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Abstract: Analysis of spectral reflectance curves is useful in many application fields. Despite the functional nature of
these curves, statistical methods used to date for analysing these curves (classification, analysis of variance,
etc.) have tended to be scalar and do not fully take advantage of the information they contain as functional
objects. In this article we applied functional analysis of variance to spectral reflectance curves in order to
evaluate the impact of protective treatments on granite colour.
The use of raw information on the spectrum means that significant changes are detected that might go unno-
ticed in models that use scalar values to measure colour. The application of the funcional approach enables
information to be obtained on changes whose intensity are statistically significant at each point of the spectrum
without the need to perform different analyses for each area of the spectrum. Furthermore, the computational
load is no greater than for classical multivariate models.

1 INTRODUCTION

Analysis of spectral reflectance curves is useful in
several application fields, such as astronomy, agricul-
ture, engineering, meteorology, environment, mining,
geographical information systems, etc. (see for exam-
ple, (Cho and Skidmore, 2006), (Stevens et al., 2006),
(Ayala-Silva and Beyl, 2005), (Henry et al., 2004),
(Iñigo et al., 2004), (Lacar et al., 2001), (Richardson
et al., 2001), (Lebow et al., 1996) and references cited
therein).

However, statistical methods currently used for
this kind of analysis (classification, discrimination,
regression, etc) has a basically scalar or, at best, multi-
variate, nature and so curves are considered merely as
sets of observed points. When curves are considered
under a functional view, the goal is not to implement
a statistical analysis that handles them as such func-
tional objects, but to implement a preliminary step to
graphic or analytical studies (such as, for example, a
functional approximation, the calculation of deriva-
tives, or interpolation or extrapolation at some point
of the spectrum, etc.), or statistical analysis of scalar
indicators of some of their overall analytical proper-

ties (see the references given above).
In this article we describe a novel application

of analysis of variance (e.g. (Montgomery, 1997))
with a functional approach (functional ANOVA or
FANOVA) (Ramsay and Silverman, 1997), (Cuevas
et al., 2004) to an analysis of spectral reflectance
curves with a view to evaluating the impact of several
protective treatments on granite rock colour.

In the architectural heritage preservation field, the
colour of stone surfaces constitutes an element of the
historical and artistic value of a monument, and, as
such, should not undergo changes following cleaning,
protection or consolidation processes (Lazzarini and
Tabasso, 1986). It is therefore important to be aware
of the potential impact of such treatments on orna-
mental rock so as to be able to avoid treatments that
cause colour changes and choose treatments that are
more suitable for preservation purposes.

Colour is quantitatively expressed using spec-
trophotometers which, based on measuring re-
flectance throughout the visible spectrum, define
colour using colorimetric coordinates in the stimu-
lus space of a standard observer. Coordinate sys-
tems widely used in this context include, for ex-
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ample, CIEL∗ a∗ b∗ and CIEL∗ C∗
ab H∗

ab systems
(L’ECLAIRAGE-CIE, 2007), which are based on
combining the spectral properties of the light source,
the reflectance curve of an object and the sensitiv-
ity of a standard observer. In this research, we fo-
cused particularly on the changes produced in the ob-
ject itself, in an endeavour to determine, directly from
changes in the spectral reflectance curve, the mean-
ing of changes in rock colour produced by protective
treatment. Another article currently in preparation
(Rivas et al., 2009) will focus on analysing changes
produced at the level of the stimulus space for a stan-
dard observer.

The application of a functional approach is partic-
ularly significant for the problem at hand, given the
great heterogeneity of colour in the rocks that are typ-
ically used in historical buildings. This is the case of
igneous rocks (like granite), where the overall colour
is the result of the colour contributions of different
minerals: the whites and greys of quartz and mus-
covite, the pinks and greys of the feldspars and the
browns and blacks of iron-rich minerals. The rela-
tive quantities for each mineral (mineralogy), grain
size and the distribution of mineral grains relative to
each other (texture) are features that have a bearing
on colours and colour measure repeatability. Changes
brought about by a treatment can easily be masked or
erroneously evaluated as a consequence of the innate
variability of the colour of a rock ((Rivas et al., 1998),
(Berns, 2000)).

