
FUZZY WEIGHTED AVERAGE 
Analytical Solution 

Pim van den Broek 
Department of Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands 

Joost Noppen 
Computing Department,University of Lancaster, Infolab21, Southdrive, Lancaster, LA1 4WA, U.K. 

Keywords: Fuzzy weighted average, Membership functions. 

Abstract: An algorithm is presented for the computation of analytical expressions for the extremal values of the α-cuts 
of the fuzzy weighted average, for triangular or trapeizoidal weights and attributes. Also, an algorithm for 
the computation of the inverses of these expressions is given, providing exact membership functions of the 
fuzzy weighted average. Up to now, only algorithms exist for the computation of the extremal values of the 
α-cuts for a fixed value of α. To illustrate the power of our algorithms, they are applied to several examples 
from the literature, providing exact membership functions in each case. 

1 INTRODUCTION 

In multiple criteria decision making problems, 
values of decision variables are weighted averages 
of criteria ratings. Often the rating criteria and their 
corresponding importance weights are vague, and 
are therefore represented by fuzzy numbers. Then 
the values of the decision variables which are 
determined by them are fuzzy numbers as well; they 
are fuzzy weighted averages of the criteria ratings. 

The standard approach to the calculation of fuzzy 
weighted averages (Chiao, 2000) (Dong & Wong, 
1987) (Guh, Hon & Lee, 2001) (Guh, Hon, Wang & 
Lee, 1996) (Guu, 2002) (Kao & Liu, 2001) (Lee & 
Park, 1997) (Liou & Guu, 2002) (Liou & Wang, 
1992) is to apply the extension principle to the 
following weighted average function: 

wa(x1,..,xn,w1,..,wn)= ∑∑
==

n

1i
i

n

1i
ii w)w*(x  (1) 

Here x1,..,xn are real numbers, called attributes, 
and w1,..,wn are non–negative real numbers, called 
weights.  

Let A1,..,An and W1,..,Wn be triangular or 
trapezoidal fuzzy numbers. Their α-cuts, denoted by 
[A1]α,.., [An]α, [W1]α,.., [Wn]α, are closed intervals; 
the elements of [W1]α,.., [Wn]α are non-negative. The 

α-cut of the fuzzy weighted average of attributes 
A1,..,An with weights W1,..,Wn is given by the set  

{wa(x1,..,xn,w1,..,wn) | x1∈[A1]α,..,xn∈[An]α, 

  w1∈[W1]α,..,wn∈[Wn]α} (2) 

This set is a closed interval and is computed by 
computing its extremal values. Algorithms for 
computing these extremal values, for fixed value of 
α, are given in the literature. In this paper we will 
give an algorithm to solve this problem analytically, 
i.e. we will show how to compute analytical 
expressions for the extremal values of eq. (2). Also 
an algorithm for the computation of the inverses of 
these expressions is given; this enables us to 
calculate analytically the exact membership 
functions of the fuzzy weighted average. 

In Section 2 we will present an algorithm for the 
computation of the extremal values of eq. (2) for a 
fixed value of α, which is based on previous 
algorithms. This algorithm has an intuitive 
geometrical interpretation, and therefore it can be 
easily understood. In Section 3 this algorithm is 
generalised to give analytical solutions, for 
triangular or trapeizoidal weights and attributes, and 
it is shown how these solutions can be reversed to 
give exact membership functions of the fuzzy 
weighted average. In Section 4, the power of the 
algorithm is demonstrated by applying it to a 
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number of examples, giving exact membership 
functions of the fuzzy weighted average in all cases. 

2 COMPUTATION OF α-CUTS OF 
THE FUZZY WEIGHTED 
AVERAGE 

Let us start with the computation of the minimal 
value of the set of eq. (2). It is shown by Dong and 
Wong (1987) and by Liou and Wang (1992) that the 
minimum of eq. (2) is among the elements where xi 
is equal to min[Ai]α and wi equals either min[Wi]α or 
max[Wi]α. So the problem can be reformulated as 
the problem of finding the minimal element of the 
finite set 

{∑
=

n

1i
(min[Ai]α * wi) ∑

=

n

1i
wi |w1∈{min[W1]α ,  

 max[W1]α},..,wn∈{min[Wn]α ,max[Wn]α}} (3) 

