
PARALLEL REWRITING IN NEURAL NETWORKS

Ekaterina Komendantskaya
School of Computer Science, University of St Andrews, U.K.

Keywords: Computational logic in neural networks, Neuro-symbolic networks, Abstract rewriting, Parallel term-
rewriting, Unsupervised learning, Computer simulation of neural networks.

Abstract: Rewriting systems are used in various areas of computer science, and especially in lambda-calculus, higher-
order logics and functional programming. We show that the unsupervised learning networks can implement
parallel rewriting. We show how this general correspondence can be refined in order to perform parallel
term rewriting in neural networks, for any given first-order term. We simulate these neural networks in the
MATLAB Neural Network Toolbox and present the complete library of functions written in the MATLAB
Neural Network Toolbox.

1 INTRODUCTION

Term rewriting (Terese, 2003) is a major area of re-
search in theoretical computer science, and has found
numerous applications in lambda calculus, higher-
order logics and functional programming. Different
forms of term-rewriting techniques underly various
areas of automated reasoning.

A simple example of an abstract rewriting system
would be a string together with a rule for rewriting
the elements of the string. In more complex cases,
the string can be given by some first-order term, there
can be a system of rewriting rules rather than one
rule, and, of course, the rewriting rules can be such
that the initial string would be shortened or extended
through the rewriting process. Certain rewriting sys-
tems would always lead to normal forms, some - not,
and the process of reducing to a normal form can be
finite or infinite. We will give formal definitions and
explanations in Section 2.

If we have to build neural networks capable
of automated reasoning, we would need to imple-
ment term-rewriting techniques into them; (Komen-
dantskaya, 2009a). These methods can be further
used in hybrid systems research.

There are several obstacles on our way. First prob-
lem is that, according to a general convention, neu-
ral networks do not process strings, or ordered se-
quences. Every neuron can accept only a scalar as
a signal, and output a scalar in its turn. This gen-
eral convention has been developed through decades
of discussion, and different views on it are best sum-

marised in (Aleksander and Morton, 1993; Smolen-
sky and Legendre, 2006). However, it happens to be
that some order is innate to neural networks: and this
order is imposed by position of neurons in a given
layer, and by positions of layers in a network. So, al-
though each neuron accepts only a scalar number as
an input, a layer of neurons accepts a vector of such
numbers, and the whole network can accept a matrix
of numbers.

This gives us the first basic assumption of the pa-
per: a vector of neurons in a layer mirrors the
structure of a string. This is why, we will use one
layer networks throughout.

Related literature that concerns the structure pro-
cessing with neural networks falls within three areas
of research: the core method to deal with symbolic
formulae and prolog terms (Bader et al., 2008); recur-
sive networks which can deal with string trees (Strick-
ert et al., 2005); and kernel methods for structures
(Gärtner, 2003). The approach we pursue here does
not follow any of the mentioned mainstream direc-
tions, but, as a pay-off, it is very direct and simple.

Having made thefirst assumptionabove, we still
need to determine which of the parameters of a neural
network will hold information about the elements of a
given string. One easy solution could be to send a vec-
tor consisting of the elements of a string as an input
to a chosen network. However, in this case the task of
rewriting this string would be delegated to a process-
ing function of the layer, whereas we wish to realise
the process by means of learning. This reduces our
options: conventionally, there are two parameters that

452
Komendantskaya E. (2009).
PARALLEL REWRITING IN NEURAL NETWORKS.
In Proceedings of the International Joint Conference on Computational Intelligence, pages 452-458
DOI: 10.5220/0002319704520458
Copyright c© SciTePress

can be trained in neural networks: these are weights
and biases. Weights are used more often in learning
and training, and so we choose weights to represent
the string we wish to rewrite.

Thus, the second major assumption is:adjusting
weights of a network is similar to rewriting terms.

So, given a strings, we construct one layer of neu-
rons, with the weight vectorw equal tos, and the lin-
ear transfer functionF(x) = x. We will work with
input signals equal to 1, so as to preserve the exact
value ofw at the first step. Next, we wish the pro-
cess of training of this weight to correspond to steps
of parallel rewriting. How close is conventional unsu-
pervised learning implemented in neural networks to
the term rewriting known in computational logic?

