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Abstract: Starting with the underlying motivation of developing a general theory of L-fuzzy sets where L is a multilat-
tice (a particular case of non-deterministic algebra), we study the relationship between the crisp notions of
congruence, homomorphism and substructure on some non-deterministic algebras which have been used in
the literature, i.e. hypergroups, and join spaces. Moreover, we provide suitable extensions of these notions to
the fuzzy case.

1 INTRODUCTION

This paper follows the trend of developing fuzzy
versions of crisp concepts in mathematics. Specif-
ically, we focus on congruence relations, substruc-
tures and homomorphisms in the framework of sev-
eral hyperstructures, which are non-deterministic al-
gebraic structures in the sense that the operations are
not single-valued but set-valued.

The study of congruence relations and homomor-
phisms between given hyperstructures plays an im-
portant role in the general theory of algebraic fuzzy
systems. The underlying idea here is to apply meth-
ods of the algebraic theory of ordinary congruences
and homomorphisms between classical structures in
studying suitable extensions for specific hyperstruc-
tures, such as hypergroups, and join spaces.

One can find a number of extensions of classical
algebraic structures to a fuzzy framework in the liter-
ature, all of them based more or less in similar ideas.
However, the fuzzy extension of the notion of func-
tion has been studied from several standpoints, and
this fact complicates the choice of the most suitable
definition of fuzzy homomorphism: the most conve-
nient definition seems to depend on particular details
of the underlying algebraic structure under consider-
ation.

The study of congruences is important both from
a theoretical standpoint and for its applications in the
field of logic-based approaches to uncertainty. Re-
garding applications, the notion of congruence is in-
timately related to the foundations of fuzzy reasoning

and its relationships with other logics of uncertainty.
More focused on the theoretical aspects of Computer
Science, some authors (Bělohlávek, 2002),(Petković,
2006) have pointed out the relation between congru-
ences, fuzzy automata and determinism.

More on the practical side, applications of the con-
cept of congruence can be seen in the World Wide
Web. Concerning web applications, some authors
have argued on the convenience of using Answer Set
Programming (ASP) in the Semantic Web. Congru-
ence relations have been used in the study of modu-
larization of ASP as a way to structure and ease the
program development process. Specifically, compo-
sition of modules has been formalized in(Oikarinen
and Janhunen, 2008; Janhunen et al., 2007) in terms
of equivalence relations which are proper congruence
relations.

The previous paragraphs have shown the useful-
ness of the theory of (crisp) congruences regarding
practical applications. At this point, it is important to
recall that the problem of providing suitable fuzzifi-
cations of crisp concepts is an important topic which
has attracted the attention of a number of researchers.
Since the inception of fuzzy sets and fuzzy logic,
there have been approaches to consider underlying
sets of truth-values more general than the unit inter-
val; for instance, consider the L-fuzzy sets introduced
by Goguen in (Goguen, 1967), where L is a complete
lattice.

There are more general structures than a com-
plete lattice which could host a suitable extension
of the notion of fuzzy set, for instance, the multi-
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lattices and other general hyperstructures. The con-
cepts of ordered and algebraic multilattice were in-
troduced in (Benado, 1954): a multilattice is an alge-
braic structure in which the restrictions imposed on a
(complete) lattice, namely, the “existence of least up-
per bounds and greatest lower bounds” are relaxed to
the“existence of minimal upper bounds and maximal
lower bounds”. An alternative algebraic definition of
multilattice was proposed in (Medina et al., 2005),
which is more closely related to that of lattice, allow-
ing for natural definitions of related structures such
that multisemilattices and, in addition, is better suited
for applications. For instance, a general approach to
fuzzy logic programming based on a multilattice as
underlying set of truth-values was presented in (Med-
ina et al., 2007).

A number of papers have been published on the
lattice of fuzzy congruences on different classical al-
gebraic structures, and even in some hyperstructures,
for instance (Cordero et al., 2008) studies congru-
ences on a multilattice. In this paper, we will focus
on congruences and homomorphisms in the more gen-
eral setting of hyperstructures (Corsini and Leoreanu,
2003).

The structure of the paper is as follows: in Sec-
tion 2, we introduce the definitions of some hyper-
structures, together with some notational convention
to be used in the rest of the paper; then, in Sec-
tion 3, we concentrate on the definition of homo-
morphism between nd-groupoids and how it preserves
the different subhyperstructures. Later, in Section 4,
the relation between the introduced notion of nd-
homomorphism and (crisp) congruence on a hyper-
structure is investigated. It is in Section 5 where the
notion of fuzzy homomorphism is defined and the
canonical decomposition theorem is presented. Fi-
nally, we present some conclusions and prospects for
future work.

