenges in building such a semi-automated tool, the 
categorization of extraction errors, addressing the gaps in current extraction technology required for 
databasing, and the design and development of a usable interface and system, FEEDE, to support correcting 
content extraction output and speeding up the data entry time into knowledge bases.  To our knowledge, this 
is the first effort to populate knowledge bases using content extraction from unstructured text. 

1 INTRODUCTION 

With the rapid growth of digital documents, it is 
necessary to be able to extract identified essential 
information at a particular time and create 
knowledge bases to allow for retrieval and reasoning 
about the information.  Unfortunately, database 
entry is time consuming.  If automatic processes 
could extract relevant information, such methods 
could automatically populate “knowledge” bases 
based on document information.  For such 
knowledge bases to be useful, the end user must 
trust the information provided, i.e., it must have a 
high enough degree of accuracy and/or provide a 
means to correct and validate the information.   

In the past two decades research has been 
dedicated to the automatic extraction of text entities, 
relations, and events.  While the best precision 
scores for entity extraction are in the 90s (Grishman, 
1996), precision for relations is typically less than 
40%, and events have an even lower precision.  
Through the Automatic Content Extraction (ACE) 

program, an ontology has been developed to 
characterize the types of extraction, and annotation 
guidelines have been developed to cover ambiguous 
cases.  For example, in the sentence, “the family 
went to McDonald’s” is McDonald’s a facility, an 
organization, or both?  Is the definition of a facility a 
place that is locatable on a map?  

In ACE, entities can be people, organizations, 
locations, facilities, geographical/social/political 
entities, vehicles, or weapons, and their mentions are 
the textual references to an entity within a document.  
These can be a name (“Ben Smith”), a representative 
common noun or noun phrase called a nominal (“the 
tall man”), or a pronoun (“he”).  Although good 
scores have been achieved in entity tagging, there is 
cause to doubt the extensibility of systems trained 
for this task (Vilain, 2007).  Also, because an entity 
can be referred to multiple times, an entity 
potentially has many mentions, and mentions of the 
same entity are said to be coreferenced.  The best 
extractor scores for coreferencing entity mentions 
are in the range of 60-80% (Marsh, 1998).  Since 
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relations or events can involve referents of multiple 
entities, the likelihood of accurately extracting all 
arguments of a relation or event is low. 

Using ACE terminology, a relation is defined as 
an ordered pair of entities with an asserted 
relationship of a specific interesting type (“ACE 
English,” 2005).  So a relation can be thought of as a 
four tuple: <entity1, relation, entity2, time>.  For 
example, “Scott was a member of ACM for four 
years” contains a relation where the first entity is 
“Scott,” the second entity is “ACM,” and the time is 
a duration of “four years.”  This relation has a type 
of “Organization Affiliation” and has a subtype of 
“Membership.” 

An event is defined as a specific occurrence 
involving participants and a “trigger” word that best 
represents the event (e.g., “attacked” in “The rebels 
attacked the convoy yesterday”) (“ACE English,” 
2005).  Despite this broad definition, ACE limits its 
events to a set of types and subtypes that are most 
interesting.  For example, “Jen flew from Boston to 
Paris” contains a “travel” event, defined as an event 
that captures movement of people, that is, a change 
of location of one or more people.  The captured 
arguments of the event would be the travelling entity 
“Jen,” the origin “Boston,” and the destination 
“Paris.”  Like relations, events can have associated 
time values (“Working Guidelines,” 2007).   

In an examination of a leading rule-based 
commercial extractor on 230 annotated internal 
documents, it was able to identify the “ORG-
AFF/Membership” relation with a precision of 47% 
(meaning that 47% of the times it identified this 
relation, the relation existed in the data).  The recall 
was also 47% meaning that 53% of the membership 
relations in the data were missed by the system.  For 
those relations that were identified, the first entity, 
the person, was identified with 71% precision, 
meaning that 29% of the items that the system 
returned were incorrect. For the second entity, the 
organization, the precision was 85%.  After the 
company improved the results, the new relation 
identification improved to 70% while it remained the 
same for the two entity arguments.  A member of 
this company suggested that this score was 
considered “very good” for relations and was unsure 
that much more improvement could be obtained. 

Unfortunately, relations and events are often the 
key assertions that one needs in a knowledge base in 
order to identify information about people and/or 
organizations.  Due to the high error rate in 
extraction technology, rather than introducing errors 
into the knowledge base, a preferred solution might 
be semi-automatic population of a knowledge base, 
involving the presentation of extracted information 

to users who can validate the information, including 
accepting, rejecting, correcting, or modifying it 
before uploading it to the knowledge base.  This 
interface must be designed in a manner that supports 
the users’ workflow when doing this task.  Ideally, 
the interface would speed up significantly the time 
to enter data in the knowledge base manually.  Since 
extractor recall tends to be less than 60%, besides 
correcting precision errors that the extractor makes, 
the interface must have the ability for users to add 
information missed by the extractor (recall errors). 

In this paper, we describe the challenges faced in 
this task and define the design for our system, 
FEEDE – Fix Extractor Errors before Database 
Entry.  We also discuss the required elements as 
defined by our end users, the interface’s design, and 
an examination of the extractors used to populate it 
with initial content to be authenticated.  Given the 
daunting task of manually entering all important 
information in a knowledge base from unstructured 
text, we believe this effort is important to save users 
time, both a valuable commodity in this information 
age as well as being enterprise cost saving.   