Consider a simple form of a Hebbian learning:
given an inputx = 1 to the layer, and having received
an outputy, the rate of change∆w for w is com-
puted as follows:∆w = L(y,x), with L some cho-
sen function. In a special case, it may be∆w = ηyx,
whereη is a positive constant called therate of learn-
ing. We take, for example,η = 2. At the first it-
eration, the output will be equal tow, and so the
network will compute∆w = 2w. At the next itera-
tion, the network will modify its weight as follows:
wnew = w+ ∆w = w+2w = 3w. And this value will
be sent as the output, see also Section 3.

Interestingly enough, the conventional Hebbian
network we have just described above does rewriting
as we know it in computer science. In terms of term
rewriting, it takes any string, and rewrites it according
to the rewriting ruleρ : x→ 3x, albeit, as we will see
in Section 2, we can use only ground instances ofρ.
Given a string[1,2,3,1,2,3,3,1,2] the network will
transform it into[3,6,9,3,6,9,9,3,6].

This justifies the third main assumption we use
throughout:unsupervised (Hebbian) learning pro-
vides a natural and elegant framework for imple-
menting parallel rewriting in neural networks .

These three assumptions lay the basis for the main
definitions of Section 3. Additionally, in Sections
3 and 4, we show the ways to formalise the more
complex cases of term-rewriting by means of unsu-
pervised learning. These cases arise when one has
more than one rewriting steps, and these steps are
not instances of one rewriting rule, when the length
of a given string changes in the process of rewriting,
and also, when one uses first-order terms instead of
abstract strings. In Section 3, we define the archi-
tecture and a simple unsupervised learning rule for
neural networks that can perform abstract rewriting,
with some restrictions on the shape and the number of
rewriting steps. In Section 4, we refine the architec-
ture of these neural networks and adapt them for the

purpose of first-orderterm rewriting. We prove that
for an arbitrary Term Rewriting System, these neural
networks perform exactly the parallel term rewriting.

When moving from simple examples of rewriting
systems to more specific and complex ones, all we
have to do is to re-define the functionL used in the
definition of the learning rule∆w = L(y,x). While
for some examples, as the one we have just con-
sidered,L is completely conventional, for other ex-
amples we define and test new functions (rewrite,
rewrite mult), using MATLAB Neural Network
Simulator. The most complex of these functions -
rewrite mult - can supportrewriting by unsuper-
vised learningfor any given Abstract or Term rewrit-
ing System.

Finally, in Section 5, we conclude the paper.

2 REWRITING SYSTEMS

In this section, we outline some basic notions used in
the theory of Term-Rewriting, see (Terese, 2003).

The most basic and fundamental notion we en-
counter is the notion of an abstract reduction (or
rewriting) system.

Definition 1. Anabstract rewriting system(ARS) is a
structureA = (A,{→α |α ∈ I}) consisting of a set A
and a set of binary relations→α on A, indexed by a
set I. We write(A,→1,→2) instead of(A,{→α |α ∈
{1,2}}).

A term rewriting system(TRS) consists of terms
and rules for rewriting these terms. So we first need
the terms. Briefly, they will be just the terms over a
given first-order signature, as in the first-order pred-
icate logic. Substitution is the operation of filling in
terms for variables. See (Terese, 2003) for more de-
tails. Given terms, we define rewriting rules:

Definition 2. A reduction rule(or rewrite rule) for a
signatureΣ is a pair 〈l , r〉 of terms of Ter(Σ). It will
be written l→ r, often with a name:ρ : l → r. Two
restrictions on reduction rules are imposed:

• the left-hand side l is not a variable;
• every variable occurring in the right-hand side r

occurs in the left-hand side l as well.

A reduction ruleρ : l → r can be viewed as a scheme.
An instance ofρ is obtained by applying a substitution
σ. The result is anatomic reduction steplσ →ρ rσ.
The left-hand side lσ is called aredexand the right-
hand side rσ is called itscontractum.