2 PRELIMINARY DEFINITIONS

Firstly, let us introduce the preliminary concepts used
in this paper:
Definition 1. A hypergroupoid is a pair (A, ·) con-
sisting of a non-empty set A together with a hyperop-
eration · : A×A→ 2Ar∅.

Traditionally, authors working with hyperstruc-
tures have considered the natural restriction of the
images of the operation to be non-empty sets,
for instance, the structures of hypergroup or join
space (Corsini and Leoreanu, 2003).
Definition 2. A hypergroupoid (A, ·) is said to be a
hypergroup if the following properties hold:

• Associativity: (ab)c = a(bc) for all a,b,c ∈ A.
• Reproductivity: aA = Aa = A for all a ∈ A. That

is, for all a,b ∈ A, the equations ax = b y xa = b
have solutions.

(A, ·) is said to be a join space if it satisfies associa-
tivity, reproductivity and, moreover, the two following
properties hold:

• Commutativity: ab = ba for all a,b,c ∈ A.
• Transposition Property: for all a,b,c,d ∈ A,

a/b∩ c/d 6=∅ implies ad∩bc 6=∅ where a/b =
{x | a ∈ xb}.
It is remarkable that in the context of multilattices

it is admissible to consider the empty set in the range
of the hyperoperation, hence interest arises in devel-
oping a suitable extension of the concept of hyper-
groupoid, the so-called nd-groupoid. Despite of the
small change regarding the empty set, it is noticeable
that the resulting theory differs substantially.

Definition 3. An nd-groupoid is a pair (A, ·) con-
sisting of a non-empty set A together with an nd-
operation · : A×A→ 2A.

Remark 4. As usual, if a ∈ A and X ⊆ A then aX will
denote {ax | x ∈ X} and Xa will denote {xa | x ∈ X}.
In particular, a∅=∅a =∅.

Note, as well, that in the rest of the paper we will
frequently write singletons without braces.

3 ON THE DEFINITION OF
ND-GROUPOID
HOMOMORPHISM

This section introduces the extension of the existing
results about homomorphisms to the more general
framework of nd-grupoids. Firstly, we begin by dis-
cussing the different versions of the concept of ho-
momorphism on hypergroupoids (also called multi-
groupoids) appearing in the literature. They are usu-
ally associated to particular classes of hypergroupoids
such as those of hypergroups and join spaces.

Some authors that deal with these and other hy-
perstructures use the following definitions of homo-
morphism (Corsini, 2003).

Definition 5. Let (A, ·) and (B, ·) be hypergroupoids.
A map h : A→ B is said to be:

• Benado-homomorphism if h(ab)⊆ h(a)h(b), for
all a,b ∈ A.

• Algebraic-homomorphism if h(ab) = h(a)h(b),
for all a,b ∈ A.
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Recall that this definition extends without modifi-
cation to the framework of nd-groupoids.

Regarding the terminology, we depart here a bit
from the usual one. The first one was the original def-
inition by Benado (Benado, 1954), which has been
used in several recent papers (Davvaz, 2000; Gen-
tile, 2006; Corsini, 2003). However, it is noticeable
that, finally, the authors concentrate mostly on the
equality-based definition. This choice is partly due to
the excessive generality of Benado’s definition, which
limits the possibility of obtaining interesting theoreti-
cal results. The terminology used in those papers is to
call homomorphism to Benado’s ones and call good
(or strong) homomorphism to algebraic ones.

We have adopted the term algebraic instead of
good or strong because this type of homomorphism
immediate allows the lifting of classical homomor-
phisms to the so-called powerset extension. Ob-
viously, the advantage of using algebraic homo-
morphisms is that one can transfer properties from
the powerset to the nd-groupoid very easily, so
that the presentation of multivalued (namely, non-
deterministic) concepts is greatly simplified.

Theorem 6. Let (A, ·) and (B, ·) be nd-groupoids and
h : A→ B be a Benado-homomorphism. Let (2A, ·),
(2B, ·) and H : 2A→ 2B be the usual power extension
of h, i.e.

X ·Y =
⋃
x∈X
y∈Y

xy and H(X) = {h(x) | x ∈ X}

Then, h is an algebraic-homomorphism if and only if
H is a homomorphism.

Proof. Straightforward. �

It should be noticed that the definition of algebraic
homomorphism, when applied to the lifted powerset
version, collapses to the classical algebraic results on
the powerset. Hence, the condition limits too much
the non-deterministic interpretation of the concept of
morphism in that does not provide any added value to
the theory.