To our knowledge, this is the first research effort 
on developing an interface using content extraction 
from unstructured text for populating knowledge 
bases.  It has only been in the past year (“Automatic 
Content Extraction,” 2008) that the automatic 
extraction community has started to focus on text 
extraction for the purpose of populating databases.  
In 1996, there was an interface effort for structured 
data (metadata) (Barclay, 1996).  Furthermore, since 
content extraction efforts have not been focused on 
the database issue, they are missing certain items 
that are important for such endeavours.  A recent 
survey of extraction elements important to our users 
revealed that only 25 out of the 47 requested (53%) 
were in the ACE guidelines.   

2 CONTENT EXTRACTION FOR 
DATABASING ISSUES 

ACE provides specifications for tagging and 
characterizing entities, relations and events in text, 
as well as some other features.  For entities, the key 
attributes are type and subtype.  Mention categories 
are also important attributes, determining the 
specificity of the entities, such as a pronoun referent 
to an entity name.  Relations and events also feature 
types and subtypes as well as arguments—two for 
relations, where the order matters, and potentially 
many different arguments for events where the 
allowed set depends on the event type.  Although 
quite extensive, the ACE guidelines (“ACE 
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English,” 2005) and temporal annotation guidelines 
TimeX2 (Ferro, 2005) were not designed for 
databasing and are missing key items necessary for 
this purpose.  The omissions include: 
1. Insufficient data elements from current available 

extractors to cover what our users want.  
Therefore new extractors must be developed, 
which requires requirements gathering, definitions 
and guidelines.  Some have been developed for 
the highest priority items. 

2. In the ACE guidelines, values/traits or contact 
information for people cannot be associated with 
people (e.g., “John is 6 ft tall”). 

3. Nested events do not exist.  This is particularly an 
issue with source attribution.  Items attributed to 
people or a new source are not linked.  An 
example is “According to John, Jane travelled to 
France.”  The fact is not necessarily true, but John 
states it.  Since no such extractor existed, we 
developed one which linked assertions to people. 

4. No mechanism in ACE covers group 
participation.  For example, “Anne and John 
attended Stanford.  In spring 2005, the two 
decided to travel to Europe.”  ACE does not 
contain a way to reference “two” to Anne and 
John, although this is a frequent language pattern. 

5. ACE lacks a meaningful primary entity name 
(PEN) for entities.  We define an entity’s PEN to 
be its longest named mention in the document 
(nominals, titles and pronouns are excluded). 

6. ACE lacks descriptors, that is nominals that can 
define the entity in the context. These important 
descriptions include titles (e.g., professor), careers 
(e.g., lawyer), and important roles (e.g., witness).  
This allows for a distinction between terms that 
are more of interest than others.  We care more 
that an individual is “prime minister” than about 
the description of “a man in a green hat.”  A 
simple initial solution for distinguishing these is 
to have an exhaustive gazetteer of all words in 
each category that are considered descriptors. 

7. ACE lacks sufficient time normalization.  
Databases can allow one to visualize items linked 
with temporal information and reason over 
temporal items, if entries have time stamps.  The 
only available temporal normalizer was 
TIMEXTAG (Ferro, 2005), which did not have 
sufficient coverage for our purposes.  To develop 
the temporal normalizer, a group of 5 potential 
users developed grounding rules for key temporal 
expressions.  Users independently mapped all 
items and then met to come to consensus when 
there was disagreement.  An ambiguous example 
is “late January,” which maps to 21st-31st January.  

We hope to make this temporal normalizer 
available to the public soon.   

8. While time tagging guidelines include a 
methodology for sets, they still need to capture the 
number of members in the set and how often 
something occurs.  For example, a tag for “the 
past three winters” has no way of representing 
“three” and a tag for “twice a month” has no way 
of representing “twice.”  The knowledge base and 
database need a way to support this information. 

This list indicates that much research and 
development is required before extraction is at a 
sufficient level for populating knowledge bases. 

Table 1: Results using value-scorer for RB, ST, and ST2 
extractors on newswire data. 

 ST RB ST2 
Entities 72.2 72.8 73.1 
Entity Mentions 84.6 84.0 84.8 
Relations 26.2 24.7 27.3 
Events 17.8 N/A N/A 

Table 2: Results for entities in newswire data, where P is 
precision and R is recall. 

 ST RB ST2 
Unweighted P 49.8 51.9 51.3 
Unweighted R 53.5 58.5 57.1 
Unweighted F1 51.6 55.0 54.1 

Table 3: Results for relations for all three systems and 
events for ST, where P is precision and R is recall. 

 ST 
Rel. 

RB 
Rel. 

ST2 
Rel. 