Given a term, it may contain one or more occur-
rences of redexes. A rewriting step consists of con-
tracting one of these, i.e., replacing the redex by its
contractum.

PARALLEL REWRITING IN NEURAL NETWORKS

453

Definition 3. A rewriting stepaccording to the rewrit-
ing rule ρ : l → r consists of contracting a redex
within an arbitrary context:

C[lσ] →ρ C[rσ]

We call→ρ the one-step rewriting relation generated
byρ.

Definition 4. • A term rewriting systemis a pair
R = (Σ,R) of a signatureΣ and a set of rewrit-
ing rules R forΣ.

• Theone-step rewritingrelation ofR , denoted by
→R, is defined as the union

⋃

{→ρ |ρ ∈R}. So we
have t→R s when t→ρ s for one of the rewriting
rulesρ ∈ R.

Example 1. Consider a rewrite ruleρ : F(G(x),y)→
F(x,x). Then a substitutionσ, with σ(x) = 0 and
σ(y) = G(x), yields the atomic reduction step

ρ : F(G(0),G(x)) →ρ F(0,0)

with redex F(G(0),G(x)) and contractum F(0,0).
The rule gives rise to (e.g.) the rewriting step

F(z,G(F(G(0),G(x)))) →ρ F(z,G(F(0,0)))

Here the context is F(z,G(2)).

Example 2. Consider the TRS with rewriting rules

ρ1 : F(a,x) → G(x,x) (1)

ρ2 : b → F(b,b) (2)

• The substitution[x := b] yields the atomic rewrit-
ing step F(a,b) →ρ1 G(b,b).

• A corresponding one-step rewriting is
G(F(a,b),b) →ρ1 G(G(b,b),b).

• Another one-step rewriting is G(F(a,b),b) →ρ2

G(F(a,b),F(b,b)).

The notion of aparallel rewriting is central for
establishing confluence; (Terese, 2003).

Definition 5. Let a term t contain some disjoint re-
dexes s1,s2, . . . ,sn; that is, suppose we have t≡
C[s1,s2, . . . ,sn], for some context C. Obviously, these
redexes can be contracted in any order. If their con-
tracta are respectively s′1,s

′
2, . . . ,s

′
n, in n steps the

reduct t′ ≡ C[s′1,s
′
2, . . . ,s

′
n] can be reached. These n

steps together are called aparallel step.

Performing disjoint reductions in parallel brings
significant speed-up to computations. However, very
often the parallel steps are conceived or implemented
as a sequence of disjoint rewriting steps. As we show
in the next sections, term-rewriting implemented in
neural networks does the parallel step not as a se-
quence, but truly in parallel.

3 UNSUPERVISED LEARNING
AND ABSTRACT REWRITING

In this section, we define neural networks, following
(Hecht-Nielsen, 1990; Haykin, 1994).

An artificial neural network(also called a neu-
ral network) is a directed graph. Aunit k in this
graph is characterised, at timet, by its input vector
(vi1(t), . . .vin(t)), its potentialpk(t), its biasbk and its
value vk(t). In what follows, we will use integers.

Units are connected via a set of directed and
weighted connections. If there is a connection from
unit j to unit k, thenwk j denotes theweightassoci-
ated with this connection, andik(t) = wk jv j(t) is the
input received byk from j at timet. At each update,
the potential and value of a unit are computed with
respect to aninput (activation)and anoutput (trans-
fer) functionsrespectively. The units considered here
compute their potential as the weighted sum of their
inputs:

pk(t) =

(

nk

∑
j=1

wk jv j(t)

)

. ⋆

The units are updated synchronously, time be-
comest + ∆t, and the output value fork, vk(t + ∆t),
is calculated frompk(t) by means of a giventransfer
function F, that is,vk(t + ∆t) = F(pk(t)).

A unit is said to be alinear unit if its transfer func-
tion is the identity. In this case,vk(t + ∆t) = pk(t).

We will consider networks where the units can be
organised in layers. Alayer is a vector of units.

In the rest of the paper, we will normally work
with layers of neurons rather than with single neu-
rons, and hence we will manipulate with vectors of
weights, output signals, and other parameters. In this
case, we can drop the subscripts and write simplyw
for the vector of weights.

