
EVOLVED DUAL WEIGHT NEURAL ARCHITECTURES  
TO FACILITATE INCREMENTAL LEARNING 

John A. Bullinaria 
School of Computer Science, University of Birmingham, Birmingham, B15 2TT, U.K. 

Keywords: Incremental Learning, Evolutionary Computing, Neural Networks, Dual Weight Architectures. 

Abstract: This paper explores techniques for improving incremental learning performance for generalization tasks. 
The idea is to generalize well from past input-output mappings that become available in batches over time, 
without the need to store past batches.  Standard connectionist systems have previously been optimized for 
this problem using an evolutionary computation approach.  Here that approach is explored more generally 
and rigorously, and dual weight architectures are incorporated into the evolutionary neural network 
approach and shown to result in improved performance over existing incremental learning systems.  

1 INTRODUCTION 

Learning from past input-output mappings in a way 
that generalizes well to produce appropriate outputs 
for inputs that have not been encountered before is a 
ubiquitous machine learning problem.  Artificial 
neural network approaches have been particularly 
successful at this.  However, there are critical 
limitations to this idea when the training data 
becomes available in batches over a period of time, 
such as the necessity to store past data, and the 
problem of incorporating the new data without 
having to start the training from scratch.  For many 
real world applications, the learning really is an 
ongoing process, and efficient processes for using 
new data to improve performance are required 
(Giraud-Carrier, 2000).  This is the problem of 
“incremental learning” that this paper addresses. 

Past neural network approaches have been 
primarily concerned with memory tasks, rather than 
generalization tasks, and have tended to focus on 
minimizing catastrophic forgetting (Frean & Robins, 
1999; French, 1999).  Progress there has been made 
by abstracting the complementary learning systems 
known to exist in the human brain (e.g., McClelland, 
McNaughton & O’Reilly, 1995) to produce a range 
of successful coupled neural network systems (e.g., 
Ans et al., 2002).  However, a much simpler 
approach based on optimizing traditional neural 
networks (Bishop, 1995) using evolutionary 
computation techniques (Bullinaria, 2007; Yao, 
1999) has also produced improved performance 

(Seipone & Bullinaria, 2005a).  Moreover, 
combining previously studied dual weight 
architectures (Hinton & Plaut, 1987) with the 
evolutionary approach can result in even more 
improvement (Seipone & Bullinaria, 2005a). 

For the kinds of generalization tasks more 
relevant to real world applications, some success has 
been achieved with the Learn++ neural network 
ensemble approach of Polikar et al. (2001, 2002), 
but extending the evolutionary approach from 
memory tasks (Seipone & Bullinaria, 2005a) appears 
to provide even better performance (Seipone & 
Bullinaria, 2005b), though a more statistically 
rigorous study is needed to confirm that.  The main 
aims of this paper are to test more carefully the basic 
evolutionary approach on generalization tasks, and 
to explore whether the introduction of dual weight 
architectures can lead to further improvements in the 
way they did for memory tasks. 

The next section looks in more detail at 
incremental learning for generalization tasks, and 
Section 3 provides some baseline performance levels 
for a standard benchmark data-set.  Then Section 4 
describes how evolutionary computation techniques 
can be used to optimize neural systems.  Section 5 
presents results from a series of experiments that 
study the evolved incremental learning neural 
networks, and investigate whether dual weight 
neural architectures can result in further 
performance improvements.  The paper ends with 
some conclusions in Section 6. 

427
Bullinaria J. (2009).
EVOLVED DUAL WEIGHT NEURAL ARCHITECTURES TO FACILITATE INCREMENTAL LEARNING.
In Proceedings of the International Joint Conference on Computational Intelligence, pages 427-434
DOI: 10.5220/0002315304270434
Copyright c© SciTePress



 