ST 
Events 

Unweighted P 34.8 32.8 39.9 2.2 
Unweighted R 22.1 24.1 26.3 1.9 
Unweighted F1 27.0 27.8 31.7 2.0 

Besides the missing key components, as 
mentioned the accuracy of content extraction is too 
low for automatic population of databases and 
perhaps at levels that could frustrate users.  The 
ACE 2005 value results (an official ACE measure) 
for newswire documents are presented in Table 1 for 
three participating systems, two statistical (ST and 
ST2) and one rule-based (RB).  The scores for 
entities and relations/events are presented in Tables 
2 and 3, respectively.  We present ACE 2005 since it 
had more participation on the relations task than 
ACE 2007, and ACE 2008 did not evaluate events.  
Analysis indicates only slight performance increases 
for systems in 2007 and 2008.  These results were 
computed using the ACE 2005 evaluation script on 
each extractor’s documents compared to reference 
documents tagged by humans. In the script’s 
unweighted scores, a relation or event is considered 
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Table 4: Common extraction errors and how the interface handles them. 

Error  Type Error Solution Type Solution 
Entity Label  Type/Subtype 

Error 
Preprocessing  Perform string matches for the primary entity name (or any named mention) 

of entities.  If one matches with an entity of interest of different 
type/subtype, present to User. 

Entity 
Error 

Misspelled by 
Doc Author 

Interface User corrects by typing in the interface. This applies to punctuation and 
capitalization errors too.  

Entity  
Error 

Too Much/Little 
Extracted  

Preprocessing Compare entity of interest primary entity names to text of other entities. If 
there is significant crossover, offer the entity of interest as possibility to 
User for assertions involving such entities. 

Entity  
Error 

Too Much/Little 
Extracted 

Interface User can add missing information or delete extraneous information. 

Relation/ 
Event  

Argument Error Preprocessing  All proximate entities (mentions within X words) to relation/events should 
also be offered as alternatives for the actual relation/event. 

Relation/ 
Event  

Argument Error Interface  User examines this relation/event and evidence to recognize an incorrect 
argument and must either ignore, modify or add a new relation/event.  
Modifying includes selecting a new argument from a drop-down menu list 
with possible entities for that argument. 

Relation/ 
Event  

Type/Subtype 
Error 

Interface  User observes this error in the evidence and must either ignore, modify or 
add new relation/event.  Relation/event types can be selected by drop-down 
menu. 

Relation/ 
Event  

Spurious 
Relation/Event 

Interface  User observes this relation is spurious in the evidence and can ignore (hide) 
the relation/event. 

Relation/ 
Event  

Missing 
Relation/Event 

Interface  If User can recognize this error by viewing the document, new 
relation/event can be added in the interface.  Adding information is 
supported in the interface by menus with a list of allowed relations/events. 

Coreference  Spurious 
Coreferences 

Interface  User must recognize in evidence that entity mention and primary entity 
name are different and must either ignore, modify or add new 
relation/event.   

Coreference  Missing 
Coreferences 

Preprocessing  All proximate entities (mentions within X words) to relations/events should 
be offered as possibilities (with low confidence) for the actual 
relation/event arguments. 

Coreference  Split Entities Interface  When validating, the user can assign the same knowledge base id to the two 
entity chains and then the data will be merged in the knowledge base. 

 
to be located in a system-tagged document if there 
are no missing reference arguments and no attribute 
errors.  Precision equals the number of these 
mappable pairs over the total number the extractor 
found.  Recall equals the number of these mappable 
pairs over the total number in the reference text.  
These are combined to produce an F1 score.  

 Note that any error present in the data would 
need to be fixed by a user that chose to utilize that 
piece of information in the knowledge base. Thus 
the trade-off between precision and recall has great 
significance for the task, as a higher precision would 
imply less user correction of errors in extracted data, 
but also requires more manual entry of missing 
assertions, while a higher recall implies the reverse. 

Given the low precision and recall as shown by 
the ACE 2005 results for relations, we believe it is 
essential to have an effective user interface to allow 
users to correct the information extracted incorrectly 
from the documents (precision errors) as well as to 

enter missed information (recall errors).  Though the 
results available for events are not as 
comprehensive, these scores are even lower than 
those for relations.  

In terms of the interface, we define effective as 
(1) intuitive, (2) easy to use, (3) minimizing mouse 
clicks, (4) following the workflow, (5) faster than 
manual entry, (6) tailored to user requirements and 
preferences, and (7) assisting and guiding the user in 
completing the task of creating entries for the 
knowledge base. 

Since there are so many potential extraction 
errors and the knowledge base requires vetted 
information, the user must validate all information 
before it is uploaded. Table 4 displays a list of 
common problems encountered in extraction.  
Solutions to these issues either require action to be 
performed by the interface in pre-processing before 
the information is presented to the end user or in the 
interface itself, essentially assisting the end user in 
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making corrections based on observations of the 
evidence.  

Something else important to the interface that is 
absent from ACE is confidence levels in the 
information.  We use an extractor confidence, if 
provided, as a factor into the confidence score 
presented to the user.  Pronominal references lower 
the confidence since their accuracy is only 
approximately 80%.  We also use evaluation 
knowledge about relations and events as a 
component in the final confidence score.  Other 
factors that could be included might be based on the 
contextual source; this includes weak attribution, 
conditional terms, hypothetical statements, or future 
tense. 

Confidence levels indicate to the user whether 
this assertion has a good chance of being correct, 
i.e., it helps to focus items they might choose to 
validate.  It is important to note that as we add more 
information that essentially second-guesses what the 
extractor has produced, it becomes necessary to 
distinguish between what is believed and what is 
not, and confidence plays a role here too. 