The article is structured as follows: first we briefly
describe the FANOVA methodology; next we de-
scribe the application problem, specifying the meth-
ods used and the results obtained; and finally we de-
scribe our conclusions.

2 FUNCTIONAL ANOVA

2.1 Introduction to Functional Linear
Models

The linear regression model for a single input variable
X and a response variableY takes the form:

E(Y|X) = α+ βX

whereα,β are the regression coefficients. This model
is easily generlaized tod regression variablesX =
(X1, ...,Xd)

T by means of

E(Y|X) = µ+
d

∑
i=1

βiXi = α+ 〈X,β〉 (1)

whereα andβ = (β1, ...,βd)
T are now the regression

coefficients.

A functional linear regression model (Ramsay and
Silverman, 1997) is an extension of the multivari-
ate linear regression model to the case of infinite-
dimensional or functional data. For eacht ∈ T :

E(Y(t)|X) = α(t)+ 〈X,β(·,t)〉

= α(t)+

∫

X(s)β(s,t)ds (2)

with a parameter functionβ : T ×T → R and a over-
all mean response functionα : T → R. The data are
a sample of pairs of random functions(X,Y), with X
the predictor andY the response functions.

The above functional model can also be extended
to the case of several functional predictors as follows:

E(Y(t)|X) = α(t)+ 〈X,β(·,t)〉

= α(t)+
d

∑
j=1

∫

Xj(s)β j(s,t)ds (3)

whereX = (X1, ...,Xd) are the functional predictors
andY is the response function.

Intermediate models between classical (1) and
general (3) are models that produce a scalar response
with functional predictors and models (like those used
in this research) that produce a functional response
with scalar predictors. The general model is as fol-
lows:

E(Y(t)|X) = α(t)+ 〈X,β〉
= α(t)+Xβ(t)

= α(t)+
d

∑
j=1

Xjβ j(t) (4)

whereX is the matrixn× d of the design with el-
ements(X)i j = Xj ,i (the i-th observation of thej-th
scalar covariable),α is the overall functional mean
andβ is the functional vector of thed functional co-
efficientsβ j , with i = 1, ...,n, j = 1, ...,d.

2.2 Function Smoothing

In the functional model, we do not see the sample
functions (in our case, response functions)yi , i =
1, ...,n in the majority of applications, but only their
valuesyi(t j) at a set ofnp pointst j ∈ R, j = 1, ...,np.

For the sake of simplicity, we shall assume these to
be common to all the functionsyi , i = 1, ...,n. These
observations may, moreover, be subject to noise, in
which case they take the form:zi j = yi(t j)+εi j , where
we assume thatεi j is random noise with zero mean,
i = 1, ...,n, j = 1, ...,np.

Therefore, the functional approach first requires
estimating each sample functionyi ∈ F , i =
1, ...,n. One way to do so is to assume thatF =
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span{φ1, ...,φm} with {φk} sets of basis functions
(Ramsay and Silverman, 1997). For our research, we
chose a family of B-splines as the set of basis func-
tions, given their good local behaviour. If, for the sake
of simplicity, we represent asyany of the functionsyi ,

i = 1, ...,n in the sample, we have:

y(t) =
m

∑
k=1

ckφk (t) = cTΦ(t) (5)

whereΦ(t) = (φ1(t), ...,φm(t))T
.

Hence, the smoothing problem consists in deter-
mining the solutiony to the following regularization
problem:

min
x∈F

np

∑
j=1

{

zj −y(t j)
}2

+ λΓ(y) (6)

wherezj = y(t j)+ε j is the result of observingy at the
point t j , Γ is an operator that penalizes the complex-
ity of the solution, andλ is a regularization parameter
that regulates the intensity of this penalization. In our
case, we used the operatorΓ(y) =

∫

T

{

D2y(t)
}2

dt,
whereT =[tmin, tmax] andD2 is the second-order dif-
ferential operator.