2 INCREMENTAL LEARNING 

The topic of interest here is generalizing well from 
past input-output mappings that become available in 
batches over time, without the need to store past 
batches.  For such incremental learning systems to 
be considered successful, there are four crucial 
properties that are required (Polikar et al., 2001).  
Learning new data must: 
1. result in improved generalization performance, 
2. not require access to the previous training data, 
3. not cause large scale forgetting of previously 

learned data, and 
4. allow the accommodation of new data classes. 
Humans seem to have all these properties, but 
achieving them in artificial neural network systems 
seems more difficult.  When a neural network is 
trained on a new batch of data, its weights, which 
encode its input-output mapping, are modified.  If 
this is not done carefully, the information learned 
from previous training patterns can be lost, and the 
performance can become worse rather than better.  
The aim is to update the weights in such a way that 
the new information is incorporated usefully, 
without excessively disrupting what was there 
before.  One obvious approach, that only partially 
violates property 2, is to keep a representative sub-
set of the past training data, or pseudo data items 
that represent the past data, and use them along with 
the current data batch (Frean & Robins, 1999). 

Another approach, that has worked well for 
memory tasks, without violating property 2, has 
been to employ dual neural networks (modeled on 
human brain regions) to interleave the new 
information with the old (e.g., Ans et al., 2002; 
McClelland, et al., 1995).  A further approach has 
used simulated evolution by natural selection to 
generate standard neural networks with parameters 
that allow improved performance (Seipone & 
Bullinaria, 2005a), and then this can be extended to 
evolve more sophisticated dual-weight networks, 
which have two additive weights between each pair 
of nodes, as originally proposed by Hinton & Plaut 
(1987).  There is one standard set of connection 
weights, and an additional set of “fast weights” that 
have larger learning rates and a large weight decay 
rate that prevents them from having long term 
memory.  The additional set of weights allows the 
new information to be incorporated more smoothly, 
as with the dual network approach, but with a much 
simpler architecture (Seipone & Bullinaria, 2005a).  

For generalization tasks, most success was first 
achieved by somewhat different approaches.  In 

particular, the Learn++ algorithm of Polikar et al. 
(2001) employed an ensemble of weak classifiers to 
generate multiple hypotheses using training data 
sampled according to some tailored distributions.  
Their simulation results on a range of benchmark 
classification problems showed how this algorithm 
satisfied all the incremental learning properties listed 
above.  However, this algorithm involves a large 
number of parameters that are fixed by hand in a 
rather ad hoc manner, and it has since been 
suggested that better results may be achieved using 
evolutionary computation techniques to optimize 
standard neural networks in the same way as for 
memory tasks (Seipone & Bullinaria, 2005b). 

3 BASELINE PERFORMANCE 

Before exploring the novel approaches of this paper, 
it is useful to establish some baseline performance 
levels for traditional neural networks (Bishop, 1995) 
and for the Learn++ approach of Polikar et al. 
(2001, 2002).  For concreteness, one particular 
standard classification problem will be studied, but 
the applicability to other problems should be clear.  
To facilitate comparison with the earlier research, 
the main incremental learning data set studied by 
Polikar et al. (2001, 2002) was chosen, namely the 
optical digits database from the UCI machine 
learning repository (Blake & Merz, 1998).  This 
contains hand-written samples of the digits 0 to 9 
digitised on to an 8×8 grid to create 64 input 
attributes for each sample, with a training set of 
3823 patterns and a separate test set of 1797 
patterns, and the ten classes spread fairly evenly 
over both sets. 

To study basic incremental learning, the training 
set is divided randomly into six distinct batches of 
200 patterns (each with 20 patterns from each digit 
class) for six stages of incremental training, plus a 
further distinct sub-set of 1423 patterns to be used as 
a validation set during the evolution.  That leaves 
another six batches of 200 unseen training patterns 
to be used only after the whole evolutionary process 
has been completed, which ensures that the evolved 
neural networks only see new data and fully satisfy 
property 2.  The aim is to maximise the final 
generalization performance after training, and the 
validation set is used to estimate that to provide a 
measure of fitness to drive the evolutionary process.  
The test set is not used until the whole evolutionary 
process is completed, at which point it is used to 
evaluate the incremental learning performance of the 
evolved networks using the unseen training patterns.   

IJCCI 2009 - International Joint Conference on Computational Intelligence

428



Table 1: Incremental learning performance for traditional back-propagation neural networks on the basic Optical Digits data 
set of Polikar et al. (2001).  Mean percentage rates of correct classification, with standard errors in brackets.  