3 ERROR ANALYSIS 

Because relations and events are the most commonly 
desired pieces of information to be gleaned from a 
document, we provide examples of the types of 
errors observed involving relations and events, 
drawing from results achieved on the 2005 ACE 
evaluation.  Since the most interesting attributes are 
type and subtype, in this section we only record 
attribute errors in these.  This change would increase 
the results in Table 3 by less than 13%.  These 
results are still low and indicate that there are many 
items that need to be corrected for total accuracy.  
Here we further examine a leading statistical 
extractor (ST) and a leading rule-based extractor 
(RB). Event results were only available for ST. 

In the tables below, we examine the frequency of 
specific error types independently.  Consider the 
sentence “British Prime Minister Tony Blair left 
Hong Kong.” This contains a relation of 
type/subtype “PHYS/Located.” The extent of the 
first argument is “British Prime Minister Tony 
Blair,” while the head of the first argument is “Tony 
Blair.” The extent and head of the second argument 
are both “Hong Kong.” It is the head—a more 
specific piece of text—that determines whether two 
mentions in separately tagged documents map to one 
another. There is potential for error with any of these 
elements. Table 5 shows the cases where relations 

(and events) are tagged with the wrong type or 
subtype, while Table 6 shows span errors for the full 
arguments of relations and their heads. 

Table 5: Relation and event type/subtype error rates 
observed for newswire documents if other requirements 
for finding relation or event are filled. 

 Relations Tagged w/  
Incorrect Type/Subtype 

Events Tagged w/  
Incorrect Type/Subtype 

ST 16.6% 11.4% 
RB 18.5% N/A 

Table 6: Argument span error rates observed across 
relation mentions. The upper results exclude cases of 
mismatched relation type/subtype, while the lower results 
ignore the relation type/subtype and just evaluate the head 
and extent spans. 

 Arg1 Head 
Span  

Arg2 Head 
Span  

Arg1 Extent 
Span 

Arg2 Extent 
Span  

ST 2.5% 4.6% 26.9% 13.1%
RB 4.9% 8.0% 22.2% 14.8%
ST 3.4% 3.8% 25.3% 12.2%
RB 5.4% 7.8% 22.9% 16.1%

Considering cases where relations are potentially 
identified but are tagged with an incorrect type or 
subtype, the extractors comparably misidentify the 
types of relations in the reference corpus at rates of 
16.6% and 18.5% for ST and RB, respectively.  

Turning to the relation’s arguments, their 
mentions can have errors in the span of their extent 
(text tagged as being the full argument entity) and 
head (the key text that defines the argument entity).  
For both extractors the error rates for extent spans 
are higher for the first argument than for the second.  
Head span errors are lower for both extractors, but 
because relations that do not have overlapping heads 
will be classified as spurious, it is not surprising that 
the feature which is the criterion for mapping 
relations between reference and system-tagged 
documents has a low error rate when examined.   

As Table 7 shows, ST misses 66.9% of these 
specific relation mentions and RB misses 72.8%.  If 
the relations themselves are considered, as opposed 
to their specific mentions, then 74.0% of relations 
are missed by ST and 70.7% of relations are missed 
by RB.  When considering relations as opposed to 
relation mentions, some of this error is propagated 
from errors in entity coreferencing.  If perfect entity 
coreferencing is assumed, then the number of 
missing relations drops to 60.6% for ST and 59.3% 
for RB, which is still a high number in both cases.  
These numbers are still quite high if we permit 
relations to be recognized that are unmatched with a 
reference relation and have the appropriate 
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arguments but a different type/subtype, 52.1% for 
ST and 50.1% for RB.  While the advantage in terms 
of recall belongs to RB, the extraction results on 
relations are highly errorful, and even when 
accounting for errors, the precision and recall are 
quite low, indicating that human validation is 
necessary for relations. Examining the spurious 
relations, these make up a significant portion of the 
returned results. Even presuming perfect entities and 
ignoring tag mismatches, more than a fourth of 
returned relations are spurious for either ST or RB. 

Table 7: Rates of missing and spurious relations. STa/RBa 
results consider cases of mismatched type/subtype missing 
or spurious, while STb/RBb results ignore type/subtype. 

 Missing 
Relations 
(Perfect-Coref.) 

Missing 
Relations 

Missing  
Relation 
Mentions 

STa 60.6% 74.0% 66.9% 
RBa 59.3% 70.7% 72.8% 

STb 52.1% 68.9% 60.2% 
RBb 50.1% 64.1% 65.6% 
 Spurious 

Relations  
(Perfect-Coref) 

Spurious 
Relations  

Spurious  
Relation 
Mentions 

STa 40.1% 59.1% 44.8% 
RBa 52.9% 60.2% 65.5% 

STb 27.2% 51.0% 33.6% 
RBb 42.2% 51.1% 56.3% 

Table 8: Rates of missing and spurious events. The STa 
results consider cases of mismatched type/subtype missing 
or spurious, while the STb results ignore type/subtype. 

 Missing Events 
(Perfect-Coref.) 