Let Q be the set of all 2n mappings from the set 
{1,2,..,n} to the set {+,–}. These mappings can be 
seen as states. A state is a partition of the attributes 
in attributes with maximal weight and attributes with 
minimal weight. The set of eq. (3) can be denoted as 

{∑
=

n

1i

(min[Ai]α*Wi
α(q)) ∑

=

n

1i
Wi

α(q)|q∈Q} (4) 

where Wi
α(q) stands for max[Wi]α if q(i) = + and for 

min[Wi]α if q(i) = –. 
We define the mapping FWA from states to the 

real numbers by 

FWA(q) =∑
=

n

1i
(min[Ai]α *Wi

α(q)) ∑
=

n

1i

Wi
α(q) (5) 

Now the problem has become the problem of 
finding the state q for which FWA(q) is minimal. 
The first step of the algorithm consists of sorting the 
set {min[Ai]α  |1<=i<=n}. From now on we assume 
this set is sorted. As a consequence, min[A1]α <= 
FWA(q) <= min[An]α for all q∈Q. Now let us 
consider what happens when q changes such that, for 
some i with 1<=i<=n, q(i) changes from – into +. 
This change means that the weight of min[Ai]α 
increases, whereas the other weights remain the 
same. As a consequence, FWA(q) will change in 
such a way that it moves towards min[Ai]α : the 
absolute value of FWA(q) – min[Ai]α decreases, but 
the sign of FWA(q) – min[Ai]α remains the same. 

Let qmin be the state for which FWA takes its 
minimal value. Then qmin(i) = + if min[Ai]α < 
FWA(qmin) and qmin(i) = – if min[Ai]α > FWA(qmin). 

We know that qmin(1) = + and qmin (n) = –. Our 
algorithm to obtain qmin is as follows. Let qi be the 
element of Q defined by qi(j) = + for 1<=j<i and  
qi(j) = – for i<=j<=n. Then qmin = qi for some i with 
2<=i<=n. To determine qmin, start with state q2. Let 
us consider a situation with n=6, which is depicted 
as follows: 

•---- •---- •--- ∇--- •---- •---- • 
1+ 2- 3- Fwa 4- 5- 6- 

Here the first line shows the real axis with 
min[Ai]α for i=1..6, and the fuzzy weighted average 
(Fwa) in the present state q2. The second line shows 
the indices i, and whether the corresponding weights 
are maximal (+) or minimal (-) in the present state. 
We have to change the state in such a way that Fwa 
becomes as small as possible. Changing the state 
means changing the weights from maximal to 
minimal or vice versa. Changing weights 1,4,5, or 6 
would increase Fwa. Changing weights 2 or 3 
decreases Fwa. Suppose we change weight 3. The 
value of Fwa decreases, but remains greater than 
min[A3]α. Next we change weight 2. The value of 
Fwa is further decreased, and can become less than 
min[A3]α.In this case Fwa would decrease even 
further by restoring the original weight 3. This 
situation would have been avoided if we had first 
changed weight 2. If this causes Fwa to become less 
than min[A3]α, the minimum is reached in state q3. 
Otherwise, weight 3 is changed as well, and the 
minimum is reached in state q4. So it is important 
that the weight changes are performed from left to 
right. In (Liou & Wang, 1992) that weight is 
changed first that causes Fwa to decrease most, 
which is incorrect. 

Let us now return to the general case. The initial 
state is q2. Compare FWA(q2) with min[A2]α. If 
FWA(q2) <= min[A2]α then qmin = q2, else continue 
with q3. If FWA(q3) <= min[A3]α then qmin = q3, else 
continue with q4, et cetera. This iteration will 
terminate, since FWA(qn) <= min[An]α. So, the 
algorithm to compute the minimum of FWA(q) for 
q∈Q is 

 
sort { min[Ai]

α | 1<=i<=n}; 
i = 2; 
while (FWA(qi) > min[Ai]

α) i = i+1; 
return FWA(qi); 
 