There are two major kinds of learning distin-
guished in Neurocomputing: supervised and unsuper-
vised learning. In this paper, we focus only on unsu-
pervised learning.

Unsupervised learningin its different forms has
the following common features. A network is given a
learning rule, according to which it trains its weights.
Adaptation is achieved by means of processing exter-
nal signals, and applying the learning ruleL. To train
the weightwk j(t), we apply a learning functionL to
the input and output signalsv j(t) andvk(t), and get
∆wk j(t) = L(vk(t),v j(t)). We will call the vector∆w
thechange vectorfor the weight vectorw. As a par-
ticular case of this formula, one can have∆wk j(t) =
η(vk(t),v j(t)), whereη is a positive constant called
the rate of learning. At the next time stept + 1, the
weight is changed towk j(t +1) = wk j(t)+ ∆wk j(t).

IJCCI 2009 - International Joint Conference on Computational Intelligence

454

/.-,()*+ //1
η=2

{{ /.-,()*+ //3
η=2

{{

/.-,()*+ //2 /.-,()*+ //6
/.-,()*+ //3 /.-,()*+ //9
/.-,()*+ //1 /.-,()*+ //3
/.-,()*+ //2 /.-,()*+ //6

1 3 //2kkk
55kk1vvv

;;vvv3����

@@����2					

DD					1

FF

3
SSS

))SS
1

HHH

##HHH2
<<

<<

��<
<<

<

/.-,()*+ //3 1 9 //6kkk
55kk3vvv

;;vvv9����

@@����6					

DD				3

FF

9
SSS

))SS
3

HHH

##HHH6
<<

<<

��<
<<

<

/.-,()*+ //9
/.-,()*+ //3 /.-,()*+ //9
/.-,()*+ //1 /.-,()*+ //3
/.-,()*+ //2

η=2

cc /.-,()*+ //6
η=2

cc

Figure 1: ARNNnet at training steps 1 and 2.

We could perceive this learning functionL as a
rewriting rule for the weightwk j, and the process of
training would be the process of rewriting in this case.
A suitable architecture for a network capable of per-
forming abstract rewriting by unsupervised learning is
given in the next definition, under the nameabstract
rewriting neural network(ARNN). For simplicity, we
will first cover only ARS with one rewriting rule.

We adopt the following notation. For a given vec-
tor v, we denote its length bylv. For a given strings,
the vector that corresponds to it is denotedvs, and the
length of this vector is denoted bylvs.

Definition 6. Given an ARSA = (A,{→1}), and a
sequence s of elements of A, an architecture for the
abstract rewriting neural network(ARNN)net for s is
defined as follows. Let vs be the vector of elements of
s. Let lvs be the length of vs. Thennet is constructed
from one layer k of lvs neurons. Its weight vector wk1
is equal to vs. The transfer function is taken to be
identity. The network receives input signal1.

This definition realises the first two basic assump-
tions we outlined in Introduction. In the future, we
will freely transform sequences of symbols into vec-
tors, in the way we have done in the Definition 6. Be-
cause the input signal is equal to 1, the network built
as in Definition 6 will always outputvs, as we further
illustrate in the next example.

Example 3. Given a set A= {1,2,3}, and a sequence
s = 1,2,3,1,2,3,3,1,2, the corresponding ARNN is
constructed as follows. We take one layer k of 9
neurons, and define the weight wk1 to be the vector
vs = [1;2;3;1;2;3;3;1;2]. Once initialised, the net-
work will output the same vector: If we look at the
equation⋆, and put j= 1 (there is only one input),
and vj = 1, then the potential pk will be equal to wk.
See Figure 1. This example and many more are also
available in the fileexperiments s in (Komen-
dantskaya, 2009b).

We have a learning rule to add, in order to enable

the network to rewrite. Suppose we have a rewrit-
ing ruleρ1 : [a] → [b], with vectorsa andb of equal
length, and we want to apply this rewriting rule. Fol-
lowing the usual conventions, and taking the input
signal to be 1, the learning rule will take the out-
put vectorvk and apply some learning functionL to
vk, to form the change vector∆w1k, and compute
w1knew = wold

1k + ∆w1k. The only thing left is to de-
fineL.