Moreover, the term homomorphism should induce
the properties of the initial hypergroupoid on the im-
age set. It can be easily checked that this is the case
for algebraic-homomorphisms but, in general, it is not
true for Benado-homomorphisms as the following ex-
amples show.
Example 7. Let (A, ·) and (B, ·) be the hyper-
groupoids A = {a,b,c} and B = {a,b,c,d} with the
hyperoperations defined as in the tables. The inclu-
sion map i from A to B is a Benado-homomorphism.
Let us consider the restriction of the operation in B to
the codomain i(A) = A.

(A, ·)

· a b c
a a b c
b b b c
c c c c

(B, ·)

· a b c d
a a b b,c A
b b b a,c A
c c,d c,d a,c A
d A A A A

(i(A), ·)

· a b c
a a b b,c
b b b a,c
c c c a,c

The initial hypergrupoid (A, ·) is commutative, idem-
potent and associative. However (i(A), ·) is neither
commutative nor idempotent nor associative (for in-
stance, note that (ab)c = {a,c} 6= a(bc) = {a,b,c}).

�

When searching for a suitable definition which
allows to transfer properties to the codomain, it
is noticeable the following interesting property of
multisemilattices homomorphism in the case of the
operations are actually hyperoperations (not nd-
operations).

Theorem 8. Let (A, ·) and (B, ·) be multisemilattices
and h : A→ B be a Benado-homomorphism. If ab 6=
∅, for all a,b ∈ A, then h(ab) = h(a)h(b)∩h(A), for
all a,b ∈ A.

Based on the previous result, we propose a new
definition of homomorphism on nd-grupoids, which
is stronger than Benado’s one and weaker than the al-
gebraic one. Furthermore, the underlying idea follows
the categorical meaning of morphism.

Definition 9. Let (A, ·) and (B, ·) be nd-groupoids. A
map h : A→ B is said to be nd-homomorphism if, for
all a,b ∈ A, h(ab) = h(a)h(b)∩h(A).

Note that, h is nd-homomorphism if, for all
a,b,c ∈ A, the following conditions hold:

1. c ∈ ab implies h(c) ∈ h(a)h(b), that is, h is a
Benado-homomorphism.

2. h(c) ∈ h(a)h(b) implies that there exists c′ ∈ ab
such that h(c′) = h(c).

The following examples show that the notion of
nd-homomorphism is different from the two other
definitions given previously.

Example 10. Consider the hypergroupoid (A, ·) be-
ing A = [0,1] and the hyperoperation · : A×A→ 2A

given by a · b = [0,max{a,b}]. Notice that this hy-
pergroupoid is a join space (it is commutative, as-
sociative, reproductive and verifies the transposition
axiom). Let us consider a homomorphism h : A→ A
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defined by

h(x) =

{
0 if x = 0
1 if x 6= 0

we have that

h(a ·b) =

{
{0} if a = b = 0
{0,1} otherwise

and

h(a) ·h(b) =

{
{0} if a = b = 0
[0,1] otherwise

and as a result, one obtains the equality h(a · b) =
h(a) ·h(b)∩h(A) but, in general, the proper inclusion
h(a ·b) h(a) ·h(b) holds.

Therefore, h is an nd-homomorphism but it is not
an algebraic-homomorphism. �

Example 11. Let us consider the set H = {a,b,c}
with the hyperoperation defined by the following ta-
ble:

· a b c
a c c c
b c c c
c c c H

(H, ·) is a commutative hypergrupoid. Let h : H→
H be the homomorphism

h(x) =

{
c if x = a
x otherwise

Im(h) = {b,c} and we have that:

h(a ·a) = h(c) = c h(a) ·h(a)∩ Im(h) = Im(h)
h(a ·b) = h(c) = c = h(a) ·h(b)∩ Im(h)
h(a · c) = h(c) = c h(a) ·h(c)∩ Im(h) = Im(h)
h(b ·b) = h(c) = c = h(b) ·h(b)∩ Im(h)
h(b · c) = h(c) = c = h(b) ·h(c)∩ Im(h)
h(c · c) = h(H) = {b,c}= h(c) ·h(c)∩ Im(h)

Therefore, h is a Benado-homomorphism but it is
not an nd-homomorphism. �

We next discuss the different possible generaliza-
tions of the substructures of an nd-groupoid that con-
nect with the corresponding definitions of homomor-
phism.

The more general definition of subalgebra in
a non-deterministic setting was introduced by Be-
nado(Benado, 1954) for multilattices, and later used
by several authors (Davvaz, 2000; Gentile, 2006;
Corsini, 2003). A second definition follows the line of
the algebraic homomorphism and corresponds to the
embedding of the classical (deterministic) notion of
subgroupoid into the framework of nd-subgroupoids.
We introduce a third alternative definition below.