The computation of the maximal value of the set 

of eq. (2) is quite similar. We now assume that the 
set {max[Ai]α |1<=i<=n} is sorted. Note that this 
ordering may be different from the one above. In the 
definition of FWA (eq. (5)) we replace min[Ai]α by 
max[Ai]α. Let qmax be the value of q for which 
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FWA(q) is maximal. Then qmax(i) = – if max[Ai]α < 
FWA(qmax) and qmax(i) = + if max[Ai]α > FWA(qmax). 
In particular, qmax(1) = – and qmax(n) = +. Let qi be 
the element of Q defined by qi(j) = – for 1<=j<=i 
and qi(j) = + for i<j<=n. Then qmax = qi for some i 
with 1<=i<=n–1. To determine qmax, start with q(n–1). 
Compare FWA(q(n–1)) with max[A(n-1)]α. If FWA(q(n–

1)) >= max[A(n-1)]α then qmax = q(n–1), else continue 
with q(n–2), et cetera. So, the algorithm to compute 
the maximum of FWA(q) for q∈Q is 

 
sort { max[Ai]

α |1<=i<=n}; 
i = n–1; 
while (FWA(qi) < max[Ai]

α) i = i–1; 
return FWA(qi); 
 
Let us illustrate the algorithm with a small 

example, with n=6. 
 

[Ai]α  [Wi]α  FWA(qi) [Ai]α FWA(qi) 
----- ----- --------- ---- ---------- 
[1,4] [1,3]  [1,4] 109/16 
[2,6] [1,3] 23/8 [4,5] 99/14 
[3,7] [1,3] 27/10 [2,6] 87/12 
[4,5] [1,3] 33/12 [3,7] 73/10 
[5,8] [1,3] 41/14 [5,8] 57/8 
[6,9] [1,3] 51/16 [6,9] 

 
In this first table the α-cuts [Ai]α and [Wi]α for 

some fixed α are shown in the first and the second 
column, sorted according to min[Ai]α. The third 
column shows the values of FWA(qi). The minimum 
is seen to be 27/10, being the first value from above 
in the fourth column which is not greater than the 
corresponding value for min[Ai]α (in the first 
column). In the fourth table the α-cuts [Ai]α are 
sorted according to max[Ai]α. The fourth column 
shows the values of FWA(qi). The maximum is seen 
to be 73/10, being the first value from below in the 
fourth column which is not less than the 
corresponding value for max[Ai]α. 

The extremal values obtained above could also 
have been found by taking the smallest resp. highest 
values in the fourth columns of the tables above; this 
is indeed the approach of Chiao (2000). So 
apparently we did not gain anything, except some 
geometrical insight, as explained above. However, 
as it will turn out in the next section, for obtaining 
an analytical solution it is crucial not to compare 
values of the fourth column (FWA(qi) or FWA(qi)) 
among each other, but instead compare elements of 
the fourth column with elements in the second 
column ([Ai]α). 

The computational complexity of our algorithm 
is O(n*ln(n)), due to the first step, the sorting of the 

elements. The second phase, whose computational 
complexity is O(n), could be optimized by replacing 
the linear search by binary search, resulting in 
computational complexity O(ln(n)), as in (Lee & 
Park, 1997); the overall computational complexity 
would remain O(n*ln(n)), however. Guu (2002) has 
given an algorithm with computational complexity 
O(n), in which the sorting of the elements is 
avoided. We have tried to keep our algorithm as 
simple as possible, in order to be able to generalize it 
to obtain an analytical solution. 

3 ANALYTICAL SOLUTION FOR 
THE FUZZY WEIGHTED 
AVERAGE 

In this section we will show that the algorithm given 
in the previous section can be generalized to obtain 
an analytical solution for the membership function 
of the fuzzy weighted average. There have been two 
previous attempts to obtain an analytical solution. 
Dong and Wong (1987) obtained an analytical 
solution for two small examples. A general method 
was not given, however. Their approach was to 
consider the partial derivatives with respect to wi of 
eq. (1) in order to obtain the extremal values of this 
equation. Kao and Liu (2001) followed the same 
approach, and applied it to the same two examples, 
but also failed to provide a general solution. Our 
approach is different. We will generalize the 
algorithm of the previous section, by considering α 
to be a parameter which ranges over the interval 
[0,1], instead of being some fixed value. Then, 
taking the values of the fuzzy weights and fuzzy 
attributes to be triangular and trapezoidal fuzzy 
numbers, the extremal values of their α-cuts are 
linear functions of α. 