Missing 
Events 

Missing  
Event Mentions 

STa 84.8% 87.6% 87.8% 
STb 82.9% 86.0% 87.6% 
 Spurious Events 

(Perfect-Coref.) 
Spurious  
Events 

Spurious  
Event Mentions 

STa 82.4% 85.7% 84.0% 
STb 80.1% 83.8% 83.7% 

Table 9: Error rates (in %) for spurious and missing 
arguments for all ST events where “a” results consider 
cases of mismatched type/subtype missing or spurious, 
while “b” results ignore type/subtype. Arguments assigned 
the wrong role are considered found in the results marked 
with an *. Numbers in the parentheses include arguments 
of missing or spurious events in their counts. 

 Missing 
Args 

Missing 
Args* 

Spurious 
Args  

Spurious 
Args* 

a 54.6 (76.2) 51.0 (74.4) 30.1 (52.3) 24.7 (48.6) 
b 62.4 (74.1) 55.2 (69.1) 41.7 (48.1) 30.4 (38.1) 

Table 8 displays the results for missing and 
spurious events.  These occur at very high rates, with 

87.8% of specific event mentions missed and 87.6% 
of events missed.  Even when perfect entity 
coreferencing is assumed, the percent of events 
missed only drops to 84.8%.  As for spurious event 
mentions, these make up 84.0% of tagged event 
mentions and 85.7% of tagged events.  Once again 
assuming no errors with entity coreferencing only 
drops the percentage of spurious events to 82.4%.  
Table 5 reveals that only 11.4% of events are 
potentially tagged with the wrong type/subtype.  If 
this restriction is ignored, scores for missing and 
spurious events improve only marginally. 

These numbers are so high mainly due to the 
difficulty in capturing all reference arguments, a 
requirement for finding events.  Note that events are 
chiefly defined by their arguments.  Examining 
event arguments more closely, we discover that the 
error rate for missing arguments is about 54.6%. 
This error rate increases dramatically though if the 
totals are allowed to include the missing arguments 
of completely missing events, rising into the 70s.  
With regard to spurious arguments, they make up 
30.1% of the arguments identified.  This number can 
rise into the 50s if the arguments of completely 
spurious events are included in the totals.  These 
numbers are presented in Table 9. While results 
improve when restrictions on event type/subtype and 
argument role are slackened, they still remain 
significantly high.  

Apart from type, subtype, and arguments, events 
in ACE are defined by attributes ignored in these 
results such as tense, genericity, modality, and, 
perhaps most importantly, polarity.  The last of these 
tells whether or not the event is positive or negative, 
which means essentially whether or not the event 
happened.  Excluding tense, the scores for these are 
high, but this is due to the tagger consistently 
tagging all events with a particular value (its most 
common).  Therefore, the scores for these values are 
meaningless, which is particularly significant for 
polarity, as it essentially changes the entire meaning 
of an event. Considering this as well as the low 
recall and precision of both events and their 
constituent parts, it is clear that these also cannot be 
accurately mediated by automatic means alone but 
require human validation and correction. 

4 SYSTEM, DATABASE, AND 
INTERFACE 

An analysis of the issues involved in bringing 
together these different approaches gave rise to a list 
of challenges that must be dealt with in order to 
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achieve a successful outcome for the project.  Table 
10 lists these challenges and a description of each.  
Among these are issues directly related to content 
extraction discussed earlier (Challenges #1-5) as 
well as extraction issues for text sets that present 
special challenges and require special extractors to 
be trained to handle them (Challenge #6). An 
example of the latter might be text that is completely 
capitalized. This section addresses other challenges 
related to the interface needed for correcting the 
extracted information as well as database population.  

Our system is designed around the extraction of 
assertions (relations/events) about people from 
unstructured text (e.g., newswire documents).  These 
assertions can come from a batch of documents or a 
single document.  In the case of a batch, there may 
be redundant repetitive data.  For example, in a 
batch of documents about UK politics, many may 
state that Gordon Brown is a member of the Labour 
Party in Britain.  Users may (1) want to be able to 
enter this information (with source) only once to 
allow them to concentrate on the entry of novel 
information or (2) enter this data many times for use 
as supporting information.  If the user wants to enter 
the data only once, the system tries to first present 
the extracted candidates mostly likely to be accurate.  
This eliminates text snippets that have a pronominal 
reference since coreference chains can be 
determined with an F1 score of approximately 80% 
(Harabagiu, 2001). For example, “he is a member of 
the Labour Party” would be automatically be 
assigned a lower confidence score than “Gordon 
Brown is a member of the Labour Party.” 

Another issue is that all events and relations are 
treated as facts by ACE.  We prefer to label them 
assertions and to assign a source to the assertion, if 
provided.  In a case like “Michael said” or “BBC 
reported,” Michael or BBC would be tagged as the 
source.  When presenting content to a user in the 
interface, it is important for them to know the 
trustworthiness of a relation or event, and thus it is 
important in populating the knowledge base.  So in 
this interface and database definition, a field for 
source attribution to an entity is available for all 
events and relations.  Since no software existed for 
source attribution, code was written to provide this 
functionality.  

The system is designed to allow users to set 
preferences to specify which types of data to extract, 
correct, and validate.  For example, one user may be 
interested in social network information, such as 
family and friends.  Another user might be interested 
in the travel of key sports figures. 