Definition 12. Let (A, ·) be an nd-groupoid, X be a
non-empty subset of A and ∗ : X × X → 2X an nd-
operation defined on X.

• (X ,∗) is a Benado-subgroupoid of (A, ·) if a∗b⊆
a ·b, for all a,b ∈ X.
• (X ,∗) is a Birkhoff-subgroupoid of (A, ·) if a ∗

b = a ·b, for all a,b ∈ X.
• (X ,∗) is an nd-subgroupoid of (A, ·) if a∗b = a ·

b∩X, for all a,b ∈ X.

Therefore, (X ,∗) is a (Benado, Birkhoff, nd)-
subgroupoid if the inclusion map i : X → A is
a (Benado, algebraic, nd)-homomorphism. Like-
wise, the image space of a (Benado, algebraic,
nd)-homomorphism is a (Benado, Birkhoff, nd)-
subgroupoid of the codomain.

Lemma 13. Let (A, ·) and (B, ·) be nd-groupoids and
h : A→ B be an nd-homomorphism. Let us consider
h(A) and the operation ∗ defined as a′ ∗ b′ = a′b′ ∩
h(A).

1. If (A, ·) is commutative then (h(A),∗) is commu-
tative.

2. If (A, ·) is associative then (h(A),∗) is associative.
3. If (A, ·) is idempotent then (h(A),∗) is idempotent.
4. If (A, ·) is reproductive then (h(A),∗) is reproduc-

tive.
5. If (A, ·) satisfies the transposition property then

(h(A),∗) satisfies the transposition property.

Proof. It is a matter of systematic calculations. As an
example we provide the proof of the case of associa-
tivity:(

h(a)∗h(b)
)
∗h(c) =

(
h(a)h(b)∩h(A)

)
∗h(c) =

= h(ab)∗h(c) = h(ab)h(c)∩h(A) =

= h
(
(ab)c

)
= h
(
a(bc)

)
=

= h(a)h(bc)∩h(A) = h(a)∗h(bc) =

= h(a)∗
(
h(b)h(c)∩h(A)

)
=h(a)∗

(
h(b)∗h(c)

)
�

Proposition 14. Let (A, ·) and (B, ·) be nd-groupoids
and h : A→ B be an nd-homomorphism. Let us con-
sider h(A) and the operation ∗ defined as a′ ∗ b′ =
a′b′∩h(A).

1. If (A, ·) is a hypergroup then (h(A),∗) is a hyper-
group.

2. If (A, ·) is a join space then (h(A),∗) is a join
space.
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Proof. It is a consequence of the previous lemma. �

In general, given a Benado-homomorphism between
nd-groupoids, the properties of the initial nd-groupoid
cannot be induced on the codomain, even with the
map being bijective. Furthermore, the inverse map
of a bijective Benado-homomorphism needs not be a
Benado-homomorphism.

Example 15. Let A = {a,b,c} and the two op-
erations defined as x · y = {x,y} and x ? y = A.
Obviously, the identity mapping, I, is a Benado-
homomorphism from (A, ·) to (A,?) which is not an
nd-homomorphism. However, I−1 is not a Benado-
homomorphism: I−1(a ? b) = I−1(A) = A 6⊆ I−1(a) ·
I−1(b) = a ·b = {a,b}. �

Theorem 16. Let h be a bijective mapping between
nd-groupoids. The following conditions are equiva-
lent:

(i) h and h−1 are Benado-homomorphisms.
(ii) h is an algebraic-homomorphism.

(iii) h is an nd-homomorphism.

Proof. Obviously items (ii) and (iii) are equivalent
because the map is bijective.

(i)⇒ (ii) Since h−1 is a Benado-homomorphism,
one certainly has that h−1

(
h(a) · h(b)

)
⊆ h−1

(
h(a)

)
·

h−1
(
h(b)

)
= ab. Thus, for an element x ∈ h(a) ·h(b),

we have h−1(x) ⊆ a · b. As a consequence, x =
h
(
h−1(x)

)
∈ h(a ·b).

(ii)⇒ (i) Let x ∈ h−1(a′b′). Then h(x) ∈ a′b′ =
h
(
h−1(a′)

)
· h
(
h−1(b′)

)
and, since h is algebraic ho-

momorphism, h
(
h−1(a′)

)
· h
(
h−1(b′)

)
= h
(
h−1(a′) ·

h−1(b′)
)
. Thus, x ∈ h−1

(
h
(
h−1(a′) · h−1(b′)

))
=

h−1(a′) ·h−1(b′). �

As a consequence of the previous result, we will
call nd-isomorphism to any bijective algebraic homo-
morphism.