 T1 T2 T3 T4 T5 T6 
B1 100.00 (0.00)  95.51 (0.05)  93.88 (0.06)  92.85 (0.06) 91.59 (0.09) 89.98 (0.11) 
B2 -- 100.00 (0.00)  94.66 (0.06)  93.08 (0.07) 91.78 (0.08) 90.01 (0.11) 
B3 -- -- 100.00 (0.00)  93.87 (0.07) 91.87 (0.08) 90.08 (0.12) 
B4 -- -- -- 100.00 (0.00) 92.69 (0.09) 90.44 (0.12) 

B5 -- -- -- -- 99.94 (0.04) 91.08 (0.12) 
B6 -- -- -- -- -- 99.59 (0.08) 

Test 88.09 (0.04) 89.56 (0.03) 89.43 (0.04) 88.97 (0.04) 87.95 (0.07) 86.39 (0.10) 

Table 2: The Learn++ incremental learning performance obtained by Polikar et al. (2001) on the basic Optical Digits data 
set.  Mean percentage rates of correct classification (standard errors were not published). 

 T1 T2 T3 T4 T5 T6 
B1 94 94 94 93 93 93 
B2 -- 93.5 94 94 94 93 
B3 -- -- 95 94 94 94 
B4 -- -- -- 93.5 94 94 
B5 -- -- -- -- 95 95 
B6 -- -- -- -- -- 95 

Test 82.0 84.7 89.7 91.7 92.2 92.7 
 
The incremental learning takes place over six 

training sessions Ti, during each of which only one 
batch Bi of 200 patterns is used to train the network 
to some stopping criterion.  The highest activated 
output unit for each input pattern then indicates the 
network’s classification output.  At the end of each 
session, the network is re-tested on all the training 
batches from the previous sessions to see how much 
interference has taken place, and also on the 
validation set to provide a measure of generalization 
ability.  As more of the training batches are used, the 
generalization is expected to increase, demonstrating 
good incremental learning capability, but at the same 
time the performance on the previous data batches 
should not be seriously reduced. 

To see the problems that arise with standard 
neural networks, the performance for a traditional 
Multi-Layer Perceptron (Bishop, 1995) with one 
hidden layer was established.  The nature of the data 
fixes the number of input units to be 64, and the 
number of output units to be 10, one for each class.  
One hundred such networks with 100 hidden units 
were initialized with all their random weights drawn 
uniformly from the standard range [-1, 1], and 
trained for 5000 epochs per data set, with all the 
gradient descent (back-propagation) learning rates 
fixed at 0.02 (i.e. just below the maximum value that 
allows stable training for this network), with no 
special learning features such as training tolerances, 
weight decay or sigmoid prime offsets.  The average 

performances of these standard networks are shown 
in Table 1 as percentages.  The columns show the 
classification performances at the end of each of the 
six stages of training Ti, on the current data-batch Bi, 
all previous data-batches Bj<i, and the test set.  The 
generalization (test set) performance does increase 
with the first two batches, but then starts falling 
again as the later batches are learned, presumably 
because of over-fitting of the training data.  More-
over, as each data-batch is learned, the performance 
on the earlier batches is seen to deteriorate.  This is a 
clear indication of poor incremental learning ability.  
The aim, of course, is to identify the simplest ways 
of going beyond these standard neural networks to 
achieve better learning performance. 

The first reasonably successful neural network 
incremental learning system was Learn++ from 
Polikar et al. (2001), which on the same optical 
digits data achieved the performance shown in Table 
2.  Although the initial training results start lower, 
they remain more steady as further training data-
batches are used, and there is a steady increase in 
generalization ability as more data is made available.  
The generalization performance finishes at 92.7%, 
compared with only 86.4% for the baseline standard 
neural networks.  The question to be explored next is 
whether further improvements are possible using 
evolution and/or improved neural architectures. 