Since extracted information is often incorrect, 
the system must also have a mode for correction and 

validation of information.  This is done through drop 
down text menus in the hope that the user can 
quickly select a correct entity or relation.  If the 
entity was missed by the extractor or misspelled due 
to author error, the user has the option to edit it.  
Since extractors frequently miss information (“NIST 
2005,” 2005), the system also requires a mode for 
entering information missed by the extractors.   

Table 10: List of challenges. 

Challenge Description 
1. Accuracy of 
content extraction 

The accuracy of extractors unaided is 
prohibitively low on key assertions. 

2. Precision/recall 
trade-off 

High precision means less User 
correction, but more manual entry. 
High recall means the reverse. 

3. Current extractors 
lack appropriate 
inventory 

47 data elements map to entities, 
relations, and events, but 20 elements 
are missing from or lack suitable 
ACE version. 

4. User definitions 
don’t match ACE 

Definitions differ between terms in 
ACE and how Users define them. 

5. Temporal 
anchoring and 
normalization 

Extracting time tags and resolving 
them with source date. Some cases 
are complex or highly ambiguous. 

6. Data specific 
challenges 

Extracting from data sources that 
present special challenges when 
compared to the majority of texts. 

7. Primary entity 
name selection 

Detecting the most appropriate 
primary entity name, and allowing 
Users to choose primary entity names 
and effectively use them. 

8. Disambiguating 
entities with KB 

Assisting User in merging entity with 
existing record or creating a new one. 

9. Accuracy of 
coreference 
resolution 

Detecting if two phrases refer to the 
same entity, including a related issue 
of coreferencing “sets” of people. 

10. Mapping from 
one schema to 
another 

Converting User specification to 
extractor output and this output to the 
knowledge base data model. 

11. Building 
successful interface 
& prototype 

Developing an interface that allows 
easy entry, efficient correction and 
data verification.  

12. Measurement of 
success 

Measuring usability aspects of 
effectiveness, efficiency and User 
satisfaction. 

The system must be able to select for any entity 
its primary entity name (PEN) from the list of names 
in the document (Challenge #7).  As far as we are 
aware, there have been no evaluations or research on 
how easy this task is, but here we define the PEN as 
the longest named mention of an entity in the 
document.  For example, the PEN for David 
Beckham, the English footballer, would be “David 
Robert Joseph Beckham.”  This name then has to be 
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resolved with names currently existing in the 
knowledge base.  The user has the option of creating 
a new entry for this name or adding the information 
to entities that already exist.  Once this is 
determined, the system stores this name (and 
knowledge base id) in case it should arise in future 
documents.  This software has been written but has 
not yet been evaluated.  The user may want to 
change the display name to be different from the 
PEN, so the system has a method to allow for this 
and to link the PEN with the display name. 

The user also has the option of stating a specific 
interest in information that appears about a particular 
person.  Suppose a person is interested in Michael 
Jackson, the English footballer.  Once Michael 
Jackson has a knowledge base identification number, 
the user can select him as an entity of interest (EOI).  
EOIs are separated in the user interface for the user.  
Documents contain many entities (typically about 
50-100 per document) and if the user is only 
focusing on a few, having them as EOIs, makes 
them easy to find.  Other entities that are assigned a 
knowledge base id, but not chosen as an EOI are 
referred to as resolved entities and are accessible 
from the interface as well.  A resolved entity can be 
easily converted to an EOI, especially since it 
already has a knowledge base id. 

The system stores a list of names that it has 
found in documents associated with a user’s EOIs.  
For Beckham it could have both “David Beckham” 
and “David Robert Joseph Beckham.” It compares 
these names with new documents to offer knowledge 
base ids for entities that have previously been seen 
by the system and assigned an id by the user. 

With a content related database, entity 
disambiguation is required when adding information 
from new documents (Challenge #8).  If Michael 
Jackson, the English footballer, is an entity of 
interest, the user will have to determine that the 
information in the document being presented is his 
or her Michael Jackson.  For example, “Michael 
Jackson” could be the singer, the American 
linebacker, the English footballer, the British 
television executive, or the former Deputy Secretary 
of the U.S. Department of Homeland Security.  

The first time that the user has an entity Michael 
Jackson and goes to validate an assertion about 
Michael Jackson, the system returns the various 
named entities already in the knowledge base as well 
as any stored information that would assist the user 
to determine a match for this person.  The user 
chooses whether to add the information to one of 
these existing entities or to create a new one.  
Selection or the creation of a knowledge base id is 

required for every entity in the assertion when the 
user chooses to validate an assertion as every entry 
in the knowledge base must have an identification 
number to determine its uniqueness.  

Related to this disambiguation issue is entity 
coreferencing, an arena where extractors experience 
difficulty (good performance with names, moderate 
with pronouns, and poorest with nominals).  There 
are also some inherent limitations with ACE in this 
regard, such as an inability to deal with sets of 
people (Challenge #9).  For example, in “Ron met 
Joy after class, and they went to the store,” ACE 
cannot coreference “they” to “Ron” and “Joy.”  This 
requires the development of software to extract 
possibilities other than those currently available.  