Bearing in mind the expansion (5), the above
problem (6) may be written as:

min
c

{

(z−Φc)T(z−Φc)+ λcTRc
}

where z= (z1, ...,znp)
T
, c = (c1, ...,cnb)

T
, Φ is the

np×nb matrix with elementsΦ jk = φk(t j) andR is the
nb×nb matrix with elementsRkl =

〈

D2φk,D2φl
〉

L2(T )

=
∫

T D2φk(t)D2φl (t)dt.
The solution to this problem is given bŷc =

(ΦTΦ + λR)−1ΦTz, such that the estimated values
of the true functiony at the observation points are
obtained by means of̂y = Sz, whereS= Φ(ΦTΦ +
λR)−1ΦT andŷ = (ŷ(t1) , ..., ŷ

(

tnp

)

)T .
The selection of theλ forms part of the model se-

lection problem and is usually performed using cross
validation.

2.3 Fitting the Functional Response –
Scalar Predictor Linear Model

Below we focus on the functional response model
with scalar covariables (4) as used in this research.
So as to avoid the independent termα(t), below, we
propose assuming that the vector of covariables in-
cludes a first constant covariable equal to 1 whose
functional coefficient isβ1 = α. We can thus refor-
mulate the model (4) as:

E(Y(t)|X) = Xβ(t) =
d

∑
j=1

Xjβ j(t) (7)

Within this framework, we assume that the above
smoothing process on the example functions produces
the expansionsyi(t) = cT

i Φ(t), i = 1, ...,n which may
be jointly written by means ofy(t) = Cφ(t) whereC
is a matrixn×mwith rowscT

i i = 1, ...,n.
We likewise assume that each of the functional co-

efficientβ j admits an expansion in terms of the afore-
mentioned bases:

β j(t) =
m

∑
k=1

b jkηk(t) = bT
j η(t)

where b j = (b j1, ...,b jm)T
. This may be written in

functional form as:β j = bT
j Φ. Using this expression

for all the coefficientsβ j jointly, we obtain:

β = (β1, ...,βd)
T = Bη

whereB is a matrixd×mβ with rowsbT
j , j = 1, ...,d.

From all the above, for each observationi =
1, ...,n, the model (7) becomes: ˆyi(t) = xiβ(t) =
xiBη(t) or equivalently, in compact functional form:
ŷi = xiBη. Applying the above to all the example
observations, we obtain the following functional-type
vectorial expression:

ŷ = XBη
The fit is carried out using the criterion of regular-

ized minimum squared errors:
n

∑
i=1

‖yi − ŷi‖
2
L2(T ) + λΓ(β)

=

∫

(y(t)− ŷ(t))T (y(t)− ŷ(t))dt+ λΓ(β)

=
∫

(Cφ(t)−XBη(t))T (Cφ(t)−XBη(t))dt

+ λ
∫

[Lβ(t)]T [Lβ(t)]dt

= trace
{

CTCJφφ
}

+ trace
{

XTXBJηηBT}

−2trace
{

BJηφCTX
}

+ λ trace
{

BRBT}

(8)

where Jηη =
∫

η(t)η(t)Tdt, Jφφ =
∫

Φ(t)φ(t)Tdt,
Jηφ =

∫

Φ(t)η(t)Tdt andΓ is a regularization oper-
ator that penalize the complexity ofβ as a function of
t:

Γ(β) =
∫

[Lβ(t)]T [Lβ(t)]dt

=

∫

[LBη(t)]T [LBη(t)]dt

= trace
{

BRBT}

where R is an mβ × mβ matrix with (R)k,l =
〈Lηk,Lηl 〉L2(T ) .

Deriving the expression (8) with respect toB, the
following normal equations are obtained (Ramsay and
Silverman, 1997):

XTXBJηη + λBR = XTCJφη
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and also the following expression of the solution in
terms of the Kronecker product⊗:

vec(B) =
[

(Jηη + λR)⊗
(

XTX
)]−1

vec
(

XTCJφη
)

where vec(B) is the column vector obtained by stack-
ing the columns of the matrixB on top of one another
and whereλ can be selected using, for example, cross-
validation.