4 CONGRUENCES AND
HOMOMORPHISMS IN
ND-GROUPOIDS

In this section, we concentrate on the relation between
homomorphisms and congruence relations. To begin
with, we recall below the notion of congruence rela-
tion on an nd-groupoid that we are interested in.

Definition 17. Let (A, ·) be an nd-groupoid. A con-
gruence on A is an equivalence relation ≡ which for
all a,b,c ∈ A satisfies that if a ≡ b, then ac ≡ bc and
ca≡ cb, where X ≡Y if and only if for all x ∈ X there

exists y ∈ Y such that x ≡ y and for all y ∈ Y there
exists x ∈ X such that x≡ y.

The following result is a direct consequence of the
definition.

Proposition 18. Let (A, ·) and (B, ·) be nd-groupoids
and h : A→ B be an nd-homomorphism. The kernel
relation ≡h, defined as

a ≡h b if and only if h(a) = h(b),

is a congruence relation.

It is obvious that an algebraic-homomorphism
provides a congruence relation as well. However, be-
ing an nd-homomorphism is not a necessary condition
to provide a congruence relation.

Example 19. Let (Z, ·) with a ·b = {a,b} and (N,?)
with a ? b = {0,a,b}. Let us define h : Z → N
as h(a) = |a|. Then, h is a surjective Benado-
homomorphism but is neither an algebraic or nd-
homomorphism. Straightforwardly, the kernel rela-
tion a≡h b iff |a|= |b| is a congruence relation. �

Theorem 20. Let h : (A, ·) → (B, ·) be a Benado-
homomorphism between nd-groupoids. The kernel re-
lation is a congruence relation if and only if h(ab) =
h
(
h−1(h(a)) ·h−1(h(b))

)
, for all a,b ∈ A

Proof. Assume that the kernel relation is a congru-
ence. Since for all a ∈ A we have a ∈ h−1(h(a)),
and h is a Benado-homomorphism, then h(ab) ⊆
h
(
h−1(h(a)) ·h−1(h(b))

)
.

For the other inclusion, consider h(x) ∈
h(h−1(h(a)) · h−1(h(b))), there exist y ∈ h−1(h(a))
and z ∈ h−1(h(b)) such that x ∈ yz. Since h(y) = h(a)
and h(z) = h(b), under the assumption that the kernel
relation is a congruence, yz≡ ab. So, for x ∈ yz, there
exists x′ ∈ ab such that h(x) = h(x′) ∈ h(ab).

Conversely, assume the equality and let us prove
that the kernel is a congruence. It is sufficient to note
the following chain of equalities for all a,b,c,d ∈ A
such that h(a) = h(b) and h(c) = h(d):

h(ac) =h(h−1(h(a)) ·h−1(h(c)))

=h(h−1(h(b)) ·h−1(h(d))) = h(bd)

�

Finally, it is worth to note that every homomorphism
h defining a congruence relation can be canonically
decomposed as i◦ h̄◦ p, where

• p is the projection homomorphism p(x) = [x] and
[a] · [b] = {[x] | x ∈ ab}.

• h is the isomorphism defined as h([x]) = h(x) and
a ·h b = h(h−1(a) ·h−1(b)).
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• i is the inclusion homomorphism correspond-
ing to the type of the homomorphism of h.
That is, if h is a Benado-homomorphism (re-
spectively, algebraic or nd-homomorphism) then
(h(A), ·h) is a Benado-subgroupoid (respectively,
Birkhoff or nd-subgroupoid) and i is a Benado-
monomorphism (respectively, algebraic or nd-
monomorphism).

5 FUZZY HOMOMORPHISMS
ON ND-GROUPOIDS

A fuzzy relation is a mapping ϕ from A×B into [0,1],
that is to say, any fuzzy subset of A×B. The powerset
extension of a fuzzy relation is defined as, ϕ̂ : 2A×
2B→ [0,1] with

ϕ̂(X ,Y ) =
(∧

x∈X

∨
y∈Y

ϕ(x,y)
)
∧
(∧

y∈Y

∨
x∈X

ϕ(x,y)
)

The composition of fuzzy relations ϕ and ψ is defined
as follows:

(ψ◦ϕ)(a,c) =
∨
b∈B

ϕ(a,b)∧ψ(b,c)

A fuzzy relation ρ on A×A is said to be

1. reflexive if ρ(x,x) = 1, for every x ∈ A

2. symmetric if ρ(x,y) = ρ(y,x), for all x,y ∈ A

3. transitive if for all x,a,y ∈ A we have

ρ(x,a)∧ρ(a,y)≤ ρ(x,y)

A reflexive, symmetric and transitive fuzzy rela-
tion on A is called a fuzzy equivalence. A fuzzy
equivalence ρ on A is called a fuzzy equality if for
any x,y ∈ A, ρ(x,y) = 1 implies x = y.