All data is stored in an intermediary database 
before being uploaded to the main knowledge base.  
This allows the user to stop in a middle of a session 
and return before committing the data to the 
knowledge base (which is designed for manual 
entry).  The architecture of our system that makes 
use of the FEEDE service is shown in Figure 1. 
Additionally because the schemas used for ACE and 
the corporate knowledge base are different, they 
must be mapped to one another (Challenge #10). 

 
Figure 1: System architecture.  

 
Figure 2: Overview of basic intermediary database 
structure. 
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Figure 3: Example mock-up of the correction interface where a relation between two entities is selected and different 
mentions of this relation are presented to the user with corresponding textual evidence in the panels to the right.  Note: The 
actual interface exists, and its appearance is very similar to this mock-up. 

Although extraction from unstructured text has 
low accuracy, extraction from the headers can be 
done with high accuracy.  Extraction of items such 
as the document source, title, date and other key 
information save the user from manually entering 
this information. This data is extracted and presented 
to the user when uploading  validated data.  In 
particular, the document date is also required for 
temporal normalization, to resolve items such as “in 
February” if the year is not provided. 

5 INTERMEDIARY DATABASE 

The intermediary database is a relational database.  
When the documents are processed, the information 
extraction is stored in this database awaiting 
validation by the user.  Thus it is populated with 
entities, relations, events, and time expressions, each 
with varying degrees of confidence. It is not 
intended for long-term but rather temporary storage 
of extracted information from documents so that a 
user can verify, correct, and validate content 
extraction results.  Only the user validated or entered 
results are used to populate the main knowledge 
base after the user chooses to upload them to the 

knowledge base.  A basic schema for the database is 
shown in Figure 2.  Links without prongs indicate 
“has one” while crow’s feet indicate “has many.”  
Entity-mentions have one entity, relation-mentions 
have two entity-mentions, and event-mentions and 
entity-mentions have a many-to-many relationship.  
Following this schema, each entity entry in the 
knowledge base (KB-Entity) can have any number 
of entities (and variants on its name) associated with 
it across document sets. Each of these entities in turn 
can have any number of mentions in a document.  
Each mention can be part of any number of relation-
mentions or event-mentions, each of which refers to 
a single relation or event.  Relation and event-
mentions can also be associated with any number of 
time-mentions, each referring to a single time-entity, 
grounded to a timeline with defining time-points. 

6 INTERFACE DESIGN 

The correction/validation interface (a mock-up 
shown in Figure 3) that lies atop the intermediary 
database must allow for easy entry of missed 
information as well as efficient correction and 
verification of extracted data. The interface must 
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make it as easy as possible for users to enter items 
not found by extractors into the database. This 
requires an examination of user workflow and the 
minimization of time required for the critical steps in 
extracting assertions (Challenge #11). Of paramount 
importance here is maximizing the efficiency, 
efficacy, and satisfaction of the users with the 
interface (Challenge #12), three properties of 
usability that should be independently considered 
(Frokjaer, 2000). 

This interface has the following basic flow of 
content that is extracted from a corpus of documents.  
Because information presented to the user is “entity 
centric,” meaning that a user specifies entities of 
interest (EOIs) and the interface provides the 
relevant entities as well as related relations and 
events that involve those entities, the first part of this 
content flow from a set of documents is the list of 
entities (EOIs if the user has already specified 
these). Additionally, taken from a list of entities that 
appear as arguments to relations and events 
involving the EOIs, a list of secondary entities is 
also populated. 

When a specific entity is selected in the 
workspace, the flow progresses to information about 
the entity from the document corpus.  This 
information requires user validation.  These are 
relations and events, with associated fields for 
arguments and other attributes (time, source-
attribution, et al).  Each of these pieces of evidence 
is also given a confidence (from high to low 
depending on textual and source factors) and an 
indication of whether the content is already validated 
and present in the KB (the two boxes to the left of 
relations in Figure 3).  The shading of the boxes 
allows the user to quickly scan the data.  Dark blue 
in the first box indicates that the information is not 
present in the main knowledge base and dark blue in 
the second box indicates that there is high extractor 
confidence in that information, suggesting that the 
user might want to examine that item first for 
validation.  Tracking and displaying the presence or 
absence of the information in the knowledge base is 
important, as the users are often only interested in 
entering new information. 

In the second piece of evidence, “he” is 
coreferenced with “Ronaldo.”  Because the user is 
validating at an entity level, the PEN is the name 
present for each field that represents an entity, not 
the entity mention’s referent in the particular piece 
of text.  The user then verifies relations and events 
by checking the textual evidence to the right of the 
relations, as well as the larger context for each on 
the far right if necessary.  In the cases where the 
referent in the text evidence does little to clarify who 

the entity is (as with a pronoun), then other mentions 
of the entity can be indicated, as shown with the 
underlining in the 2nd evidence example in Figure 4. 