As we mentioned in the introduction, in some
cases we can use conventional Hebbian learning. For
example, taking the rate of learning to be equal to 2,
we can obtain the difference vector∆w1k = 2vs, for
the network from Example 3. This will amend the
weightw1k

new = w1k + ∆w1k = vs+2vs = 3vs. Such
a network would perform rewriting for ground instan-
tiations of the rulex → 3x. Applied to Example 3,
it would give the result[3;6;9;3;6;9;9;3;6], see Fig-
ure 1. But note that Definition 2 prohibits the use of
the rewriting rules which contain a variable as a re-
dex, and so we use three ground instances of this rule,
substituting 1,2,3 for x.

However, transformation of a rewriting rule into a
linear function is not normally given, and not always
possible. Therefore, we need to develop a more gen-
eral approach. We defineL, and call itrewrite; in
the MATLAB library (Komendantskaya, 2009b) this
function is calledrewrite2.

Definition 7. (Function Rewrite). Let A =
(A,{→1}) be an ARS, sA be the given string, vs its
corresponding vector, andρ1 : [a]→ [b] be the rewrit-
ing rule, where a and b are vectors of the same length
m. Take zero vector Z of length ls. Computeρ′

1 =
−([a]− [b]). For every n= {1, . . . , ls}, do the follow-
ing: If n,n+1, . . .(n+ la−1)th elements of the vector
vk are equal to a, putρ′

1 on the n. . .(n+ la − 1)th
place of Z.

The functionrewrite takes three arguments - the
output vectorvk, and two vectors[a] and[b] that cor-
respond to the left-hand side and the right-hand side
of the rewriting ruleρ. It outputs the change vector
that containsρ′

1 at precisely those positions where[a]
appeared invs, and zeros at all other positions. To
simulate this in MATLAB, one has to choose a train-
ing mode - in the standard library the unsupervised
training function is calledtrainbuwb. Then we de-
fine a new learning functionlearnr that is used by
the training function. The learning function imple-
ments the functionrewrite.

Note these subtle interconnections between the
functions participating in training. The unsupervised
training function (trainbuwb) activates the learning
function (learnr) that computes∆w, and the latter is
given by implementing the functionrewrite. This

PARALLEL REWRITING IN NEURAL NETWORKS

455

hierarchy is imposed by MATLAB Neural Network
Toolbox, and we respect it throughout the paper.

Example 4. We continue Example 3, and introduce a
rewriting ruleρ1 : [2 3]→ [2 1]. Now we can compute
rewrite(vs, [2 3], [2 1]) = [0;0;−2;0;0;−2;0;0;0].
After one iteration,net performs a parallel rewrit-
ing step computing: [1;2;1;1;2;1;3;1;2]; see the
file experiments s.mat in (Komendantskaya,
2009b).

Lemma 1. Given an ARSA = (A,{→1}), such that
the rewriting rule’s redex and contractum are of the
same size, given a sequence sA of elements of A, there
exists an Abstract Rewriting Neural Network (ARNN)
that performs the parallel rewriting step for sA in A .

Proof. The architecture of such a network is given in
Definition 6, and the learning function (calledlearnr
in the MATLAB library) implementsL = rewrite
from Definition 7.

We have illustrated, on a limited class of ARSs,
that term-rewriting evolves naturally in unsupervised
learning neural networks. In the next section, we want
to exploit this idea to its full potential and apply it to
more complex rewriting systems.

4 TERM REWRITING NETS

In this section we consider ARSs and TRSs in their
full generality. Two major extensions will be needed.
We will need to arrange special training functions that
would allow to replace a redex by contractum when
they have different sizes. This first problem arises be-
cause in neural networks, we use vectors instead of
strings. Secondly, we must enrich the learning rule
in such a way that several rewriting steps, possibly
arising from several rewriting rules, can be applied in
parallel.