Definition 21 ((Cabrera, 2009)). A fuzzy equiva-
lence relation ρ on an nd-groupoid (A, ·) is said to
be a fuzzy congruence relation if ρ̂(a1a2,b1b2) ≥
ρ(a1,b1)∧ρ(a2,b2) for all a1,a2,b1,b2 ∈ A.

The fuzzification of the concept of function that
we adopt has been introduced in (Klawonn, 2000),
and also studied in (Demirci, 2000; Demirci, 2003;
Demirci, 2001), and more recently in (Ćirić et al.,
2009). We will introduce the extension of the notion
of perfect fuzzy function.

Definition 22 ((Demirci, 2000)). Let ρ and σ be fuzzy
equalities defined on the sets A and B, respectively. A
partial fuzzy function ϕ from A to B is a mapping
ϕ : A×B→ [0,1] satisfying the following conditions
for all a,a′ ∈ A and b,b′ ∈ B:

ext1 ϕ(a,b)∧ρ(a,a′)≤ ϕ(a′,b)

ext2 ϕ(a,b)∧σ(b,b′)≤ ϕ(a,b′)
part ϕ(a,b)∧ϕ(a,b′)≤ σ(b,b′)
If, in addition, the following condition holds:

f1 For all a ∈ A there is b ∈ B such that ϕ(a,b) = 1

then we say that ϕ is a perfect fuzzy function.

It is not difficult to show that the element b in con-
dition (f1) above is unique. As a result, every perfect
fuzzy function defines a crisp mapping from A to B
called crisp description of ϕ.

Definition 23. Let (A, ·) and (B, ·) be nd-groupoids
endowed with fuzzy equalities ρ and σ, respectively.

A perfect fuzzy function ϕ ∈ [0,1]A×B is said to
be a fuzzy homomorphism if for all a,a′ ∈ A and
b,b′ ∈ B, the following inequality holds:

compat ϕ(a,b)∧ϕ(a′,b′)≤ ϕ̂(aa′,bb′)
Moreover, ϕ is said to be complete if the two fol-

lowing conditions hold:

1. if
∨

y∈Y ϕ(a,y) = 1, then there exists y ∈ Y such
that ϕ(a,y) = 1.

2. if
∨

x∈X ϕ(x,b) = 1, then there exists x ∈ X such
that ϕ(x,b) = 1.

Remark: Hereafter, unless stated otherwise, we will
always consider that we are working with a complete
fuzzy homomorphism ϕ between nd-groupoids A and
B and fuzzy equalities ρ and σ, respectively.

Proposition 24. Given ϕ between A and B, the crisp
description h of ϕ is an algebraic homomorphism.

Proof. Let a1,a2 ∈ A. As ϕ(a1,h(a1)) ∧
ϕ(a2,h(a2))≤ ϕ̂(a1a2,h(a1)h(a2)), we have that∧
a∈a1a2

∨
b∈h(a1)h(a2)

ϕ(a,b)∧
∧

b∈h(a1)h(a2)

∨
a∈a1a2

ϕ(a,b)= 1

and so, for all a ∈ a1a2 we have that∨
b∈h(a1)h(a2) ϕ(a,b) = 1, and by completeness,

there exist b ∈ h(a1)h(a2) such that ϕ(a,b) = 1 and,
therefore, b = h(a). So h(a1a2)⊆ h(a1)h(a2).

Conversely for all b ∈ h(a1)h(a2), we have that∨
a∈a1a2

ϕ(a,b) = 1 and by completeness, there ex-
ist a ∈ a1a2 such that h(a) = b, and so h(a1)h(a2) ⊆
h(a1a2). �

The notion of fuzzy homomorphism between nd-
groupoids behaves properly with respect to the com-
position of fuzzy relations, in that the composition
of fuzzy homomorphisms is a fuzzy homomorphism.
Furthermore, the composition is associative and there
exists an identity for this composition. As a result, the
class of nd-groupoids together with the fuzzy homo-
morphisms between them forms a category.

Let us concentrate now on the relationship be-
tween fuzzy homomorphism and congruences.
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Definition 25. The fuzzy kernel relation induced by
ϕ in A is defined as ρϕ(a,a′) = ϕ(a,h(a′)).

We adopt here the term kernel as an extension of
the crisp case because of the inequality

ϕ(a,b)∧ϕ(a′,b)≤ ρϕ(a,a′)

which can be checked by direct computation.
Theorem 26. Consider ϕ between A and B. The fuzzy
kernel relation ρϕ is a congruence relation which in-
cludes the fuzzy equality ρ in A.