EVOLVED DUAL WEIGHT NEURAL ARCHITECTURES  TO FACILITATE INCREMENTAL LEARNING

429



 

4 NEURO-EVOLUTION  

The idea of applying the principles of evolution by 
natural selection to optimize the performance of 
neural networks is now widely established (e.g., 
Yao, 1999; Bullinaria, 2007).  A population of 
individual neural networks is maintained, each with 
a genotype that represents an appropriate set of 
innate parameters.  For each generation of evolution, 
the “fittest” individuals are taken to be those 
exhibiting the best performance on their given task 
and selected as parents.  Suitable crossover and 
mutation operators then create offspring from those 
parents to populate the next generation, and the 
process is repeated until the fitness of the population 
levels off.  This approach can be used to select 
optimal network topologies, learning algorithms, 
transfer functions, connection weights, and any other 
relevant network parameters (Yao, 1999).  

An important feature of evolving neural 
networks is that any parameter can be subjected to 
the evolutionary process, and it is possible for many 
parameters that interact in complex ways to be 
evolved simultaneously.  This means that the crucial 
and extremely difficult task of setting the learning 
parameters can be left entirely to the evolutionary 
process, rather than having to be done by the human 
designer, and improved performance is usually 
achieved (Yao, 1999; Bullinaria, 2007).  However, 
the application of evolution is not totally straight-
forward, because obtaining optimal networks relies 
on maintaining diversity in the populations, and the 
evolutionary process can easily become trapped in 
local optima.  Having appropriate initial populations 
is important, as is identifying good representations, 
crossovers and mutations, but often one must simply 
run the simulations many times and discard any that 
have clearly failed to achieved their true potential 
(Bullinaria, 2007).  

In this study, the underlying network architecture 
and learning algorithm will continue to be standard 
fully connected Multi-Layer Perceptrons with 
sigmoidal processing units and one hidden layer, 
trained by gradient descent weight updating (back-
propagation) with the Cross Entropy error measure 
(Bishop, 1995).  The aim is to evolve the various 
neural network topology and learning parameters to 
produce systems that are good incremental learners.  
The connection weights themselves will be adjusted, 
as in humans, by the lifetime learning algorithm with 
new data, rather than by being specified as evolved 
innate parameters by the evolutionary process.  

The simulated evolution involves populations of 
individual neural networks, each learning their 
weights starting from random initial weights drawn 

from their own innately specified distributions.  The 
process starts from an initial population with random 
innate parameters, and for every generation, each 
network goes through the incremental learning 
process and has its fitness (i.e. estimated final 
generalization performance) determined.  The fittest 
half of the population are then copied into the next 
generation, and also randomly select a partner to 
produce one child, thus maintaining the population 
size.  The offspring inherit innate characteristics (i.e. 
parameter values) from the corresponding ranges 
spanned by both parents, with random Gaussian 
mutations added to allow values outside that range 
(Bullinaria, 2007).  For each new generation, all the 
networks, both copies and offspring, have new 
random initial weights and go through the whole 
incremental learning process.  This is repeated for 
enough generations that no further improvements are 
evident, and the set of networks most likely to 
generalize well on the unseen data sets is obtained.  
The main design problem is deciding which innate 
parameters are worth including in the genotype. 

For this particular study, the best results are most 
likely to be achieved if all the traditional neural 
network parameters are evolved simultaneously:  
1. The number of hidden units NHid subject to some 

appropriate problem specific maximum which is 
significantly more than the number required to 
learn the training data, but not so large as to 
unnecessarily slow down the computational 
simulations.  For the optical digits data set this 
maximum was set at 100.  

2. The connectivity level between layers (cIH, cHO), 
specified as the proportion of possible 
connections that are used by the network.  The 
specific connections used are chosen randomly. 

3. The gradient descent learning rates ηL, for 
which earlier studies have established that 
allowing different values for each of the four 
network components L (input to hidden weights 
IH, hidden unit biases HB, hidden to output 
weights HO, and output unit biases OB) results 
in massively improved performance over having 
a single value for all of them as in traditional 
hand crafted networks (Bullinaria, 2007). 

4. The random initial weight distribution for each 
network component L.  There are several 
options for specifying these, but here simple 
lower and upper limits of uniform distributions 
[–lL, uL] are used.  