Suppose we have a strings from Example 3 and
a rewriting ruleρ2 : [1 2] → [4 5 6]. Following the
method described in the previous section, we can
build a network with weightw = vs. The train-
ing function will automatically attempt to compute
w+ ∆w, this is possible only if the error vector∆w
is of the same length asw; otherwise the vector addi-
tion is not defined. But clearly, the rewriting ruleρ2
will produce∆w that is longer thanw. To bringw into
appropriate form, we introducecompletion.

Definition 8. (Completion Algorithm). Let s be a
given string, and vs be the corresponding vector. Let
ρ1 : [a] → [b] be a given rewriting step, such that a
and b are vectors of length la and lb, and lb > la. Then
completevs as follows. Compute l= lb− la, and form

a zero vector vZ of length l. Find occurrences of the
subvector a in vs. Concatenate vZ with each such sub-
vector in vs. Completionoutputs the vector v′s that
contains vZ after each occurrence of a, but otherwise
contains all the elements of vs in their given order.

In the library of functions we present (Komen-
dantskaya, 2009b), this function is called
completion r. Completion can easily be embedded
into definitions of the term-rewriting networks.

We now generaliserewrite from Definition 7 by
addingcompletion to it.

Definition 9. (Generalised Rewrite). Let s be a
given string, and vs be the corresponding vector. Let
ρ1 : [a] → [b] be a given rewriting rule, such that a
and b are vectors of arbitrary length la and lb. Let v′s
becompletedvs.

Form a zero vector Z of length lv′s.
Computeρ′ = −([a]− [b]), if la = lb; otherwise

concatenate the shortest of them with the vector of
zeros of the length|la− lb|, and computeρ′ =−([a]−
[b]) of length m.

For every n= {1, . . . , lv′s}, do the following: If
n,n+1, . . .(n+ la−1)th elements of the vector v′

s are
equal to a, putρ′ on the n,n+1, . . .(n+ la−1)th place
of Z. The resulting vector is thechangevector∆w.

Generalisedrewrite outputs the change vector
for v′s, its implementation in MATLAB Neural Net-
work toolbox can be found in (Komendantskaya,
2009b). As in the previous section, thereduced(or
rewritten) term can be found by computing:vnew

s =
vs + ∆w. This agrees with the training mechanism
used in neural networks and we userewrite to gen-
eralise Lemma 1:

Lemma 2. Given an ARSA = (A,{→1}), and a
sequence sA of elements of A, there exists a term-
rewriting neural network (TRSNN) that performs the
parallel rewriting step for sA in A .

Proof. The architecture of such a network is given
in Definition 6, and the learning rule (learn trs in
the MATLAB library) implementsL = rewrite from
Definition 9, see (Komendantskaya, 2009b).

So far, we have considered only rewriting on num-
bers. If we wish to apply the TRNN to terms, we
would need some numerical vector representation of
the first-order syntax. We simply take the standard
ASCII encoding provided by MATLAB and com-
manddouble. In general, any one-to-one encoding
will be as good.

Example 5. We take the atomic rewriting stepρσ

from Example 1. We train the TRNN constructed in
Lemma 2 to rewrite the term F(z,G(F(G(0),G(x)))).
For this, we take numerical vector encoding v of

IJCCI 2009 - International Joint Conference on Computational Intelligence

456

F(z,G(F(G(0),G(x)))). The weight vector is set
to v. We get the learning functionlearn trs
to implement the generalisedrewrite. On the
next iteration, the network outputs the answer
F(z,G(F(0,0))); seeexperiments TRS.mat in
(Komendantskaya, 2009b).

The last extension we wish to introduce here con-
cerns the number of rewriting rules. So far, we con-
sidered only cases with one rewriting rule. How-
ever, there can be several disjoint redexes to which
different rewriting steps are applied. Clearly, com-
position of rewriting steps does not convey this idea,
(Terese, 2003). To implement the parallel term rewrit-
ing for several rules, we need to customise the func-
tions completion r andrewrite. Thus, they need
to have as many arguments as desired - depending on
the number of different and disjoint rewriting steps.
For example,rewrite was defined to have three ar-
gumentsv - the vector we rewrite, andr1, r2, if the
rewriting rule isρ1 : r1→ r2. In case of two rewriting
rules, we will additionally have argumentsr3 andr4
- for the ruleρ2 : r3→ r4.