Proof. Let us see that ρϕ is a congruence relation.

ρ̂ϕ(a1a3,a2a4) =

=
∧

a∈a1a3

∨
a′∈a2a4

ρϕ(a,a′)∧
∧

a′∈a2a4

∨
a∈a1a3

ρϕ(a,a′)

=
∧

a∈a1a3

∨
a′∈a2a4

ϕ(a,h(a′))∧
∧

a′∈a2a4

∨
a∈a1a3

ϕ(a,h(a′))

= ϕ̂(a1a3,h(a2a4))
= ϕ̂(a1a3,h(a2)h(a4)) by Prop. 24
≥ ϕ(a1,h(a2))∧ϕ(a3,h(a4))
= ρϕ(a1,a2)∧ρϕ(a3,a4)

Now, let us show that ρ≤ ρϕ:

ρ(a,a′) = ρ(a,a′)∧ϕ(a′,h(a′))

≤ ϕ(a,h(a′)) = ρϕ(a,a′) by (ext1)

�

In the rest of this section we will show the canon-
ical decomposition theorem for a complete fuzzy ho-
momorphism and a fuzzy congruence relation. For
suitable extensions on the notions of injectivity and
surjectivity we will rely on the definitions given
in (Demirci, 2000).
Definition 27. A perfect fuzzy function ϕ ∈ [0,1]A×B

is said to be:
• surjective if, for all b ∈ B there exists a ∈ A such

that ϕ(a,b) = 1.
• injective if, for all a,a′ ∈ A and b ∈ B we have

ϕ(a,b)∧ϕ(a′,b)≤ ρ(a,a′).
• bijective if it is injective and surjective.

The image set is Im ϕ = {b ∈ B | there exists a ∈
A with ϕ(a,b) = 1}.

In order to define the different homomorphisms
involved in the decomposition theorem, we have to
introduce the quotient set associated to a fuzzy equiv-
alence relation.
Definition 28. Let (A, ·) be an nd-groupoid and ρ be a
fuzzy equivalence relation in A. An equivalence class
of an element a ∈ A is defined as

ρ(a) ∈ [0,1]A with ρ(a)(a′) = ρ(a,a′)

The quotient set is defined as A/ρ = {ρ(a) | a ∈ A}
and a fuzzy equality ρ can be defined in A/ρ as
ρ(ρ(a),ρ(a′)) = ρ(a,a′).

The fuzzy projection π from A to A/ρ is defined as
π(a,ρ(a′)) = ρ(a,a′).

Proposition 29. Let (A, ·) be an nd-groupoid, ρ a
fuzzy equality in A and ρA be a fuzzy congruence rela-
tion in A that includes ρ. The fuzzy projection π from
A to A/ρA

is a surjective fuzzy homomorphism where
the nd-operation in A/ρA

is given by

ρA(a1) ·ρA(a2) = {ρA(d) | d ∈ a1a2}

and the fuzzy equality is ρA.

Proof. We will only prove properties (ext1) and
(compat), as the rest of the required properties are
more or less straightforward computations.

ext1 We will use that ρ ≤ ρA and ρA is symmet-
ric and transitive: π(a1,ρA(a2)) ∧ ρ(a1,a3) =
ρA(a1,a2)∧ρ(a1,a3)≤ ρA(a1,a2)∧ρA(a1,a3)≤
ρA(a3,a2) = π(a3,ρA(a2)).

compat π(a1,ρA(a2)) ∧ π(a3,ρA(a4)) =
ρA(a1,a2) ∧ ρA(a3,a4) ≤ ρ̂A(a1a3,a2a4) =
π̂(a1a3,ρA(a2)ρA(a4)) �

Remark: In order to prove that the canonical inclu-
sion from the image of a homomorphism is an in-
jective fuzzy homomorphism, we recall the follow-
ing result from (Demirci, 2000): given ϕ between
A and B, there exists a unique crisp function f such
that ϕ(a,b) = σ( f (a),b). This f actually coincides
with the crisp description h of ϕ, which satisfies
ϕ(a,h(a)) = 1.

Lemma 30. Given ϕ between A and B, then the in-
clusion ι from Im ϕ to B defined as ι(b,b′) = σ(b,b′)
is an injective fuzzy homomorphism.