5. The sigmoid prime offset oSPO which prevents 
saturation and poor learning at the hidden layer 
(Bullinaria, 2007). 

6. A weight decay regularization parameter λ that 

IJCCI 2009 - International Joint Conference on Computational Intelligence

430



 

can act to prevent over-fitting of noisy training 
data (Bishop, 1995).  

7. The output error tolerance t that determines 
when a particular output activation is deemed 
“correct”, and a training tolerance s specifying 
the fraction of training parameters that can be 
left unlearned.  These also act to prevent over-
fitting of noisy training data.  

8. For the extra set of weights in the dual weight 
networks, there is also another weight decay 
rate δ and a scale factor σ that multiplies the 
main learning rates ηL (Hinton & Plaut, 1987). 

All the evolutionary simulations used populations of 
100 networks, and the initial populations were 
created with random innate parameters drawn from 
traditional ranges (numbers of hidden units NHid 
from [0, 100]; learning rates ηL, initial weight 
distribution parameters lL, uL and connectivity 
proportions cIH, cHO from [0, 1]; sigmoid prime 
offsets oSPO from [0, 0.2]; standard weight decay 
parameters λ from [0, 0.001]; tolerances t from 
[0, 0.5]; tolerances s from [0, 1.0]; dual weight 
decay parameters δ from [0, 0.2]; and dual weight 
scale factors σ from [2, 20]).  The precise starting 
parameter ranges had very little effect on the final 
results, but poor values often led to extremely slow 
starts to the evolutionary process.  Then, for each 
new generation, each individual network had new 
random initial weights drawn from their own 
innately specified range, and learned according to 
their other innately specified parameters. 

There were two obvious regimes for using the 
training data during the evolutionary process: new 
randomly selected training and validation sets as 
specified above could be selected for each new 
generation, or the same sets could be used for each 
generation.  The idea here is to evolve systems that 
will work well on unseen data sets, and different 
training data for each generation proved to result in 
better general purpose learners, so this approach was 
adopted.  For each network, each of the six training 
sessions continued until the innately specified 
tolerance was reached, or until a maximum number 
of training epochs was reached.  That maximum 
number of epochs was set large enough that it only 
prevented successful learning during the first few 
generations when all the learning abilities were still 
very poor.  At the end of each training batch, each 
network was re-tested on all the earlier training 
batches and the validation set.  The individuals that 
had the lowest error on the validation set after 
training on all six data-batches were taken to be the 
fittest, and used to produce the next generation by 
copying and by using crossover and mutation. 

5 SIMULATION RESULTS 

To determine the best possible results that might be 
achievable from the training data, neural networks 
were first evolved to generalize as well as possible 
from only one batch of 200 patterns, and then from 
all six batches together (i.e. 1200 patterns) in a 
single training session.  For both cases, exactly the 
same evolutionary regime was used as for evolving 
the incremental learners, with the best 10% of the 
evolved individuals on the validation set chosen for 
testing on unseen data.  They were re-initialized and 
trained on new random training data-batches, and 
achieved average final test set performances of 
91.55 ± 0.03% for the 200 training patterns case, and 
96.21 ± 0.02% for 1200 patterns.  This gave the best 
levels of performance that could reasonably be 
expected from the incremental learners.  

Five independent runs of the evolutionary 
process were then carried out for the incremental 
learners, first for standard networks and then for 
networks with dual-weights (Hinton & Plaut, 1987).  
The means and variances of the key parameters for 
the dual-weight case are shown in Figure 1.  The 
top-left graph shows how the connectivity levels rise 
quickly to near full connectivity.  The top-right 
graph shows how the learning rates ηL evolve to 
fairly narrow bands, with most near the traditional 
values around 0.1, but with the input-to-hidden 
learning rate some thousand times smaller.  That 
pattern of learning rates would be very difficult to 
get right “by hand”, but evolution finds it quite 
consistently.  The middle-left graph shows how the 
sigmoid prime offset oSPO and standard weight decay 
parameters λ  fall to values so low that they have no 
significant effect on the performance of the 
networks.  The middle-right graph shows how the 
fast weight decay rate δ settles at a higher level and, 
together with the fast weight scale factor σ, results 
in a system of dual weights with the required 
properties.  The bottom-left graph shows how the 
training output tolerance t and stopping early 
parameter s evolve to appropriate values.  Finally, 
the bottom-right graph shows how the generalization 
performance measures improve little after the first 
600 generations, despite some of the parameters 
continuing to settle down towards their final values.  
The fluctuations in the parameters during evolution 
reflect how crucial each one is to the final fitness. 
The persistent fluctuations in the performance reflect 
the random nature of the training data sets and initial 
weight distributions.  Not shown (due to lack of 
space) are the number of hidden units which quickly 
rises to near the maximum allowed, and the eight 