Similarly to the TRSNN that process TRSs with
one rewriting rule,completion and rewrite will
be applied hand-in-hand. We assume now that
we already have the generalised completion defined
for several rewriting rules, see (Komendantskaya,
2009b). We define the generalisedrewrite for sev-
eral rewriting rules (rewrite mult in MATLAB).

Definition 10. (Rewrite for Several Rewriting
Rules.) Let s be the given string, and vs be the corre-
sponding vector. Letρ1 : [a1] → [b1], ..., ρn : [an] →
[bn] be disjoint atomic rewriting steps, such that each
ai and bi are vectors of arbitrary length lai and lbi . Let
v′s be thecompletedvs.

Form a zero vector Z of length lv′s.
For every i∈ {1, . . . ,n}, do the following: com-

puteρ′
i =−([ai]− [bi]), if lai = lbi ; otherwise concate-

nate the shortest of them with the vector of zeros of the
length|la − lb|, and then computeρ′

i = −([ai]− [bi])
of length lρ′i .

For every i∈ {1, . . . ,n}, find the occurrences of
the first element of the vector ai in v′s, and form the
vector vi of indexes of the occurrences. Concatenate
all such vi in one vector vn, and sort its elements in
ascending order. For all k∈ vn, for all i ∈ {1, . . . ,n},
do the following. If k,k + 1, . . . ,(k+ lρ′i − 1)th ele-
ments of the vector v′s are equal to ai , put ρ′

i on the
k,k+1, . . .(k+ lρ′i −1)th place of Z.

Rewritemult outputs the difference vector∆w for
w = v′s, if v′s is taken to be the weight vector of a net-
work. And we come to the main theorem of the paper.

Theorem 3. Given an arbitrary ARSA (or an arbi-
trary TRSR), and a string s of elements of A (or any
term t ofR), there exists a neural network that per-
forms a parallel rewriting step for s according to the
rewriting rules ofA (or R).

Proof. The architecture of such a network is given
by Definition 6, the training function is conventional
(trainbuwb), the learning rule (learn mult) imple-
mentsrewrite mult from Definition 10. The initial
weight of the network is equal to the vectorv′s (respec-
tively, v′t), wherev′s andv′t arecompletedvectors ob-
tained by applying the functioncompletion mult to
vs andvt , respectively. See (Komendantskaya, 2009b)
for a ready-to-use library.

Note that the network described in this paper is
built in a very generic way, and in practice, we only
have to define such a network once (as we did in Fig-
ure 1), for one string or term. For other terms or
strings of different length, one would simply need
to re-define the length of the layer, given by MAT-
LAB commandnet.layers{1}.size, the new value
of the weightw, given by commandnet.iw{1,1},
and plug in the given rewriting rules into the learning
function. This can be easily automatised.

Example 6. We return to Example 2. Suppose we
have chosen the substitutionσ = [x := c], and need
to perform a parallel rewriting step for G(F(a,c),b)
using ρ1 and ρ2. We again take the template def-
inition of a neural networknet from Example 3.
We customize it by computing the numerical vec-
tor v for G(F(a,b),b), and taking lv be the length
of the network’s only layer. The learning function
learn mult implementsrewrite mult. The
network outputs G(G(c,c),F(b,b)) - the result of per-
forming parallel rewriting step for G(F(a,c),b), ρσ

1,
andρ2. See also the fileexperiments TRS.mat
in (Komendantskaya, 2009b) for the MATLAB imple-
mentation of it.

In order to perform asequence of parallel rewrit-
ing steps, one needs to iterate the unsupervised train-
ing of the given network:n parallel rewriting steps
will be performed inn time steps. Additionally, we
will need to embed the functioncompletion mult
into the training function, such that at each iteration
of learning, the network could amend the number of
neurons and the weights.

When embedded into the training function, the
complete mult will give an effect of agrowing neu-
ral gas(Fritzke, 1994), that is, the network may grow
at each training step. The growth will always be
bound by the length of the contracta appearing in the
rewriting rules, and the contracta are always finite,
and often not too big.