A trapezoidal fuzzy number will be denoted as a 
4–tuple (a,b,c,d) where a,b,c and d are real numbers 
with a<=b<=c<=d. The trapezoidal number (a,b,c,d) 
has membership function μ, given by 

 
 μ(x) = 0,  if x<=a 
 μ(x) = (x – a)/(b – a),  if a<x<b 
 μ(x) = 1,  if b<=x<=c 
 μ(x) = (d – x)/(d – c),  if c<x<d 
 μ(x) = 0,  if x>=d 
 
 The restriction of μ to [a,b] and [c,d] will be 

referred to as the left part resp. the right part of the 
trapezoidal number. A triangular fuzzy number is a 
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trapezoidal number of the form (a,b,b,c), and will be 
denoted by the 3–tuple (a,b,c). 

Let the fuzzy weights be given by Wi = 
(wi,xi,yi,zi) and the fuzzy attributes by Ai = 
(ai,bi,ci,di). Then we have, for 0<=α<=1: 

 min[Ai]α = ai + α (bi – ai) (6a) 
 max[Ai]α = di – α (di – ci) (6b) 
 min[Wi]α = wi + α (xi – wi) (6c) 
 max[Wi]α = zi – α (zi – yi) (6d) 
 
Our first aim is to find a function of α which is 

the minimum of the set of eq. (4) for all α in the 
interval [0,1]. The first step of the algorithm consists 
of sorting the set of left sides of the attributes 
{min[Ai]α |1<=i<=n}. However, this sorting is the 
same for each α only if these left sides do not 
intersect. So, we compute all the values of α for 
which two left sides intersect. Note that coinciding 
left sides present no problem; therefore they are 
considered not to intersect each other. Since each 
left side is a linear function of α (eq. 6a), each pair 
of left sides can intersect for at most one value of α 
with 0<=α<=1. So, there can be at most n(n–1)/2 
such intersections. In practice, however, it turns out 
that there are only few intersections, if any at all. 
The values of α where the intersections occur 
partition the interval [0,1] in at most n(n–1)/2+1 
subintervals.  

On each of these subintervals the left parts of the 
Ai do not intersect and the set {min[Ai]α |1<=i<=n} 
can be sorted independent of α. We will consider 
each of these subintervals separately. So, in this step 
the problem has been reduced  to the problem of 
finding the minimum of the set of eq. (4) for all α in 
some subinterval [min,max] of [0,1] where the 
ordering of the set {min[Ai]α |1<=i<=n} is sorted 
independent of α. 

The next step of the algorithm is to compare 
FWA(q2) with min[A2]α. For values of α for which 
FWA(q2) <= min[A2]α the minimum is FWA(q2), for 
the other values of α the computation will continue 
with q3. This is done by determining the values of α 
with 0<=α<=1 for which FWA(q2) = min[A2]α. From 
the definition of FWA (eq. (5)) it follows that this 
equation can be written as: 

∑
=

n

1i

(min[Ai]α*Wi
α(q2))=min[A2]α*∑

=

n

1i

Wi
α(q2) (7) 

From the eqs. (6a-6d) we find that both sides of 
this equation are second order polynomials in α. 
Therefore, solving eq. (7) is trivial, and there are at 
most two solutions. Those solutions partition the 
interval [min,max] in at most three subintervals. On 
each of these subintervals the result of the 

comparison FWA(q2) <= min[A2]α is independent of 
α. On intervals where FWA(q2) <= min[A2]α, the 
analytical solution is obtained, which is equal to 
FWA(q2). On intervals where FWA(q2) >= 
min[A2]α, the computation continues in state q3. 
Iteration of this process leads to the analytical 
solution of the minimum of the set of eq. (4) for all α 
in the interval [min,max]. This solution generally 
consists of separate solutions for a finite number of 
subintervals of [min,max]. Repeating this procedure 
for each of the intervals which were determined in 
the first step of the algorithm gives the analytical 
solution of the minimum of the set of eq. (4) for all α 
in the interval [0,1]. 