EVOLVED DUAL WEIGHT NEURAL ARCHITECTURES  TO FACILITATE INCREMENTAL LEARNING

431



 

initial weight distribution parameters that exhibit a 
complex (though not particularly informative) 
pattern of appropriate values. 

The population averages of Figure 1 are slightly 
misleading because high population diversity was 
deliberately maintained by mutations and cross-
overs to facilitate the evolutionary process, and that 
leaves many sub-optimal individuals in the 
population.  A better performance indicator involves 
running just the best 10% of the final evolved 
populations (as measured on the validation set) 
many times and averaging.  Then the variance across 

the means from the five evolutionary simulations 
gives the standard error on those means.  Table 3 
shows, in the same format as Table 1, the averages 
using 100 runs of each individual for the standard 
network case.  There is a clear improvement in all 
aspects over the non-evolved baseline results of 
Table 1, and also over the Learn++ results of Table 
2.  The performance levels on past training data 
batches still fall slightly as the later training batches 
are processed, but those performance levels remain 
well above those for Learn++.  The generalization 
(i.e. test set) performance is also better than that of  

180012006000
0.0

0.2

0.4

0.6

0.8

1.0

Generation

C
on

.

conIH

conHO

      180012006000
-5

-4

-3

-2

-1

0

Generation

lo
g 

et
a

etaHO

etaIH

etaHB

etaOB

 
 

180012006000
-9

-6

-3

0

Generation

lo
g-

pa
ra

m

lambda

spo

      180012006000
-4

-2

0

2

Generation

lo
g-

fw
t

fwt-decay

fwt-scale

 
 

180012006000
0.0

0.1

0.2

0.3

0.4

0.5

Generation

To
l.

s

t

      180012006000
85

90

95

100

Generation

%
 C

or
re

ct

Validation set

Test set

 
 

Figure 1:  Evolution of the dual-weight neural network parameters and performance for the basic Optical Digits data set. 

IJCCI 2009 - International Joint Conference on Computational Intelligence

432



Table 3: Incremental learning performance of evolved neural networks without dual-weights on the basic Optical Digits 
data set.  Mean percentage rates of correct classification, with standard errors in brackets.  

 T1 T2 T3 T4 T5 T6 
B1 100.00 (0.00) 98.96 (0.04) 98.53 (0.05) 98.34 (0.04) 98.26 (0.03) 98.28 (0.04) 
B2 -- 100.00 (0.00) 99.01 (0.03) 98.48 (0.05) 98.29 (0.02) 98.22 (0.03) 
B3 -- -- 100.00 (0.00) 99.07 (0.05) 98.55 (0.05) 98.37 (0.04) 
B4 -- -- -- 100.00 (0.00) 99.11 (0.05) 98.61 (0.03) 
B5 -- -- -- -- 100.00 (0.00) 99.10 (0.02) 
B6 -- -- -- -- -- 100.00 (0.00) 

Test 91.49 (0.05) 92.97 (0.03) 93.63 (0.02) 94.11 (0.03) 94.42 (0.02) 94.68 (0.01) 

Table 4: Incremental learning performance of evolved neural networks with dual-weights on the basic Optical Digits data 
set.  Mean percentage rates of correct classification, with standard errors in brackets.  