2.4 ANOVA Table and F Test

The significance of the model can be evaluated us-
ing one of two possible approaches: by evaluating
the significance of the functional model as a whole
(e.g. (Cuevas et al., 2004), (Ramsay and Silverman,
1997)), or by performing an analysis of significance
at each pointt ∈ T . This latter approach is of partic-
ular interest in our research as we wish to identify the
wavelengths where significant changes occur. Signif-
icance, in any case, for eacht ∈ T logically provides
overall significance for the functional model.

The significance of the model for each point
can be determined using a functional version of
Snedecor’sF distribution, in which the statistic is
also a function defined in the supportT for the F
functions (Ramsay and Silverman, 1997). This pro-
duces anF distribution for each point of this support,
enabling detection of possibly statistically significant
changes in areas where changes occur. Given that the
following expressions are functions oft ∈ T :

SSE(t) =
n

∑
i=1

(yi(t)− ŷi(t))
2

SSY(t) =
n

∑
i=1

(yi − α̂(t))2

SSM(t) = SSY(t)−SSE(t)

the statistics of the ANOVA table also are functions
of t:

Source of
Variation

d f MS(t) = SS(t)
d f F(t)

Model d−1 MSM(t) MSM(t)
MSE(t)

Error n−d MSE(t)
Total n−1

Therefore, anF test can be performed for each
t ∈ T .

3 DETECTING CHANGES IN
REFLECTANCE CURVES
USING FUNCTIONAL ANOVA

3.1 Data and Experiment Design

Used in the experiment was a medium-grained pre-
Hercynian granite composed of quartz, mica (mus-
covite and biotite) and feldspar. This granite,
brownish-yellow in colour, is widely used in archi-
tectural monuments in northwest Spain.

The rock was treated with water repellent prod-
ucts intended to prevent or slow down water entry in
the rock and consequent deterioration. The products
applied were BS29 (supplied by Wacker Chimie) and
Tegosivin HL100 (supplied by Evonik). BS29 is a
water thinnable mixture of silane, siloxane and syn-
thetic resins and Tegosivin HL100 is an solvent or-
ganic methylethoxy polysiloxane. For each product,
five prisms (5x5x1 cm) were selected. Colour was
measured at eight points chosen at random prior to
the application of each product. A 5% (w/w) solu-
tion of each product (using white spirit as a solvent in
the case of Tegosivin HL100 and distilled water in the
case of BS29) was applied to the samples via partial
immersion for one minute. After 48 hours colour was
measured at another eight points of the treated surface
of the prism chosen at random.

Colour was measured using a Minolta CM710
spectrophotometer in SCI mode, using D65 as a light
source, an 8 mm target area and an observer angle
of 10◦. Obtained for each point were values of the
reflectance spectrum, expressing the percentage of re-
flectance of the object for every 10 nm of wavelength
in the range between 400 and 720 nm (support for the
functions was thus the wavelength intervalT = [400,
720] nm).

Observations for each product totalled 40,
whether as colorimetric coordinates and attributes
or as spectral reflectance curves. The curves were
smoothed and assumed to belong to a functional space
F = 〈{φ1, ...,φd}〉 generated by a set of order 6 B-
splines with 12 knots, resulting in a total ofd = 16 ba-
sis functions. (This number of basis functions, chosen
in view of the complexity of the observed functions,
does not produce significant changes in the results for
a wide range of values). Hence, all the spectral func-
tions are unambiguously determined by their coeffi-
cients in terms of the expression:

y =
m

∑
i=1

ciφi

Changes in colour were evaluated by means of
the application of FANOVA to the reflectance curves
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obtained. For each protective treatment used (BS29
or HL100), a full factorial design for treatment fac-
tors (no/yes), prism (1, 2, 3, 4 and 5) and interaction
was postulated, with the following functional linear
model:

yi jk = µ+ αi + β j +(αβ)i j + εi jk

i = 1, ..., p, j = 1, ...,q, k = 1, ..., r,

with p = 2 levels of treatment (treated or untreated),
q= 5 different test prisms andr = 8 replications, sub-
ject to restrictions as follows:

2

∑
i=1

αi = 0;
5

∑
j=1

β j = 0;
2

∑
i=1

(αβ)i j = 0;∑
i j

(αβ)i j = 0

(9)
whereyi jk ,∈ F was the spectral reflectance curve ob-
tained from the spectrophotometer for the observa-
tion i jk, µ∈ F was the global mean for these curves,
αi ∈ F was the main effect corresponding to leveli of
the treatment factor (treated or untreated),β j ∈ F was
the main effect corresponding to levelj of the prism
factor (prismj), (αβ)i j ∈ F was the interaction effect
between leveli and prismj and whereεi jk ∈ F was a
residual function accounting for the unexplained vari-
ation specific to thek-th observation for prismj with
treatmenti.

Note that the restrictions (9) imply sum zero in
such a way that each main effect represents the mean
alteration of the global mean for each treatment, and
each interaction effect indicates the mean alteration
for each main effect caused by each combination of
levels of the factors.

3.2 Results

Figure 1 shows for BS29 the overall mean and the
effect of no treatment and the effect of treatment. As
can be observed, the effect of treatment was negative,
indicating a reduction in the intensity of the spectral
reflectance curves which should indicate that colour
of the rock becames darker.

The significance of these effects are analysed in
Figure 2 (BS29) and 3. The last one shows (left to
right) the curves for the FANOVA table and the func-
tional F statistics corresponding to the treatment fac-
tor, the prism and the crossed treatment× prism fac-
tor. In these figures, the broken line indicates the
value of F that corresponds to 5% significance for
eacht ∈ T ; values below this level should be consid-
ered less significant or non-significant. The content of
each FANOVA table responds to Table 1, withp = 2
(levels of treatment),q = 5 (prisms),r = 8 (replica-
tions) andn= pqr = 80 observations, and where (e.g.

(Montgomery, 1997)):

SSY =
p

∑
i=1

q

∑
j=1

r

∑
k=1

y2
i jk −

y2
···

kpr

SSP =
1
qr

p

∑
i=1

y2
i··−

y2
···

kpr

SSQ =
1
pr

q

∑
j=1

y2
· j ·−

y2
···

kpr

SSPQ =
1
r

p

∑
i=1

q

∑
j=1

y2
i j ·−

y2
···

kpr
−SSP−SSQ

SSE = SSY −SSP−SSQ−SSPQ

are the different ANOVA decomposition functions.
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Figure 1: For BS29, overall mean, effect of level 1 treatment
(No) and level 2 treatment (Yes).

Table 1: ANOVA table corresponding to the full factorial
design used.

Variation d f MS(t) = SS(t)
d f F(t)

Treat. p−1 MSP(t) MSP(t)
MSE(t)

Prism q−1 MSQ(t)
MSQ(t)
MSE(t)

Treat.×
Prism

(p−1)×
(q−1)

MSPQ(t)
MSPQ(t)
MSE(t)

Error pq(r −1) MSE(t)
Total n−1

As can be observed in Figures 2 and 3, the ap-
plication of BS29 produces significant changes in the
reflectance curve as a consequence of the three fac-
tors, namely, application of the treatment, prism and
treatment×prism. For the last two of these factors,
this change is significant for the entire spectrum con-
sidered, whereas in regard to the treatment factor, the
change is not significant above 600nm (orange-red re-
flectance).

Combining these results with the sign of the ef-
fect (Figure 1) it can be concluded that treatment with
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Figure 2: Components of the FANOVA table for BS29.

400 500 600 700

4

5

6

7

8

9

10

11

wave−length (nm)

F concentration

400 500 600 700

3

4

5

6

7

8

9

10

11

12

13

wave−length (nm)

F test−prism

400 500 600 700

4

6

8

10

12

14

wave−length (nm)

F conc*test−prism

Figure 3: F tests for the product factor, prism factor and
treatment×prism factor for BS29. The horizontal broken
line indicates a 5% significance level.

BS29 produces a reduction in colour reflectance in the
entire spectrum except for the orange-red part.