The algorithm can be summarized as follows: 
 

• Calculate the intersections of the 
left sides of the attributes; 

• Partition [0,1] into subintervals 
according to these intersections; 

• For each subinterval [min,max] 
• Adapt the numbering such that  

{ min[Ai]
α |1<=i<=n} is sorted; 

• Exact solution on [min,max] is  
Proc ([min,max], 2); 

 
where Proc is defined by 
 
Proc (interval, i) == 

• Partition the interval into 
subintervals according to 
solutions of FWA(qi) = min[Ai]

α ; 
• On subintervals where FWA(qi) <= 

min[Ai]
α the exact solution is 

FWA(qi); 
• On subintervals where FWA(qi) >= 

min[Ai]
α the exact solution is 

Proc (subinterval, i+1); 
 
Note that the key element in this algorithm is the 

comparison of FWA(qi) with min[Ai]α, which leads 
to a second order polynomial equation to be solved. 
An algorithm which compares values of FWA(qi) for 
different values of i, would have led to a third order 
polynomial equation, which is much more difficult 
to solve. 

The algorithm to calculate a function of α which 
is the maximum of the set of eq. (4) for all α in the 
interval [0,1] is quite similar. It can be summarized 
as follows: 

 
• Calculate the intersections of the 

right sides of the attributes; 
• Partition [0,1] into subintervals 

according to these intersections; 
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• For each subinterval [min,max] 
• Adapt the numbering such that  

o { max[Ai]
α |1<=i<=n} is 

sorted; 
• Exact solution on [min,max] is  

Proc ([min,max], n-1); 
where Proc is defined by 
 
Proc (interval, i) == 

• Partition the interval into 
subintervals according to 
solutions of FWA(qi) = min[Ai]

α ; 
• On subintervals where FWA(qi) <= 

min[Ai]
α the exact solution is 

FWA(qi); 
• On subintervals where FWA(qi) >= 

min[Ai]
α the exact solution is 

Proc (subinterval, i–1); 
 
The second aim in this section is to show that the 

exact solutions for the minimum and maximum 
values of the α-cuts of the fuzzy weighted average 
can be inverted to give the exact membership 
function of the fuzzy weighted average. First we will 
show how to invert the exact solution for the 
minimum values. In the preceding step of the 
algorithm, the interval [0,1] has been partioned in a 
finite number of subintervals, and on each 
subinterval [min,max] the exact solution is given by 
FWA(q) for some q∈Q. When the eqs. (6a-6b) are 
substituted in eq. (5), we find that FWA(q) is a 
function f of α which takes the form 

f(α) = (aα2+bα+c)/(dα+e),  (8) 

where a,b,c,d,and e are real numbers. The inverse of 
f is the exact left part of the membership function of 
the fuzzy weighted average on the interval [f(min), 
f(max)]; it can be computed by solving α from the 
equation x = f(α), which can be written as 

aα2 + (b – dx)α + c – ex = 0 (9) 

Let us first consider the case where a ≠ 0. Here 
the solution of eq. (9) is given by 

μ(x )= (dx–b±   ex)   4a(c     b) (dx 2 −−−  )/(2a) (10) 

where the ambiguity in the sign can be solved with 
the conditions 

μ(f(min)) = min  (11a) 
μ(f(max)) = max (11b) 

Next consider the case where a = 0 and dc ≠ eb. 
Here the eq. (9) is solved by 

μ(x) = (ex – c)/(b – dx) (12) 

on the interval  

[(b*min + c)/(d*min + e),  
 (b*max + c)/(d*max + e)] (13) 

Finally consider the case where a = 0 and dc = 
eb. In this case (bα + c)/(dα + e) is independent of α, 
so the inverse does not exist. Then the membership 
function is non–continuous in x = c/e. This occurs 
for instance when all attributes and weights are crisp 
numbers (i.e. of the form (a,a,a)), leading to a crisp 
weighted average, whose membership function is 
not continuous. 

This shows that in each case the exact solution 
for the minimum values of the α-cuts of the fuzzy 
weighted average can be inverted, giving the exact 
solution the left part of the membership function of 
the fuzzy weighted average. The computation of the 
exact solution of the right part of the membership 
function is almost the same, the only difference 
being that in the eqs. (8) and (13) the expressions for 
the boundary values of the intervals should be 
interchanged. 

4 EXAMPLES 

In this section we will apply our algorithms to derive 
exact membership functions to a number of fuzzy 
weighted averages which have appeared in the 
literature. In each case, the fuzzy attributes and 
fuzzy weights are listed, as well as their α-cuts. This 
listing, and the assignment of indices from 1 to n, is 
such that the fuzzy attributes are properly ordered.  