 T1 T2 T3 T4 T5 T6 
B1 100.00 (0.00) 99.17 (0.06) 98.96 (0.09) 98.87 (0.07) 98.83 (0.06) 98.83 (0.06) 
B2 -- 99.99 (0.01) 99.28 (0.02) 98.99 (0.02) 98.85 (0.04) 98.80 (0.04) 
B3 -- -- 99.94 (0.02) 99.30 (0.03) 99.02 (0.02) 98.89 (0.03) 
B4 -- -- -- 99.84 (0.04) 99.29 (0.02) 99.00 (0.01) 
B5 -- -- -- -- 99.74 (0.06) 99.23 (0.04) 
B6 -- -- -- -- -- 99.65 (0.05) 

Test 91.62 (0.11) 93.47 (0.05) 94.21 (0.03) 94.60 (0.04) 94.87 (0.05) 95.07 (0.04) 

 
Learn++ at each stage, and shows a gradual 
improvement as more data batches are used, thus 
indicating good incremental learning.  The final test 
set performance of 94.68% appears to be a small 
improvement over the Learn++ value of 92.7%, but 
it actually more than halves the gap between the 
incremental learning performance and the 96.21% 
obtainable by training on all the data at once.  More 
importantly, the performance of 91.49% on just the 
first set of training data is now very close to the 
91.55% obtained by networks evolved specifically to 
perform well on a single training data batch.  By 
comparison, Learn++ only achieves 82% after the 
first batch of data.  This improvement can be very 
important for practical applications, as the trained 
system may have to be used at that early stage. 

Introducing an additional set of dual weights can 
lead to significant performance improvements due to 
the ability to incorporate appropriate weight changes 
for new data patterns into the existing weights with 
minimal disruption (Seipone & Bullinaria, 2005a).  
For the current application, the fast weights led to 
the improvements in performance seen in Table 4.  
Although the difference in final generalization 
performance from that of Table 3 is quite small, it is 
highly statistically significant (t-test p = 0.0005).  
The improvements were also sufficient to drive the 
fast weight parameters to extremely consistent 
values across the five independent runs (scale factor 

σ = 17 ± 2, decay rate δ = 0.0011 ± 0.0002), which 
again indicates the importance of this factor.  

So far, the problem of accommodating changes 
in the data classes present in the batches of training 
data (i.e. incremental learning property 4 above) has 
not been addressed.  Polikar et al. (2002) created a 
four-batch version of the optical digits data set that 
had different class instances missing from different 
batches, and showed how Learn++ performed well 
on it.  Table 5 compares the generalization (i.e. test 
set) performance on this for traditional neural 
networks, Learn++, evolved neural networks, and 
evolved neural networks with dual weights, using 
the same evolutionary process as described above.  
Here the evolved networks are not much better than 
Learn++, but introducing dual weights does lead to 
a large and statistically significant improvement 
(t-test p = 0.00007).  In this case, the potential for 
new data interfering with what was previously 
learned is much greater than in the basic data set in 
which all the digit classes are equally represented in 
each data batch, so it is perhaps not surprising that 
the enhanced data interleaving provided by the dual 
weights is more helpful here.  

Within this framework, there still remains scope 
for further improvement.  As noted above, the 
evolutionary process makes full use of the maximum 
number of hidden units allowed, and it also tends to 
slow the learning to make full use of the maximum  

EVOLVED DUAL WEIGHT NEURAL ARCHITECTURES  TO FACILITATE INCREMENTAL LEARNING

433



Table 5: Incremental learning performance for neural networks on the “varying classes” Optical Digits data set of Polikar et 
al. (2002).  Mean percentage rates of correct test set classification, with standard errors in brackets.  

 T1 T2 T3 T4 
Traditional NN  48.47 (0.01)  75.49 (0.02) 79.87 (0.07) 77.07 (0.07) 

Learn++  46.6  68.9 82.0 87.0 

Evolved NN 48.59 (0.09)  76.39 (0.18) 84.78 (0.47) 87.41 (0.39) 
Evolved NN with Dual-weights 47.34 (0.32) 80.13 (0.50) 87.32 (0.15) 93.84 (0.04) 

 
number of epochs allowed.  Both of these factors 
form part of the natural evolved regularization 
process, and further performance improvements may 
be possible by simply increasing those maximum 
values.  However, the improvements achievable by 
doing this prove to be rather limited in relation to the 
enormous increase in the associated computational 
costs.  Indeed, the computational cost of the general 
evolutionary process proposed in this paper is also 
high, but even small improvements are often 
extremely valuable, so it will generally remain a 
complex problem dependent decision whether the 
potential improvements are worth the extra effort.  