As for application of THL100, the FANOVA
results (not shown) indicate that the prism and
treatment×prism factors are equally significant in the
entire spectrum considered, whereas the treatment
factor is only significant for smaller wavelengths, cor-
responding to reflectance in the lower green part and
in all the blue and purple parts. It can be concluded
that treatment with THL100 also produces a reduc-
tion in colour reflectance, but only conclusively be-
low 500nm (the lower green part and all the blue and
purple parts). This reduction is also more intense for
smaller wavelengths.

Finally, it should be noted that for both products
there was high standard deviation in the upper part of
the spectrum, from the wavelength value above which
there was no significance for the treatment factor for
THL100 and low significance for the treatment factor
for BS29. This would appear to indicate that some

factor exists, not associated with the presence of the
treatments, whose dispersion in a part of the spectrum
prevents the model from capturing the variability as-
sociated with the presence of the product.

The indications are that this factor arises in the
chromatic variability existing in the rock, with stan-
dard deviation higher in the range of the spectrum
covering the colours yellow, orange and red. The
colour of the rock is yellow-reddish, resulting, on
the one hand, from cream-yellow feldspars (less in-
tense colours for albite-anortite compositions and yel-
lower for potassium compositions) and, on the other
hand, from brownish-reddish iron oxyhydroxide pati-
nas distributed unevenly throughout the rock.

Furthermore, since the rock is fine-grained hetero-
granular granite, colour is strongly determined by tex-
tural unevenness in the rock. This is manifested in the
great dispersion in the reflectance spectra in the range
corresponding to the rock colour range, i.e., mainly
above 600 nm (orange-red). This variability prevents
the model from detecting, in this particular range, the
effects of the treatments, although it does not prevent
it doing so in the range where dispersion is less—that
is, below green and towards the blues. The signifi-
cance in the entire spectrum for the prism and treat-
ment prism factors is also a consequence of this chro-
matic variability and textural unevenness in the rock.

4 CONCLUSIONS

We described how we used FANOVA to evaluate
changes in spectral reflectance curves resulting from
the application of two commercial protective treat-
ments to granite rock (BS29 and Tegosivin HL100).
Methods used to date are scalar and have to be ap-
plied repeatedly at points or areas of the spectrum in
order to determine the statistical significance of wave-
length changes. The results obtained in our research
demonstrate the usefulness of the functional approach
when it is necessary to analyse changes in functional
objects, such as reflectance curves. The application of
the funcional approach enables information to be ob-
tained on changes whose intensity are statistically sig-
nificant at each point of the spectrum (without having
to perform analyses for each point of the spectrum)
and changes that might go unnoticed in models that
use scalar values to measure colour. Furthermore, the
computational load is no greater than that required for
multivariate ANOVA (except for the effort required to
smooth the functions in the sample).

The method was applied to evaluating the changes
in colour reflectance for granite rock following the ap-
plication of two water repellent products (BS29 and
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HL100). The results showed a reduction in colour re-
flectance in the rock, although, for the BS29, the re-
duction affected wavelengths below 650 nm (yellow)
and for the HL100, the reduction was only significant
in wavelengths below 500 nm.

For both products, a reduction in the luminosity
of the rock can be anticipated, greater in the case of
BS29. In upcoming research, we will analyse how de-
tected reflectance changes influence changes in colour
as perceived by a standard observer. In other words,
we will apply this functional approach to the colour
curves resulting from superimposing the source spec-
tral curve, the object reflectance curve and the colour
matching curves of the standard observer, so as to be
able to measure the colour in the stimulus space. The
results obtained will be compared with those that clas-
sical statistical methods (e.g. multivariate ANOVA)
obtain in any normal space for measuring colour (e.g.
CIE L∗ a∗ b∗).

Finally, the significance of the prism effect and of
the interaction between the prism factor and the treat-
ment factors suggest a design that reduces the vari-
ability produced by the experimental unit (prism) as
far as possible. In regard to FANOVA, the lesser sig-
nificance in the upper part of the spectrum may be a
result of the greater variance in the curves in this part
of the spectrum as a consequence of the granite’s own
colour characteristics. One of our new lines of re-
search is the design of new experiments that deal with
this variability (e.g. paired designs or designs with
additional random blocking factors).
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