For simplicity, there are no examples where their 
are intersections of the left and/or right sides of the 
attributes, thereby avoiding the overhead of 
partioning the interval in subintervals and carrying 
out the computation on all subintervals. 

We have avoided the rounding of real numbers; 
quotients and square roots have not been evaluated 
to decimal form. 

Example 1 

For this example exact membership functions have 
been derived by Dong and Wong (1987) and by Kao 
and Liu (2001). There are 2 attributes and 2 weights; 
all of these are triangular fuzzy numbers.  

 
A1 = (0,1,2) [A1]α = [α, 2–α]  
A2 = (2,3,4) [A2]α = [2+α, 4–α]  
W1 = (0,0.3,0.9) [W1]α = [0.3α, 0.9–0.6α] 
W2 = (0.4,0.7,1) [W2]α = [0.4+0.3α, 1–0.3α] 
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Since there are only two attributes, and there are 
no intersections, the calculation is trivial: the 
minimum of the α-cuts of the fuzzy weighted 
average is FWA(q2) = (– 0.3α2 + 1.9α + 0.8)/(–0.3α 
+ 1.3) and the maximum is FWA(q1) = –1.6α + 4. 

This leads to the following membership function 
for the fuzzy weighted average: 

μ(x) = 0 if x <= 8/13 
μ(x) = x/2 + 19/6 – (5/3) 4.57 0.42x     0.09x 2 +−  
 if 8/13 <= x <= 12/5 
μ(x) = –5x/8 + 5/2 if 12/5 <= x <= 4 
μ(x) = 0 if x >= 4 

Example 2 

For this example exact membership functions have 
been derived by Dong and Wong (1987) and by Kao 
and Liu (2001). The example is also treated by Guh, 
Hon and Lee (2001), by Guh, Hon, Wang and Lee 
(1996) and by Liou and Wang (1992). There are 3 
attributes and 3 weights; all of these are triangular 
fuzzy numbers. 

A1 = (0,1,2) [A1]α = [α, 2–α]  
A2 = (2,3,4) [A2]α = [2+α, 4–α]  
A3 = (4,5,6) [A3]α = [4+α, 6–α]  
W1 = (0,0.3,0.9) [W1]α = [0.3α, 0.9–0.6α] 
W2 = (0.4,0.7,1) [W2]α = [0.4+0.3α, 1–0.3α] 
W3 = (0.6,0.8,1) [W2]α = [0.6+0.2α, 1–0.2α] 
 
First, we calculate the minimum of the α-cuts of 

the fuzzy weighted average. FWA(q2) = (–0.1α2 + 
3.3α + 3.2)/(– 0.1α + 1.9). FWA(q2) <= 2+α for 
0<=α<=3/8, so FWA(q2) is the minimum for 
0<=α<=3/8. FWA(q2) >= 2+α for 3/8<=α<=1. For 
3/8<=α<=1 the minimum is FWA(q3) = (– 0.7α2 + 
2.7α + 4.4)/(– 0.7α + 2.5). 

Next we calculate the maximum of the α-cuts of 
the fuzzy weighted average. FWA(q2) = (–0.4α2 – 
0.8α + 7.6)/(0.4α + 1.4). FWA(q2) >= 4–α for 
0<=α<=1, so FWA(q2) is the maximum for 
0<=α<=1. 

This leads to the following membership function for 
the fuzzy weighted average: 

μ(x) = 0 if x <= 32/19 
μ(x) = x/2 + 16.5 – 5 12.17 0.1x    0.01x2 +−   
 if 32/19 <= x <= 19/8 
μ(x) = x/2 + 27/14 – (5/7) 19.61 3.22x    0.49x2 +−

 if 19/8 <= x <= 32/9 
μ(x) = –x/2 – 1 + (5/4) 12.8 1.6x    0.16x2 +−   
 if 32/9 <= x <= 38/7 
μ(x) = 0 if x >= 38/7 

Example 3 

This example is treated by Guh, Hon, Wang and Lee 
(1996). There are 4 attributes and 4 weights; all of 
these are triangular fuzzy numbers. 