6 CONCLUSIONS 

This paper has provided a more general and more 
statistically rigorous confirmation of earlier results 
(Seipone & Bullinaria, 2005b) indicating that the 
application of evolutionary computation techniques 
can massively improve the incremental learning 
abilities of standard neural networks on real-world 
generalization tasks compared to existing systems 
such as Learn++ (Polikar et al., 2001, 2002).  It has 
also demonstrated that the same approach can be 
used to evolve more sophisticated dual-weight 
architectures that have further improvements in 
performance, particularly when the representation of 
classes varies between training data batches.  Thus 
effective evolutionary neural network techniques 
have been established that can straightforwardly be 
tested on and applied to any future incremental 
learning problems requiring good generalization. 

REFERENCES 

Ans, B., Rousset, S, French, R.M., Musca, S., 2002. 
Preventing Catastrophic Interference in Multiple-
Sequence Learning Using Coupled Reverberating 
Elman Networks. Proceedings of the Twenty-fourth 
Annual Conference of the Cognitive Science Society, 
71-76. Mahwah, NJ: LEA  

Bishop,   C.M.,   1995.   Neural   Networks   for   Pattern  

Recognition. Oxford, UK: Oxford University Press.  
Blake, C.L., Merz, C.J., 1998. UCI Repository of Machine 

Learning Databases. University of California, Irvine. 
http://www.ics.uci.edu/~mlearn/MLRepository.html  

Bullinaria, J.A., 2007. Using Evolution to Improve Neural 
Network Learning: Pitfalls and Solutions. Neural 
Computing & Applications, 16, 209-226. 

Frean, M., Robins, A., 1999. Catastrophic Forgetting in 
Simple Neural Networks: An Analysis of the 
Pseudorehearsal Solution. Network: Computation in 
Neural Systems, 10, 227-236. 

French, R.M., 1999. Catastrophic Forgetting in 
Connectionist Networks. Trends in Cognitive 
Sciences, 4, 128-135.  

Giraud-Carrier, C., 2000. A Note on the Utility of 
Incremental Learning. AI Communications, 13, 215-
223.  

Hinton, G.E., Plaut, D.C., 1987. Using Fast Weights to 
Deblur Old Memories. Proceedings of the Ninth 
Annual Conference of the Cognitive Science Society, 
177-186. Hillsdale, NJ: LEA. 

McClelland, J.L., McNaughton, B.L., O’Reilly, R.C., 
1995. Why There Are Complementary Learning 
Systems in the Hippocampus and Neocortex: Insights 
From the Successes and Failures of Connectionist 
Models of Learning and Memory. Psychological 
Review, 102, 419-457.  

Polikar, R., Byorick, J., Krause, S., Marino, A., Moreton, 
M., 2002. Learn++: A Classifier Independent 
Incremental Learning Algorithm for Supervised 
Neural Networks. Proceedings of the 2002 
International Joint Conference on Neural Networks, 2, 
1742-1747. 

Polikar, R., Udpa, L., Udpa, S.S., Honavar, V., 2001. 
Learn++, 2001. An Incremental Learning Algorithm 
for Multi-Layer Perceptron Networks. IEEE 
Transactions on Systems, Man, and Cybernetics-Part 
C: Applications and Reviews, 31, 497-508.  

Seipone, T., Bullinaria, J.A., 2005a. The Evolution of 
Minimal Catastrophic Forgetting in Neural Systems. 
Proceedings of the Twenty-Seventh Annual 
Conference of the Cognitive Science Society, 1991-
1996. Mahwah, NJ: LEA. 

Seipone, T., Bullinaria, J.A., 2005b. Evolving Improved 
Incremental Learning Schemes for Neural Network 
Systems. Proceedings of the 2005 IEEE Congress on 
Evolutionary Computing (CEC 2005), 273-280. 
Piscataway, NJ: IEEE. 

Yao, X., 1999. Evolving Artificial Neural Networks. 
Proceedings of the IEEE, 87, 1423-1447. 

IJCCI 2009 - International Joint Conference on Computational Intelligence

434