Because there are potentially multiple mentions 
of the same relation or event in the document 
corpus, the user can specify whether to see one or all 
of these at once.  Each item the user desires to have 
entered in the main knowledge base must be 
checked and validated (the check circle on the right 
of the text).  This information can be ignored if 
incorrect or corrected to form an accurate 
relation/event.  Each of the arguments to the 
relation/event must be present in the knowledge 
base.  The interface is structured so that arguments 
to relations and events can be modified via drop-
down menus or typing in text fields. Some of these 
are accessed by clicking “more info.”  When the 
relation or event has been corrected, if necessary, 
and is present in the material, then the user validates 
it for entry into the knowledge base.  Otherwise 
there is no validation or a different relation or event 
can be validated if corrections significantly changed 
the relation or event.  

 
Figure 4: Close-up example of evidence. 

Figure 3 also shows the implicit task flow as one 
looks from left (document sets and entity lists) to the 
right (extracted content to be corrected and textual 
evidence).  The selected relation can be expanded 
(as in Figure 3 with the “member of” relation) to 
reveal the different instances of the relation in the 
text and the evidence that support it.  

The interface also provides a convenient way to 
find out more information about entities, helping in 
disambiguating them. By simply leaving the mouse 
cursor over an entity in the workspace, the interface 
will generate a pop-up display about the entity, 
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including information on its knowledge base 
identity, its type, and when it was last updated.  

7 DATABASE FIELDS FOR 
RELATIONS 

Given the attributes present in ACE in addition to 
those we add to extend it, we can present a picture of 
what fields are necessary to store sufficient 
information in our database.  As an example, the list 
of fields, along with definitions, for the relation-
mention type follows.  First we describe the fields 
necessary for the relations to interact with the 
knowledge base.  Fields that must contain a value 
are marked as (R) for “Required.” 
• account_id (R) = Unique identification of the user 

looking at the relation, which is used to identify 
who validated and committed it. 

• validated_date = Time the relation was validated 
by the user. 

• committed_date = Time the relation was 
committed to the knowledge base by the user. 

• modified_date (R) = Last time the relation was 
modified by the user or an updated extraction. 

• comments = Comments by the user on the 
information. 

• user_confidence = How certain the user is that 
this relation holds based on trustworthiness and 
ambiguity of the source text.  

What follows next is a list of fields necessary for 
thorough relation-mention definitions in the 
database. 
• doc_id (R) = Unique identification of the 

document where relation was found.  
• extractor_info (R) = Features used to do the 

extraction, which determine the extractor used, 
the version, its parameter settings, etc. 

• evidence (R) = Text of the document where the 
relation was found. 

• evidence_start (R) = Beginning index of the 
relation in the evidence.  

• evidence_end (R) = End index of the relation in 
the evidence. 

• paragraph_start = Beginning index of the 
paragraph snippet. 

• paragraph_end = End index of the paragraph 
snippet. 

• arg1_entity_mention_id (R) = Unique mention of 
the subject of the relation in the relevant 
document. 

• arg2_entity_mention_id (R) = Unique mention of 
the object of the relation in the relevant document. 

• relation_type_id (R) = Uniquely determined by 
extracted type and subtype, this corresponds to a 
specific relation type that can be inserted into the 
knowledge base. 

• tense = When the relation occurs with respect to 
the document.  This can be past, present, future, or 
unspecified.   

• attributed_to = A reference to a person source or 
document source in the document for this relation 
mention. 

• polarity = TRUE if assertion is so stated and 
FALSE when it does not hold (NOTE: this is not 
part of the ACE guidelines for relations).  Most 
users prefer to enter positive assertions only, so 
the default value is TRUE. 

• source_confidence = Likelihood that this relation 
holds given conditional statements (e.g. may, 
believe, probably, etc.) and can be attributed to 
the writer of the document or some entity in the 
document or a combination of the two. 

• extractor_confidence = How certain the extractor 
is that this relation holds based on its own metrics. 

• system_confidence = A measure calculated by the 
system based on extractor confidence and its own 
internal knowledge. 

• hidden = Set by the user, TRUE when the user 
wishes to hide the relation and FALSE otherwise. 

• inKB = TRUE when the relation is in the 
knowledge base, FALSE otherwise. 

With these fields, the relations are fully defined 
and prepared to be inserted into the final knowledge 
base. 

8 DISCUSSION 

In this paper we have discussed a design for an 
interface to aid in the process of populating a 
knowledge base with corrected and validated 
knowledge originating from text sources that 
combines the benefits of both human users and 
automated extractors in order to make the process 
more efficient.  We also examined the basic 
structure needed for the interface’s underlying 
temporary database and the properties necessary for 
the information to possess in order to disambiguate 
and fully describe entities.  

Also examined was the performance of two 
extractors, one rule-based and the other using 
statistical methods.  The key point of this 
examination is to demonstrate that the extractors are 
very prone to errors and that in order to populate a 
knowledge base with what they produce a human 
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being is still required to examine and validate text, 
even if facilitated by the interface and extractors’ 
guidance.  This interaction in the interface remains 
the most crucial element in ensuring that the process 
will be brisk, successful, and have minimal errors.  

We expect that this system will save users 
significant time over manual entry of information 
into the knowledge base.  Users have experimented 
with the prototype system and really like it.  Their 
stated expectation is that this will save them lots of 
time.  Our intention is to speed up the data entry 
process by 50%, which preliminary studies indicate 
is the case. We are currently working to improve our 
interface based on the user feedback and performing 
experiments on the amount of time saved using this 
process. 
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