A1 = (0,1,2) [A1]α = [α,2–α]  
A2 = (2,3,4) [A2]α = [2+α, 4–α]  
A3 = (4,5,6) [A3]α = [4+α, 6–α]  
A4 = (5,6,7) [A4]α = [5+α, 7–α]  
W1 = (0,0.3,0.9) [W1]α = [0.3α,0.9–0.6α] 
W2 = (0.4,0.7,1) [W2]α = [0.4+0.3α, 1–0.3α] 
W3 = (0.6,0.8,1) [W3]α = [0.6+0.2α, 1–0.2α] 
W4 = (0.5,0.8,1) [W4]α = [0.5+0.3α, 1–0.2α] 
 
First, we calculate the minimum of the α-cuts of 

the fuzzy weighted average. FWA(q2) = (0.2α2 + 
5.3α + 5.7)/(0.2α + 2.4). FWA(q2) <= 2+α for 
0<=α<=1. FWA(q3) = (–0.4α2 + 4.7α + 6.9)/(–0.4α + 
3). FWA(q3) >= 4+α for 0<= α<=1, so FWA(q3) is 
the minimum for 0<= α<=1.  

Next, we calculate the maximum of the α-cuts of 
the fuzzy weighted average. FWA(q3) = (–0.6α2 – 
0.4α + 12.2)/(0.6α + 2). FWA(q3) >= 6–α for 
0<=α<=0.1, so FWA(q3) is the maximum for 
0<=α<=0.1. FWA(q3) <= 6–α for 0.1<=α<=1.  

FWA(q2) = (–0.2α2 – 3.2α + 14.6)/(0.2α + 2.4). 
FWA(q2) >= 4–α for 0.1<=α<=1, so FWA(q2) is the 
maximum for 0.1<=α<=1.  

This leads to the following membership function 
for the fuzzy weighted average: 

μ(x) = 0 if x <= 23/10 
μ(x) = x/2 + 47/8 – (5/4) 33.13 1.04x    0.16x2 +−  
 if 23/10 <= x <= 112/26 
μ(x) = – x/2 – 8 + (5/2) 21.92 0.64x    0.04x2 +−  
 if 112/26 <= x <= 59/10 
μ(x) = –x/2 – 1/3 + (5/6) 29.44 4.32x    0.36x2 +−  
 if 59/10 <= x <= 61/10 
μ(x) = 0 if x >= 61/10 

Example 4 

This example is treated by  Lee and Park (1997). 
There are 5 attributes and 5 weights; all of these are 
triangular fuzzy numbers. 

A1 = (1,2,3) [A1]α  = [1+α, 3–α] 
A2 = (2,5,7) [A2]α  = [2+3α, 7–2α]  
A3 = (6,8,9) [A3]α = [6+2α, 9–α]  
A4 = (7,9,10) [A4]α = [7+2α, 10–α]  
A5 = (10,11,12) [A5]α = [10+α, 12–α]  
W1 = (1,2,5) [W1]α = [1+α, 5–3α] 
W2 = (2,2.5,3) [W2]α = [2+α/2, 3–α/2] 
W3 = (4,7,9) [W3]α = [4+3α, 9–2α] 
W4 = (3,4,7) [W4]α = [3+α, 7–3α] 
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W5 = (2,3,4) [W5]α = [2+α, 4–α] 
 
First, we calculate the minimum of the α-cuts of 

the fuzzy weighted average. FWA(q2) = (7.5α2 + 
60α + 74)/(2.5α + 16). FWA(q2) >= 2+3α for 
0<=α<=1. FWA(q3) = (4.5α2 + 61α + 76)/(1.5α + 
17). FWA(q3) <= 6+2α for 0<=α<=1, so FWA(q3) is 
the minimum for 0<=α<=1. 

Next, we calculate the maximum of the α-cuts of 
the fuzzy weighted average. FWA(q4) = (–5α2 + 
15.5α + 131)/(4.5α + 14). FWA(q4) <= 10–α for 
0<=α<=1. FWA(q3) = (–α2 – 28.5α + 171)/(0.5α + 
18). FWA(q3) >= 9–α for 0 <= α <= 9 3 –15, so 
FWA(q3) is the maximum for 0<=α <= 9 3 –15. 
FWA(q3) <= 9–α for 9 3 –15<=α<=1. FWA(q2) = 
(4α2 – 78.5α + 216)/(–4.5α + 23). FWA(q2) >= 7–2α 
for 9 3 –15<=α<=1, so FWA(q2) is the maximum 
for 9 3 –15 <= α <= 1. 