PARALLEL REWRITING IN NEURAL NETWORKS

457

5 CONCLUSIONS

We have shown that unsupervised learning used in
Neurocomputing implements naturally the parallel
rewriting, both for ARSs and TRSs. For a simple and
limited class of rewriting systems, where only one
rewriting rule is allowed, and its redex and contrac-
tum are of the same length, the abstract rewriting is
described naturally by a simple form of unsupervised
learning. For ARSs and TRSs in their full general-
ity, we have constructed neural networks that perform
parallel rewriting steps with the help ofcompletion
algorithm embedded into the learning rule.

The neural networks defined here are fully for-
malised in the MATLAB Neural Network Toolbox,
and the library of functions is available in (Komen-
dantskaya, 2009b). The implementation brings com-
putational optimisation to the theory of TRS, in that
it achieves true parallelism, as opposed to the clas-
sical view on parallel term rewriting as a “sequence
of disjoint reductions”. Since term-rewriting plays a
central role in typed theories and functional program-
ming, this implementation may prove to be an im-
portant step on integration of the computational logic
with learning techniques of neurocomputing; see also
(Komendantskaya, 2009a).

The arguable part of the presented work is whether
the new (unconventional) learning functions we de-
fined are admissible in neural networks. There can
be two responses to this criticism. The first and
general response (see also (Komendantskaya, 2008))
is that the devision between unconventional (“sym-
bolic”) and conventional (“arithmetic”, “statistical”)
functions is arguable, as there is no formal criteria
that separates the two. Depending on a programming
language we use, arithmetic functions can be repre-
sented symbolically (Komendantskaya, 2008), or, as
we did here, symbolic functions can be represented
numerically. Another, more concrete and practical re-
sponse, is that the clear advantage of the networks we
presented here is the ease of implementation in hybrid
systems: one and the same network can easily switch
between the conventional and “symbolic” learning
functions, without any structural or other transforma-
tions.

ACKNOWLEDGEMENTS

The work was sponsored by EPSRC PF research grant
EP/F044046/1. I thank Roy Dyckhoff for useful dis-
cussions. Finally, I thank the authors and presenters
of EIDMA/DIAMANT minicourse Lambda Calculus
and Term Rewriting SystemsHenk Barendregt and Jan

Willem Klop for inspiration.

REFERENCES

Aleksander, I. and Morton, H. (1993).Neurons and Sym-
bols. Chapman and Hall.

Bader, S., Hitzler, P., and Hölldobler, S. (2008). Connec-
tionist model generation: A first-order approach.Neu-
rocomputing, 71:2420–2432.

Fritzke, B. (1994). Fast learning with incremental rbf net-
works. Neural Processing Letters, 1:1–5.

Gärtner, T. (2003). A survey of kernels for structured data.
SIGKDD Explorations, 5(1):49–58.

Haykin, S. (1994). Neural Networks. A Comprehensive
Foundation. Macmillan College Publishing Company.

Hecht-Nielsen, R. (1990). Neurocomputing. Addison-
Wesley.

Komendantskaya, E. (2008). Unification by error-
correction. InProceedings of NeSy’08 workshop at
ECAI’08, 21-25 July 2008, Patras, Greece, volume
366. CEUR Workshop Proceedings.

Komendantskaya, E. (2009a). Neurons or symbols: why
does or remain exclusive? InProceedings of
ICNC’09.

Komendantskaya, E. (2009b). Term rewriting in neural
networks: Library of functions and examples writ-
ten in MATLAB neural network toolbox. www.cs.st-
andrews.ac.uk/˜ek/Term-Rewriting.zip.

Smolensky, P. and Legendre, G. (2006).The Harmonic
Mind. MIT Press.

Strickert, M., Hammer, B., and Blohm, S. (2005). Unsuper-
vised recursive sequence processing.Neurocomput-
ing, 63:69–97.

Terese (2003).Term Rewriting Systems. Cambridge Uni-
versity Press.

IJCCI 2009 - International Joint Conference on Computational Intelligence

458