Proof. We only prove property (compat):
Let b1,b2 ∈ Im ϕ and a1,a2 ∈ A such that h(a1) =

b1 and h(a2) = b2. Then ι(b1,b3) ∧ ι(b2,b4) =
σ(b1,b3)∧σ(b2,b4) = σ(h(a1),b3)∧σ(h(a2),b4) =
ϕ(a1,b3) ∧ ϕ(a2,b4) ≤ ϕ̂(a1a2,b3b4). Now, by
Proposition 24, ϕ̂(a1a2,b3b4) = ι̂(h(a1a2),b3b4) =
ι̂(h(a1)h(a2),b3b4) = ι̂(b1b2,b3b4). �

Theorem 31. Any complete fuzzy homomorphism ϕ

from A to B can be canonically decomposed as ϕ =
ι◦ϕ◦π where π is the fuzzy projection from A to A/ρϕ

,
ι is the inclusion from Im ϕ to B, and ϕ is the isomor-
phism from A/ρϕ

to Im ϕ defined as ϕ(ρ
ϕ
(a),b) =

ϕ(a,b), and the nd-operation and the fuzzy equality
in Im ϕ being the corresponding restrictions of those
in B.
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Proof. Firstly, let us prove (ext1), (inj) and (surj), the
rest of properties are straightforward:

ext1 ϕ(ρ
ϕ
(a),b) ∧ ρϕ(ρ

ϕ
(a),ρ

ϕ
(a′)) =

ϕ(a,b) ∧ ρϕ(a,a′) = ϕ(a,b) ∧ ϕ(a,h(a′)) =
ϕ(a,b) ∧ ϕ(a,h(a′)) ∧ ϕ(a′,h(a′)) ≤
σ(b,h(a′))∧ϕ(a′,h(a′))≤ ϕ(a′,b) = ϕ(ρ

ϕ
(a′),b)

inj ϕ(ρ
ϕ
(a),b)∧ ϕ(ρ

ϕ
(a′),b) = ϕ(a,b)∧ ϕ(a′,b) ≤

ρ
ϕ
(a,a′) = ρϕ(ρ

ϕ
(a),ρ

ϕ
(a′)).

surj For all b ∈ Im ϕ there exists a ∈ A such that
ϕ(a,b) = 1 and then ϕ(ρ

ϕ
(a),b) = 1

Finally, let us check that ϕ = ι◦ϕ◦π:

(ι◦ϕ◦π)(a,b) =

=
∨

ρϕ (a′)∈A/ρϕ

b′∈Im ϕ

(
π(a,ρ

ϕ
(a′))∧ϕ(ρ

ϕ
(a′),b′)∧ ι(b′,b)

)

=
∨

a′∈A
b′∈Imϕ

(
ρ

ϕ
(a,a′)∧ϕ(a′,b′)∧σ(b′,b)

)
(ext2)
≤

∨
a′∈A

(
ρ

ϕ
(a,a′)∧ϕ(a′,b)

)
(de f ρϕ )

=
∨

a′∈A

(
ϕ(a,h(a′))∧ϕ(a′,b)

)
( f 1)
=

∨
a′∈A

(
ϕ(a,h(a′))∧ϕ(a′,h(a′))∧ϕ(a′,b)

)
(part)
≤

∨
a′∈A

(
ϕ(a,h(a′))∧σ(h(a′),b)

)
(ext2)
≤ ϕ(a,b)

Conversely, ϕ(a,b) = σ(h(a),b) = π(a,ρϕ(a)) ∧
ϕ(ρϕ(a),h(a))∧σ(h(a),b)≤ (ι◦ϕ◦π)(a,b). �

6 CONCLUSIONS AND FUTURE
WORK

We have studied the relationship between the crisp
notions of congruence, homomorphism and substruc-
ture on some non-deterministic algebras which have
been used in the literature, i.e. hypergroups, and join
spaces, as a step towards developing a general theory
of L-fuzzy sets where L is a multilattice (a particu-
lar case of non-deterministic algebra). Moreover, we
have provided suitable extensions of these notions to
the fuzzy case.

As future work, we will study homomorphisms
and congruences in some algebraic nd-structures,
such as hyper-rings and hyper-near-rings, with the
aim of investigating the adequate notion of ideal for

them, together with the possible interactions with sev-
eral applications of these structures already published
in the literature. Then, we will analyze the behaviour
of the extension of a fuzzy homomorphism between
nd-groupoids to the powerset structures. At the same
time, we will investigate weaker definitions which ex-
tend that of nd-homomorphism, in order to to obtain
a more abstract and flexible approach. The fuzzy no-
tions introduced in this paper will be studied in a more
general framework by substituting the unit interval
with a lattice-based structure.

Finally, it is worth to note that the notion of func-
tion compatible with certain structure is crucial in
the study of fields such as Functional Dependencies
in Databases, Attribute Implication in Formal Con-
cept Analysis, Association Rules in Datamining, etc.
Thus, we will analyze the possible applications de-
rived from our work on these research lines.
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