These results are in accordance with the results 
by Lee and Park in [7] for α=0 and α=1. However, 
their claim that the fuzzy weighted average is a 
fuzzy triangular number is incorrect. Instead, the 
membership function of the fuzzy weighted average 
is calculated to be: 

μ(x) = 0 if x <= 76/17 
μ(x) = x/6 – 61/9 + (1/9) 2353 123x   2.25x2 ++  
 if 76/17 <= x <= 283/37 
μ(x) = –9x/16 + 157/16 – 
 (1/8) 2706.25 338.5x    20.25x2 +−  
 if 283/37 <= x <= 24–9 3  
μ(x) = –x/4 – 57/4 +  
 (1/2) 1496.25 43.5x    0.25x2 +−   
  if 24–9 3  <= x <= 19/2 
μ(x) = 0 if x >= 19/2 

Example 5 

This example is treated by Kao and Liu (2001). 
There are 3 attributes and 3 weights; the weights are 
are triangular fuzzy numbers and the attributes are 
trapeizoidal fuzzy numbers. 

 
A1 = (–2,1,2,3) [A1]α = [–2+3α, 3–α] 
A2 = (1,2,3,5) [A2]α = [1+α, 5–2α] 
A3 = (2,3,6,7) [A3]α = [2+α, 7–α] 
W1 = (0,0.3,0.9) [W1]α = [0.3α, 0.9–0.6α] 
W2 = (0.4,0.7,1) [W2]α = [0.4+0.3α, 1–0.3α] 
W3 = (0.6,0.8,1) [W3]α = [0.6+0.2α, 1–0.2α] 
First, we calculate the minimum of the α-cuts of 

the fuzzy weighted average. FWA(q2) = (–1.3α2 + 
5.6α – 0.2)/(–0.1α + 1.9). FWA(q2) <= 1+α for 0 <= 

α <= (19 – 109 )/12, so FWA(q2) is the minimum 
for 0 <= α <= (19 – 109 )/12.  

FWA(q2) >= 1+α for (19 – 109 )/12 <= α <= 1, 
so for (19 – 109 )/12 < =α < =1 the minimum is 
FWA(q3) = (–1.9α2 + 5.6α + 0.4)/(– 0.7α + 2.5). 

Next we calculate the maximum of the α-cuts of 
the fuzzy weighted average. There are no 
intersections. FWA(q3) = (–0.7α2 – 0.8α + 9)/(0.4α + 
1.4). FWA(q3) >= 5–2α for 0<= <=1, so FWA(q3) is 
the maximum for 0<=α<=1. 

This leads to the following membership function 
for the fuzzy weighted average: 

μ(x) = 0 if x <= –2/19 
μ(x) = x/26 + 28/13 –  
 (5/13) 30.32 8.76x    0.01x2 +−  
  if –2/19 <= x <= (31– 109 )/12 
μ(x) = 7x/38 + 28/19 –  
 (5/19) 34.4 11.16x    0.49x2 +−   
  if (31 – 109 )/12 <= x <= 41/18 

μ(x) = 1 if 41/18 <=x <= 75/18 
μ(x) = –2x/7 – 4/7 + (5/7) 25.84 3.28x    0.16x2 +−

  if 75/18 <= x <= 45/7 
μ(x) = 0 if x >= 45/7 

5 CONCLUSIONS 

A lot of research effort has been invested into the 
development of algorithms for the calculation of 
fuzzy weighted averages. Where the computational 
complexity of the algorithms improved in the course 
of the time, leading to the linear algorithm of Guu 
(2002), the approach has always been to compute the 
α-cuts of the fuzzy weighted average for fixed value 
of α. As a consequence, one can only compute a 
finite number of values of the membership function 
of the fuzzy weighted average. In this paper we have 
presented an algorithm for the computation of the 
membership function of the fuzzy weighted average 
analytically, for triangular or trapeizoidal weights 
and attributes. Our approach has been to generalise a 
simple, but not optimally efficient, single-α 
algorithm. Using our algorithm, one no longer needs 
to approximate the membership function from a 
finite number of values.  

The feasibility of our algorithm has been 
demonstrated by the explicit calculation of the exact 
membership functions of the fuzzy weighted 
averages of a number of examples from the 
literature. 
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